Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = Langat virus (LGTV)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 13102 KiB  
Article
Pharmacological Agent GW4869 Inhibits Tick-Borne Langat Virus Replication to Affect Extracellular Vesicles Secretion
by Md Bayzid, Biswajit Bhowmick, Waqas Ahmed, Girish Neelakanta and Hameeda Sultana
Viruses 2025, 17(7), 969; https://doi.org/10.3390/v17070969 - 10 Jul 2025
Viewed by 450
Abstract
GW4869, a cell-permeable, selective inhibitor of neutral sphingomyelinase is a pharmacological agent that blocks the production and release of extracellular vesicles (EVs). Our previous studies have shown that GW4869 inhibits flaviviral loads in tick, mosquito and mammalian cells, including murine cortical neurons. Yet [...] Read more.
GW4869, a cell-permeable, selective inhibitor of neutral sphingomyelinase is a pharmacological agent that blocks the production and release of extracellular vesicles (EVs). Our previous studies have shown that GW4869 inhibits flaviviral loads in tick, mosquito and mammalian cells, including murine cortical neurons. Yet the mechanism(s) of GW4869 inhibitor upon viral infections were not addressed. In the current study, we focused on how GW4869 interferes with Langat Virus (LGTV, a tick-borne flavivirus) replication in ISE6 tick cells. First, we found that GW4869 is neither cytotoxic at tested doses of 50, 100, and 150 µM in tick cells, nor does it directly bind to the free LGTV present in cell culture supernatants. When tick cells were treated with GW4869, followed by infection with viral stock at dilutions of 10−2, 10−3, 10−4 (the infectious dose determination by viral dilution assay), it affected LGTV replication in tick cells. A reduction in viral burden was noted in GW4869-treated tick cells, which constituted more than half the amount of decrease when compared to the mock control. Next, GW4869 treatment not only resulted in decreased LGTV transcript levels in tick cells and EVs derived from these infected cells, but also revealed diminished EVs concentrations. Enhanced IsSMase transcripts in the LGTV-infected group was noted upon GW4869 treatment, thus suggesting a host response to perhaps inhibit virus replication. In addition, GW4869 treatment reduced LGTV loads in density gradient EVs fractions, which correlated with decreased EVs concentration in those fractions. These data not only indicate that GW4869 affects LGTV replication, but that it also interferes with EV secretion and release from tick cells. Lastly, we found that GW4869 inhibits LGTV replication in tick cells but does not directly affect the infectivity of LGTV viral particles. Overall, our study suggests that GW4869 is a potential therapeutic inhibitor in controlling tick-borne diseases. Full article
(This article belongs to the Special Issue Tick-Borne Viruses: Transmission and Surveillance, 2nd Edition)
Show Figures

Figure 1

21 pages, 8695 KiB  
Article
Identification of TRIM21 and TRIM14 as Antiviral Factors Against Langat and Zika Viruses
by Pham-Tue-Hung Tran, Mir Himayet Kabir, Naveed Asghar, Matthew R. Hathaway, Assim Hayderi, Roger Karlsson, Anders Karlsson, Travis Taylor, Wessam Melik and Magnus Johansson
Viruses 2025, 17(5), 644; https://doi.org/10.3390/v17050644 - 29 Apr 2025
Viewed by 764
Abstract
Flaviviruses are usually transmitted to humans via mosquito or tick bites, whose infections may lead to severe diseases and fatality. During intracellular infection, they remodel the endoplasmic reticulum (ER) membrane to generate compartments scaffolding the replication complex (RC) where replication of the viral [...] Read more.
Flaviviruses are usually transmitted to humans via mosquito or tick bites, whose infections may lead to severe diseases and fatality. During intracellular infection, they remodel the endoplasmic reticulum (ER) membrane to generate compartments scaffolding the replication complex (RC) where replication of the viral genome takes place. In this study, we purified the ER membrane fraction of virus infected cells to identify the proteins that were enriched during flavivirus infection. We found that tripartite motif-containing proteins (TRIMs) including TRIM38, TRIM21, and TRIM14 were significantly enriched during infection with mosquito-borne (West Nile virus strain Kunjin and Zika virus (ZIKV)) and tick-borne (Langat virus (LGTV)) flaviviruses. Further characterizations showed that TRIM21 and TRIM14 act as restriction factors against ZIKV and LGTV, while TRIM38 hinders ZIKV infection. These TRIMs worked as interferon-stimulated genes to mediate IFN-I response against LGTV and ZIKV infections. Restriction of ZIKV by TRIM14 and TRIM38 coincides with their colocalization with ZIKV NS3. TRIM14-mediated LGTV restriction coincides with its colocalization with LGTV NS3 and NS5 proteins. However, TRIM21 did not colocalize with ZIKV and LGTV NS3 or NS5 protein suggesting its antiviral activity is not dependent on direct targeting the viral enzyme. Finally, we demonstrated that overexpression of TRIM21 and TRIM14 restricted LGTV replication. Full article
(This article belongs to the Special Issue Advances in Alphavirus and Flavivirus Research, 2nd Edition)
Show Figures

Figure 1

15 pages, 2191 KiB  
Article
Impact of Tick-Borne Orthoflaviviruses Infection on Compact Human Brain Endothelial Barrier
by Felix Schweitzer, Tamás Letoha, Albert Osterhaus and Chittappen Kandiyil Prajeeth
Int. J. Mol. Sci. 2025, 26(5), 2342; https://doi.org/10.3390/ijms26052342 - 6 Mar 2025
Cited by 1 | Viewed by 1434
Abstract
Tick-borne encephalitis remains a significant burden on human health in the endemic areas in Central Europe and Eastern Asia. The causative agent, tick-borne encephalitis virus (TBEV), is a neurotropic virus belonging to the genus of Orthoflavivirus. After TBEV enters the central nervous [...] Read more.
Tick-borne encephalitis remains a significant burden on human health in the endemic areas in Central Europe and Eastern Asia. The causative agent, tick-borne encephalitis virus (TBEV), is a neurotropic virus belonging to the genus of Orthoflavivirus. After TBEV enters the central nervous system (CNS), it mainly targets neurons, causing encephalitis and leading to life-long disabilities, coma and, in rare cases, death. The neuroinvasive mechanisms of orthoflaviviruses are poorly understood. Here we investigate the mechanism of TBEV neuroinvasion, hypothesizing that TBEV influences blood–brain barrier (BBB) properties and uses transcellular routes to cross the endothelial barrier and enter the CNS. To test this hypothesis, we employed an in vitro transwell system consisting of endothelial cell monolayers cultured on insert membranes and studied the barrier properties following inoculation to tick-borne orthoflaviviruses. It was shown that TBEV and closely related but naturally attenuated Langat virus (LGTV) crossed the intact endothelial cell monolayer without altering its barrier properties. Interestingly, transendothelial migration of TBEV was significantly affected when two cellular surface antigens, the laminin-binding protein and vimentin, were blocked with specific antibodies. Taken together, these results indicate that orthoflaviviruses use non-destructive transcellular routes through endothelial cells to establish infection within the CNS. Full article
(This article belongs to the Special Issue Viral Infections and the Immune Response: New Perspectives)
Show Figures

Figure 1

16 pages, 2131 KiB  
Article
Transcriptional Response to Tick-Borne Flavivirus Infection in Neurons, Astrocytes and Microglia In Vivo and In Vitro
by Ebba Rosendal, Richard Lindqvist, Nunya Chotiwan, Johan Henriksson and Anna K. Överby
Viruses 2024, 16(8), 1327; https://doi.org/10.3390/v16081327 - 19 Aug 2024
Cited by 1 | Viewed by 1797
Abstract
Tick-borne encephalitis virus (TBEV) is a neurotropic member of the genus Orthoflavivirus (former Flavivirus) and is of significant health concern in Europe and Asia. TBEV pathogenesis may occur directly via virus-induced damage to neurons or through immunopathology due to excessive inflammation. While [...] Read more.
Tick-borne encephalitis virus (TBEV) is a neurotropic member of the genus Orthoflavivirus (former Flavivirus) and is of significant health concern in Europe and Asia. TBEV pathogenesis may occur directly via virus-induced damage to neurons or through immunopathology due to excessive inflammation. While primary cells isolated from the host can be used to study the immune response to TBEV, it is still unclear how well these reflect the immune response elicited in vivo. Here, we compared the transcriptional response to TBEV and the less pathogenic tick-borne flavivirus, Langat virus (LGTV), in primary monocultures of neurons, astrocytes and microglia in vitro, with the transcriptional response in vivo captured by single-nuclei RNA sequencing (snRNA-seq) of a whole mouse cortex. We detected similar transcriptional changes induced by both LGTV and TBEV infection in vitro, with the lower response to LGTV likely resulting from slower viral kinetics. Gene set enrichment analysis showed a stronger transcriptional response in vivo than in vitro for astrocytes and microglia, with a limited overlap mainly dominated by interferon signaling. Together, this adds to our understanding of neurotropic flavivirus pathogenesis and the strengths and limitations of available model systems. Full article
(This article belongs to the Special Issue Usutu Virus, West Nile Virus and Neglected Flaviviruses)
Show Figures

Figure 1

13 pages, 2843 KiB  
Article
The Vector Competence of Asian Longhorned Ticks in Langat Virus Transmission
by Yan Xu and Jingwen Wang
Viruses 2024, 16(2), 304; https://doi.org/10.3390/v16020304 - 16 Feb 2024
Cited by 5 | Viewed by 3456
Abstract
Haemaphysalis longicornis (the longhorned tick), the predominant tick species in China, serves as a vector for a variety of pathogens, and is capable of transmitting the tick-borne encephalitis virus (TBEV), the causative agent of tick-borne encephalitis. However, it is unclear how these ticks [...] Read more.
Haemaphysalis longicornis (the longhorned tick), the predominant tick species in China, serves as a vector for a variety of pathogens, and is capable of transmitting the tick-borne encephalitis virus (TBEV), the causative agent of tick-borne encephalitis. However, it is unclear how these ticks transmit TBEV. Langat virus (LGTV), which has a reduced pathogenicity in humans, has been used as a surrogate for TBEV. In this study, we aimed to investigate the vector competence of H. longicornis to transmit LGTV and demonstrate the efficient acquisition and transmission of LGTV between this tick species and mice. LGTV localization was detected in several tick tissues, such as the midgut, salivary glands, and synganglion, using quantitative PCR and immunohistochemical staining with a polyclonal antibody targeting the LGTV envelope protein. We demonstrated the horizontal transmission of LGTV to different developmental stages within the same generation but did not see evidence of vertical transmission. It was interesting to note that we observed mice acting as a bridge, facilitating the transmission of LGTV to neighboring naïve ticks during blood feeding. In conclusion, the virus–vector–host model employed in this study provides valuable insights into the replication and transmission of LGTV throughout its life cycle. Full article
(This article belongs to the Special Issue Vectors for Insect Viruses)
Show Figures

Figure 1

13 pages, 1946 KiB  
Brief Report
Differences in Genetic Diversity of Mammalian Tick-Borne Flaviviruses
by Kassandra L. Carpio, Jill K. Thompson, Steven G. Widen, Jennifer K. Smith, Terry L. Juelich, David E. Clements, Alexander N. Freiberg and Alan D. T. Barrett
Viruses 2023, 15(2), 281; https://doi.org/10.3390/v15020281 - 19 Jan 2023
Cited by 5 | Viewed by 2384
Abstract
The genetic diversities of mammalian tick-borne flaviviruses are poorly understood. We used next-generation sequencing (NGS) to deep sequence different viruses and strains belonging to this group of flaviviruses, including Central European tick-borne encephalitis virus (TBEV-Eur), Far Eastern TBEV (TBEV-FE), Langat (LGTV), Powassan (POWV), [...] Read more.
The genetic diversities of mammalian tick-borne flaviviruses are poorly understood. We used next-generation sequencing (NGS) to deep sequence different viruses and strains belonging to this group of flaviviruses, including Central European tick-borne encephalitis virus (TBEV-Eur), Far Eastern TBEV (TBEV-FE), Langat (LGTV), Powassan (POWV), Deer Tick (DTV), Kyasanur Forest Disease (KFDV), Alkhurma hemorrhagic fever (AHFV), and Omsk hemorrhagic fever (OHFV) viruses. DTV, AHFV, and KFDV had the lowest genetic diversity, while POWV strains LEIV-5530 and LB, OHFV, TBEV-Eur, and TBEV-FE had higher genetic diversities. These findings are compatible with the phylogenetic relationships between the viruses. For DTV and POWV, the amount of genetic diversity could be explained by the number of tick vector species and amplification hosts each virus can occupy, with low diversity DTV having a more limited vector and host pool, while POWV with higher genetic diversities has been isolated from different tick species and mammals. It is speculated that high genetic diversity may contribute to the survival of the virus as it encounters these different environments. Full article
(This article belongs to the Section Invertebrate Viruses)
Show Figures

Figure 1

18 pages, 2858 KiB  
Article
αVβ3 Integrin Expression Is Essential for Replication of Mosquito and Tick-Borne Flaviviruses in Murine Fibroblast Cells
by Vinicius Pinho dos Reis, Markus Keller, Katja Schmidt, Rainer Günter Ulrich and Martin Hermann Groschup
Viruses 2022, 14(1), 18; https://doi.org/10.3390/v14010018 - 23 Dec 2021
Cited by 6 | Viewed by 4015
Abstract
The Flavivirus genus includes a number of important viruses that are pathogenic to humans and animals and are responsible for outbreaks across the globe. Integrins, a family of heterodimeric transmembrane molecules expressed in all nucleated cells mediate critical functions of cell physiology and [...] Read more.
The Flavivirus genus includes a number of important viruses that are pathogenic to humans and animals and are responsible for outbreaks across the globe. Integrins, a family of heterodimeric transmembrane molecules expressed in all nucleated cells mediate critical functions of cell physiology and cell cycle. Integrins were previously postulated to be involved in flavivirus entry and to modulate flavivirus replication efficiency. In the present study, mouse embryonic fibroblasts (MEF), lacking the expression of αVβ3 integrin (MEF-αVβ3−/−), were infected with four different flaviviruses, namely yellow fever virus (YFV), West Nile virus (WNV), Usutu virus (USUV) and Langat virus (LGTV). The effects of the αVβ3 integrin absence in double-knockout MEF-αVβ3−/− on flavivirus binding, internalization and replication were compared to the respective wild-type cells. Binding to the cell surface for all four flaviviruses was not affected by the ablation of αVβ3 integrin, whereas internalization of USUV and WNV was slightly affected by the loss of αVβ3 integrin expression. Most interestingly, the deletion of αVβ3 integrin strongly impaired replication of all flaviviruses with a reduction of up to 99% on virus yields and a strong reduction on flavivirus anti-genome RNA synthesis. In conclusion, our results demonstrate that αVβ3 integrin expression in flavivirus-susceptible cell lines enhances the flavivirus replication. Full article
(This article belongs to the Special Issue Host Cell-Virus Interaction)
Show Figures

Figure 1

14 pages, 2653 KiB  
Article
IRE1-Mediated Unfolded Protein Response Promotes the Replication of Tick-Borne Flaviviruses in a Virus and Cell-Type Dependent Manner
by Veronika J. M. Breitkopf, Gerhard Dobler, Peter Claus, Hassan Y. Naim and Imke Steffen
Viruses 2021, 13(11), 2164; https://doi.org/10.3390/v13112164 - 27 Oct 2021
Cited by 12 | Viewed by 3104
Abstract
Tick-borne flaviviruses (TBFV) can cause severe neurological complications in humans, but differences in tissue tropism and pathogenicity have been described for individual virus strains. Viral protein synthesis leads to the induction of the unfolded protein response (UPR) within infected cells. The IRE1 pathway [...] Read more.
Tick-borne flaviviruses (TBFV) can cause severe neurological complications in humans, but differences in tissue tropism and pathogenicity have been described for individual virus strains. Viral protein synthesis leads to the induction of the unfolded protein response (UPR) within infected cells. The IRE1 pathway has been hypothesized to support flavivirus replication by increasing protein and lipid biogenesis. Here, we investigated the role of the UPR in TBFV infection in human astrocytes, neuronal and intestinal cell lines that had been infected with tick-borne encephalitis virus (TBEV) strains Neudoerfl and MucAr-HB-171/11 as well as Langat virus (LGTV). Both TBEV strains replicated better than LGTV in central nervous system (CNS) cells. TBEV strain MucAr-HB-171/11, which is associated with gastrointestinal symptoms, replicated best in intestinal cells. All three viruses activated the inositol-requiring enzyme 1 (IRE1) pathway via the X-box binding protein 1 (XBP1). Interestingly, the neurotropic TBEV strain Neudoerfl induced a strong upregulation of XBP1 in all cell types, but with faster kinetics in CNS cells. In contrast, TBEV strain MucAr-HB-171/11 failed to activate the IRE1 pathway in astrocytes. The low pathogenic LGTV led to a mild induction of IRE1 signaling in astrocytes and intestinal cells. When cells were treated with IRE1 inhibitors prior to infection, TBFV replication in astrocytes was significantly reduced. This confirms a supporting role of the IRE1 pathway for TBFV infection in relevant viral target cells and suggests a correlation between viral tissue tropism and the cell-type dependent induction of the unfolded protein response. Full article
(This article belongs to the Special Issue Host Cell-Virus Interaction)
Show Figures

Figure 1

16 pages, 3522 KiB  
Article
Roles of the Endogenous Lunapark Protein during Flavivirus Replication
by Pham-Tue-Hung Tran, Naveed Asghar, Magnus Johansson and Wessam Melik
Viruses 2021, 13(7), 1198; https://doi.org/10.3390/v13071198 - 22 Jun 2021
Cited by 9 | Viewed by 3203
Abstract
The endoplasmic reticulum (ER) of eukaryotic cells is a dynamic organelle, which undergoes continuous remodeling. At the three-way tubular junctions of the ER, the lunapark (LNP) protein acts as a membrane remodeling factor to stabilize these highly curved membrane junctions. In addition, during [...] Read more.
The endoplasmic reticulum (ER) of eukaryotic cells is a dynamic organelle, which undergoes continuous remodeling. At the three-way tubular junctions of the ER, the lunapark (LNP) protein acts as a membrane remodeling factor to stabilize these highly curved membrane junctions. In addition, during flavivirus infection, the ER membrane is invaginated to form vesicles (Ve) for virus replication. Thus, LNP may have roles in the generation or maintenance of the Ve during flavivirus infection. In this study, our aim was to characterize the functions of LNP during flavivirus infection and investigate the underlying mechanisms of these functions. To specifically study virus replication, we generated cell lines expressing replicons of West Nile virus (Kunjin strain) or Langat virus. By using these replicon platforms and electron microscopy, we showed that depletion of LNP resulted in reduced virus replication, which is due to its role in the generation of the Ve. By using biochemical assays and high-resolution microscopy, we found that LNP is recruited to the Ve and the protein interacts with the nonstructural protein (NS) 4B. Therefore, these data shed new light on the interactions between flavivirus and host factors during viral replication. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

14 pages, 3468 KiB  
Article
Immunity to TBEV Related Flaviviruses with Reduced Pathogenicity Protects Mice from Disease but Not from TBEV Entry into the CNS
by Monique Petry, Martin Palus, Eva Leitzen, Johanna Gracia Mitterreiter, Bei Huang, Andrea Kröger, Georges M. G. M. Verjans, Wolfgang Baumgärtner, Guus F. Rimmelzwaan, Daniel Růžek, Albert Osterhaus and Chittappen Kandiyil Prajeeth
Vaccines 2021, 9(3), 196; https://doi.org/10.3390/vaccines9030196 - 26 Feb 2021
Cited by 14 | Viewed by 4853
Abstract
Tick-borne encephalitis virus (TBEV) is a leading cause of vector-borne viral encephalitis with expanding endemic regions across Europe. In this study we tested in mice the efficacy of preinfection with a closely related low-virulent flavivirus, Langat virus (LGTV strain TP21), or a naturally [...] Read more.
Tick-borne encephalitis virus (TBEV) is a leading cause of vector-borne viral encephalitis with expanding endemic regions across Europe. In this study we tested in mice the efficacy of preinfection with a closely related low-virulent flavivirus, Langat virus (LGTV strain TP21), or a naturally avirulent TBEV strain (TBEV-280) in providing protection against lethal infection with the highly virulent TBEV strain (referred to as TBEV-Hypr). We show that prior infection with TP21 or TBEV-280 is efficient in protecting mice from lethal TBEV-Hypr challenge. Histopathological analysis of brains from nonimmunized mice revealed neuronal TBEV infection and necrosis. Neuroinflammation, gliosis, and neuronal necrosis was however also observed in some of the TP21 and TBEV-280 preinfected mice although at reduced frequency as compared to the nonimmunized TBEV-Hypr infected mice. qPCR detected the presence of viral RNA in the CNS of both TP21 and TBEV-280 immunized mice after TBEV-Hypr challenge, but significantly reduced compared to mock-immunized mice. Our results indicate that although TBEV-Hypr infection is effectively controlled in the periphery upon immunization with low-virulent LGTV or naturally avirulent TBEV 280, it may still enter the CNS of these animals. These findings contribute to our understanding of causes for vaccine failure in individuals vaccinated with TBE vaccines. Full article
(This article belongs to the Special Issue Advances in Vaccine Development and Immunotherapies)
Show Figures

Figure 1

14 pages, 1948 KiB  
Communication
Tick-Borne Flaviviruses Depress AKT Activity during Acute Infection by Modulating AKT1/2
by Joshua M. Kirsch, Luwanika Mlera, Danielle K. Offerdahl, Marthe VanSickle and Marshall E. Bloom
Viruses 2020, 12(10), 1059; https://doi.org/10.3390/v12101059 - 23 Sep 2020
Cited by 8 | Viewed by 2913
Abstract
Tick-borne flaviviruses (TBFVs) are reemerging public health threats. To develop therapeutics against these pathogens, increased understanding of their interactions with the mammalian host is required. The PI3K-AKT pathway has been implicated in TBFV persistence, but its role during acute virus infection remains poorly [...] Read more.
Tick-borne flaviviruses (TBFVs) are reemerging public health threats. To develop therapeutics against these pathogens, increased understanding of their interactions with the mammalian host is required. The PI3K-AKT pathway has been implicated in TBFV persistence, but its role during acute virus infection remains poorly understood. Previously, we showed that Langat virus (LGTV)-infected HEK 293T cells undergo a lytic crisis with a few surviving cells that become persistently infected. We also observed that AKT2 mRNA is upregulated in cells persistently infected with TBFV. Here, we investigated the virus-induced effects on AKT expression over the course of acute LGTV infection and found that total phosphorylated AKT (pAKT), AKT1, and AKT2 decrease over time, but AKT3 increases dramatically. Furthermore, cells lacking AKT1 or AKT2 were more resistant to LGTV-induced cell death than wild-type cells because they expressed higher levels of pAKT and antiapoptotic proteins, such as XIAP and survivin. The differential modulation of AKT by LGTV may be a mechanism by which viral persistence is initiated, and our results demonstrate a complicated manipulation of host pathways by TBFVs. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

23 pages, 1852 KiB  
Article
Old Drugs with New Tricks: Efficacy of Fluoroquinolones to Suppress Replication of Flaviviruses
by Stacey L. P. Scroggs, Christy C. Andrade, Ramesh Chinnasamy, Sasha R. Azar, Erin E. Schirtzinger, Erin I. Garcia, Jeffrey B. Arterburn, Kathryn A. Hanley and Shannan L. Rossi
Viruses 2020, 12(9), 1022; https://doi.org/10.3390/v12091022 - 13 Sep 2020
Cited by 13 | Viewed by 4221
Abstract
Repurposing FDA-approved compounds could provide the fastest route to alleviate the burden of disease caused by flaviviruses. In this study, three fluoroquinolones, enoxacin, difloxacin and ciprofloxacin, curtailed replication of flaviviruses Zika (ZIKV), dengue (DENV), Langat (LGTV) and Modoc (MODV) in HEK-293 cells at [...] Read more.
Repurposing FDA-approved compounds could provide the fastest route to alleviate the burden of disease caused by flaviviruses. In this study, three fluoroquinolones, enoxacin, difloxacin and ciprofloxacin, curtailed replication of flaviviruses Zika (ZIKV), dengue (DENV), Langat (LGTV) and Modoc (MODV) in HEK-293 cells at low micromolar concentrations. Time-of-addition assays suggested that enoxacin suppressed ZIKV replication at an intermediate step in the virus life cycle, whereas ciprofloxacin and difloxacin had a wider window of efficacy. A129 mice infected with 1 × 105 plaque-forming units (pfu) ZIKV FSS13025 (n = 20) or phosphate buffered saline (PBS) (n = 11) on day 0 and treated with enoxacin at 10 mg/kg or 15 mg/kg or diluent orally twice daily on days 1–5 did not differ in weight change or virus titer in serum or brain. However, mice treated with enoxacin showed a significant, five-fold decrease in ZIKV titer in testes relative to controls. Mice infected with 1 × 102 pfu ZIKV (n = 13) or PBS (n = 13) on day 0 and treated with 15 mg/kg oral enoxacin or diluent twice daily pre-treatment and days 1–5 post-treatment also did not differ in weight and viral load in the serum, brain, and liver, but mice treated with enoxacin showed a significant, 2.5-fold decrease in ZIKV titer in testes relative to controls. ZIKV can be sexually transmitted, so reduction of titer in the testes by enoxacin should be further investigated. Full article
(This article belongs to the Special Issue Drug-Repositioning Opportunities for Antiviral Therapy)
Show Figures

Figure 1

17 pages, 1858 KiB  
Article
Evaluation of Viral RNA Recovery Methods in Vectors by Metagenomic Sequencing
by Joyce Odeke Akello, Stephen L. Leib, Olivier Engler and Christian Beuret
Viruses 2020, 12(5), 562; https://doi.org/10.3390/v12050562 - 19 May 2020
Viewed by 5469
Abstract
Identification and characterization of viral genomes in vectors including ticks and mosquitoes positive for pathogens of great public health concern using metagenomic next generation sequencing (mNGS) has challenges. One such challenge is the ability to efficiently recover viral RNA which is typically dependent [...] Read more.
Identification and characterization of viral genomes in vectors including ticks and mosquitoes positive for pathogens of great public health concern using metagenomic next generation sequencing (mNGS) has challenges. One such challenge is the ability to efficiently recover viral RNA which is typically dependent on sample processing. We evaluated the quantitative effect of six different extraction methods in recovering viral RNA in vectors using negative tick homogenates spiked with serial dilutions of tick-borne encephalitis virus (TBEV) and surrogate Langat virus (LGTV). Evaluation was performed using qPCR and mNGS. Sensitivity and proof of concept of optimal method was tested using naturally positive TBEV tick homogenates and positive dengue, chikungunya, and Zika virus mosquito homogenates. The amount of observed viral genome copies, percentage of mapped reads, and genome coverage varied among different extractions methods. The developed Method 5 gave a 120.8-, 46-, 2.5-, 22.4-, and 9.9-fold increase in the number of viral reads mapping to the expected pathogen in comparison to Method 1, 2, 3, 4, and 6, respectively. Our developed Method 5 termed ROVIV (Recovery of Viruses in Vectors) greatly improved viral RNA recovery and identification in vectors using mNGS. Therefore, it may be a more sensitive method for use in arbovirus surveillance. Full article
(This article belongs to the Special Issue Emerging Arboviruses)
Show Figures

Figure 1

15 pages, 1473 KiB  
Article
PERK-Mediated Unfolded Protein Response Signaling Restricts Replication of the Tick-Borne Flavivirus Langat Virus
by Tyler G. Lewy, Danielle K. Offerdahl, Jeffrey M. Grabowski, Eliza Kellman, Luwanika Mlera, Abhilash Chiramel and Marshall E. Bloom
Viruses 2020, 12(3), 328; https://doi.org/10.3390/v12030328 - 18 Mar 2020
Cited by 15 | Viewed by 4209
Abstract
The unfolded protein response (UPR) maintains protein-folding homeostasis in the endoplasmic reticulum (ER) and has been implicated as both beneficial and detrimental to flavivirus infection. Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), a sensor of the UPR, is commonly associated with antiviral [...] Read more.
The unfolded protein response (UPR) maintains protein-folding homeostasis in the endoplasmic reticulum (ER) and has been implicated as both beneficial and detrimental to flavivirus infection. Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), a sensor of the UPR, is commonly associated with antiviral effects during mosquito-borne flavivirus (MBFV) infection, but its relation to tick-borne flavivirus (TBFV) infection remains largely unexplored. In this study, we identified changes in UPR and autophagic activity during Langat virus (LGTV) infection. LGTV robustly activated UPR and altered autophagic flux. Knockdown of endogenous PERK in human cells resulted in increased LGTV replication, but not that of closely related Powassan virus (POWV). Finally, on examining changes in protein levels of components associated with UPR and autophagy in the absence of PERK, we could show that LGTV-infected cells induced UPR but did not lead to expression of C/EBP homologous protein (CHOP), an important downstream transcription factor of multiple stress pathways. From these data, we hypothesize that LGTV can antagonize other kinases that target eukaryotic initiation factor 2α (eIF2α), but not PERK, implicating PERK as a potential mediator of intrinsic immunity. This effect was not apparent for POWV, a more pathogenic TBFV, suggesting it may be better equipped to mitigate the antiviral effects of PERK. Full article
(This article belongs to the Special Issue Flavivirus Replication and Pathogenesis)
Show Figures

Figure 1

9 pages, 801 KiB  
Article
Synchronous Langat Virus Infection of Haemaphysalis longicornis Using Anal Pore Microinjection
by Melbourne Rio Talactac, Kentaro Yoshii, Emmanuel Pacia Hernandez, Kodai Kusakisako, Remil Linggatong Galay, Kozo Fujisaki, Masami Mochizuki and Tetsuya Tanaka
Viruses 2017, 9(7), 189; https://doi.org/10.3390/v9070189 - 17 Jul 2017
Cited by 12 | Viewed by 7160
Abstract
The tick-borne encephalitis virus (TBEV) serocomplex of flaviviruses consists of arboviruses that cause important diseases in animals and humans. The transmission of this group of viruses is commonly associated with tick species such as Ixodes spp., Dermacentor spp., and Hyalomma spp. In the [...] Read more.
The tick-borne encephalitis virus (TBEV) serocomplex of flaviviruses consists of arboviruses that cause important diseases in animals and humans. The transmission of this group of viruses is commonly associated with tick species such as Ixodes spp., Dermacentor spp., and Hyalomma spp. In the case of Haemaphysalis longicornis, the detection and isolation of flaviviruses have been previously reported. However, studies showing survival dynamics of any tick-borne flavivirus in H. longicornis are still lacking. In this study, an anal pore microinjection method was used to infect adult H. longicornis with Langat virus (LGTV), a naturally attenuated member of the TBEV serocomplex. LGTV detection in ticks was done by real-time PCR, virus isolation, and indirect immunofluorescent antibody test. The maximum viral titer was recorded at 28 days post-inoculation, and midgut cells were shown to be the primary replication site. The tick can also harbor the virus for at least 120 days and can successfully transmit LGTV to susceptible mice as confirmed by detection of LGTV antibodies. However, no transovarial transmission was observed from the egg and larval samples. Taken together, our results highly suggest that anal pore microinjection can be an effective method in infecting adult H. longicornis, which can greatly assist in our efforts to study tick and virus interactions. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop