Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = LEO constellation design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5109 KB  
Article
LEO-Enhanced Multi-GNSS Real-Time PPP Time Transfer
by Wei Xie, Kan Wang, Wen Lai, Mengjun Wu, Mengyuan Li and Xuhai Yang
Remote Sens. 2025, 17(21), 3549; https://doi.org/10.3390/rs17213549 - 27 Oct 2025
Viewed by 303
Abstract
GNSS Precise Point Positioning (PPP) technology has been applied to the time transfer for a long time, enabling time synchronization between two arbitrary stations on a global scale. Over the past decade, Low Earth Orbit (LEO) satellite constellations have been developed to enhance [...] Read more.
GNSS Precise Point Positioning (PPP) technology has been applied to the time transfer for a long time, enabling time synchronization between two arbitrary stations on a global scale. Over the past decade, Low Earth Orbit (LEO) satellite constellations have been developed to enhance GNSS, offering rapid geometry configuration variations that can accelerate PPP convergence and enhance the time link performance. In this contribution, LEO observations are integrated into GNSS to enhance the real-time PPP time transfer. Simulated LEO constellations with varying numbers of satellites are used to assess their impact on real-time PPP time transfer performance. One week of observation data from 11 globally distributed stations is used to generate 10 time links, and five experimental schemes are designed: (1) GPS/BDS-3/Galileo solution (GCE), (2) GCE with 120 LEO satellites (GCE+120L), (3) GCE with 180 LEO satellites (GCE+180L), (4) GCE with 240 LEO satellites (GCE+240L), and (5) GCE with 300 LEO satellites (GCE+300L). Results showed that compared to the GCE solution, integrating 120, 180, 240, and 300 LEO satellites increases the average number of observed satellites from 23.4 to 30.6, 34.1, 37.7, and 41.3, respectively, while reducing Time Dilution of Precision (TDOP) values from 0.547 to 0.424, 0.391, 0.363, and 0.342, respectively. Using 30 s observations, the average convergence time to STD of time link errors better than 0.1 ns is reduced from 7.95 to 5.94, 4.83, 4.46, and 4.45 min in static mode, with improvements of 25.3%, 39.2%, 43.9%, and 44.0%, respectively, and from 8.75 to 6.18, 5.17, 4.89, and 4.72 min in kinematic mode, with improvements of 29.3%, 40.8%, 44.1%, and 46.0%, respectively. Using 1 s observations, Scenarios GCE+120L, GCE+180L, GCE+240L, and GCE+300L can achieve 1 ns convergence within 1 min. The time link precision was also found to be significantly improved, i.e., from 0.337 to 0.243 ns in static mode with improvements of 27.9%, and from 0.377 to 0.253 ns in kinematic mode with improvements of 32.9%. The time link stability is significantly enhanced for averaging times between 60 and 20,000 s in both static and kinematic modes, with a maximum improvement of nearly 50%. These results have demonstrated that integrating LEO satellites can significantly enhance real-time PPP time transfer performance. Full article
(This article belongs to the Special Issue Advances in Multi-GNSS Technology and Applications)
Show Figures

Graphical abstract

21 pages, 3803 KB  
Article
Optimization of a Walker Constellation Using an RBF Surrogate Model for Space Target Awareness
by You Fu, Zhaojing Xu, Youchen Fan, Liu Yi, Zhao Ma, Yuhai Li and Shengliang Fang
Aerospace 2025, 12(10), 933; https://doi.org/10.3390/aerospace12100933 - 16 Oct 2025
Viewed by 310
Abstract
Designing Low Earth Orbit (LEO) constellations for the continuous, collaborative observation of space objects in MEO/GEO is a complex optimization task, frequently limited by prohibitive computational costs. This study introduces an efficient surrogate-based framework to overcome this challenge. Our approach integrates Optimized Latin [...] Read more.
Designing Low Earth Orbit (LEO) constellations for the continuous, collaborative observation of space objects in MEO/GEO is a complex optimization task, frequently limited by prohibitive computational costs. This study introduces an efficient surrogate-based framework to overcome this challenge. Our approach integrates Optimized Latin Hypercube Sampling (OLHS) with a Radial Basis Function (RBF) model to minimize the required number of satellites. In a comprehensive case study targeting 18 diverse space objects—including communication satellites in GEO (e.g., EUTELSAT, ANIK) and navigation satellites in MEO/IGSO from GPS, Galileo, and BeiDou constellations—the method proved highly effective and scalable. It successfully designed a 208-satellite Walker constellation that provides 100% continuous coverage over a 36-h period. Furthermore, the design ensures that each target is simultaneously observed by at least three satellites at all times. A key finding is the method’s remarkable efficiency and scalability: the optimal solution for this larger problem was found using only 46 high-fidelity function evaluations, maintaining a computational time that was 5–8 times faster than traditional global optimization algorithms. This research demonstrates that surrogate-assisted optimization can drastically lower the computational barrier in constellation design, offering a powerful tool for building cost-effective and robust Space Situational Awareness (SSA) systems. Full article
(This article belongs to the Special Issue Advances in Space Surveillance and Tracking)
Show Figures

Figure 1

27 pages, 6230 KB  
Article
Mercator Projection Superposition: A Computationally Efficient Alternative to Grid-Based Coverage Analysis for LEO Mega-Constellations
by Guanhua Feng, Linli Lv and Wenhao Li
Appl. Sci. 2025, 15(19), 10610; https://doi.org/10.3390/app151910610 - 30 Sep 2025
Viewed by 340
Abstract
Grid point approaches for LEO mega-constellation coverage analysis become computationally prohibitive for constellations exceeding 103 satellites due to exponential complexity growth. This paper presents the Mercator projection superposition (MPS) approach, which transforms coverage evaluation into a two-dimensional image-processing paradigm by projecting the [...] Read more.
Grid point approaches for LEO mega-constellation coverage analysis become computationally prohibitive for constellations exceeding 103 satellites due to exponential complexity growth. This paper presents the Mercator projection superposition (MPS) approach, which transforms coverage evaluation into a two-dimensional image-processing paradigm by projecting the satellite coverage onto Mercator maps. MPS decouples computational complexity from satellite count, enabling analysis of constellations exceeding 104 satellites. Validation against grid point approaches shows ≤1.2% error with 60× speed improvement for 103-scale constellations without parallel computation. The method establishes that instantaneous coverage rates reliably approximate periodic rates within 0.04% precision for early-stage constellation design. Analysis of Starlink-based configurations identifies optimal principles governing mega-constellation coverage, with particular emphasis on configuration and orbital parameter relationships. These findings enable rapid design iteration and optimization for future mega-constellation development. Full article
Show Figures

Figure 1

26 pages, 622 KB  
Article
Efficient Topology Design for LEO Mega-Constellation Using Topological Structure Units with Heterogeneous ISLs
by Wei Zhang, Tao Wu, Xucun Yan, Guixin Li and Hongbin Ma
Sensors 2025, 25(18), 5840; https://doi.org/10.3390/s25185840 - 18 Sep 2025
Viewed by 620
Abstract
With the maturation of reusable launch vehicle technology and satellite mass-production capabilities, global mega-constellation projects have entered a phase of rapid expansion. Inter-satellite networking is a key approach for enhancing constellation performance, as it crucially impacts overall constellation effectiveness. However, existing studies mostly [...] Read more.
With the maturation of reusable launch vehicle technology and satellite mass-production capabilities, global mega-constellation projects have entered a phase of rapid expansion. Inter-satellite networking is a key approach for enhancing constellation performance, as it crucially impacts overall constellation effectiveness. However, existing studies mostly focus on the network layer protocol optimization, with insufficient attention to topological structure design, and fail to fully consider the engineering challenges associated with inter-orbit Inter-Satellite Links (ISLs). To address these issues, this paper proposes a heterogeneous ISL topology architecture for mega-constellations, centered on “stable high-speed laser backbone connection within intra-orbit planes + dynamic and flexible radio network between inter-orbit planes”. First, we clarify the optimization objectives for mega-constellation topological design under this architecture and theoretically prove that the optimization problem is NP-hard. Building on this, we introduce Topological Structure Units (TSUs) and employ a unit reuse strategy to simplify topological design. Furthermore, we propose a TSU-based heterogeneous ISL topological design algorithm. Considering the uneven satellite distribution across latitude zones within the constellation, we further propose a regional TSU-based topological design algorithm. Finally, through simulation experiments in Starlink and GW constellation scenarios, we conduct multi-dimensional verification to demonstrate the effectiveness of the proposed algorithms in reducing end-to-end delay and decreasing ISL hops. Full article
Show Figures

Figure 1

21 pages, 4538 KB  
Article
Estimation of Downlink Signal Transmitting Antenna PCO and Equipment Delays for LEO Navigation Constellations with Limited Regional Stations
by Ziqiang Li, Wanke Liu and Jie Hu
Remote Sens. 2025, 17(18), 3138; https://doi.org/10.3390/rs17183138 - 10 Sep 2025
Viewed by 430
Abstract
In LEO constellation–augmented navigation, the transmitting antenna phase center offset (PCO) and the equipment delay associated with the downlink signals of LEO satellites constitute major error sources that must be precisely characterized. Previous studies primarily focused on single or small-scale satellite scenarios, lacking [...] Read more.
In LEO constellation–augmented navigation, the transmitting antenna phase center offset (PCO) and the equipment delay associated with the downlink signals of LEO satellites constitute major error sources that must be precisely characterized. Previous studies primarily focused on single or small-scale satellite scenarios, lacking comprehensive evaluations regarding the influence of constellation scale, orbital altitude, ground station configuration, and various error sources. To address this gap, we propose a joint estimation method utilizing observations from a limited number of regional ground stations in China that simultaneously track GNSS and LEO satellites. The method is specifically designed to accommodate practical constraints on ground station distribution within China. Initially, a batch least-squares estimation strategy is employed to simultaneously determine the ionosphere-free PCO and initial equipment delays for all LEO satellites in a constellation-wide solution. Subsequently, the estimated PCO parameters are fixed, and the equipment delays are further refined using a precise point positioning (PPP) approach. To systematically evaluate the method’s performance under realistic conditions, we analyze the impact of orbital altitude, constellation size, ground station number, data processing duration, and orbit/clock biases through comprehensive simulations. The results indicate: (1) the Z-direction component of the PCO (pointing toward the Earth’s center) and equipment delay is more sensitive to orbit and clock errors; (2) Increasing the number of LEO satellites generally improves the estimation accuracy of equipment delays, but the marginal gain diminishes as the constellation size expands; (3) sub-centimeter PCO accuracy and equipment delay accuracies better than 3 cm can still be achieved using only 3–4 regionally distributed ground stations over an observation period of 5–7 days. Full article
(This article belongs to the Special Issue Advanced Multi-GNSS Positioning and Its Applications in Geoscience)
Show Figures

Figure 1

19 pages, 3197 KB  
Article
Clutter Suppression with Doppler Frequency Shifted Least Mean Square Filtering in LEO Satellite-Based Passive Radar
by Xin Guan, Zhongqiu Xu, Xinyi Tang, Guangzuo Li and Xueming Song
Remote Sens. 2025, 17(17), 3096; https://doi.org/10.3390/rs17173096 - 5 Sep 2025
Viewed by 900
Abstract
With the rapid development of low-earth-orbit (LEO) internet satellite constellations, LEO satellites are becoming promising illuminators of opportunity for passive radar. However, the moving satellite platform results in a shifted Doppler frequency and increased Doppler spread of the clutter, leading to decreased clutter [...] Read more.
With the rapid development of low-earth-orbit (LEO) internet satellite constellations, LEO satellites are becoming promising illuminators of opportunity for passive radar. However, the moving satellite platform results in a shifted Doppler frequency and increased Doppler spread of the clutter, leading to decreased clutter suppression performance. In this paper, the clutter model for a LEO satellite-based passive radar is analyzed. Based on the properties of the clutter, a Doppler-frequency-shifted normalized least mean square (LMS) filter is proposed to suppress the clutter. Furthermore, an efficient block adaptive method is introduced for fast implementation. Moreover, a Butterworth filter is designed to filter out the residual clutter. Simulations demonstrate the effectiveness of the proposed method. Full article
Show Figures

Figure 1

21 pages, 2309 KB  
Review
A Comprehensive Review of Satellite Orbital Placement and Coverage Optimization for Low Earth Orbit Satellite Networks: Challenges and Solutions
by Adel A. Ahmed
Network 2025, 5(3), 32; https://doi.org/10.3390/network5030032 - 20 Aug 2025
Viewed by 2624
Abstract
Nowadays, internet connectivity suffers from instability and slowness due to optical fiber cable attacks across the seas and oceans. The optimal solution to this problem is using the Low Earth Orbit (LEO) satellite network, which can resolve the problem of internet connectivity and [...] Read more.
Nowadays, internet connectivity suffers from instability and slowness due to optical fiber cable attacks across the seas and oceans. The optimal solution to this problem is using the Low Earth Orbit (LEO) satellite network, which can resolve the problem of internet connectivity and reachability, and it has the power to bring real-time, reliable, low-latency, high-bandwidth, cost-effective internet access to many urban and rural areas in any region of the Earth. However, satellite orbital placement (SOP) and navigation should be carefully designed to reduce signal impairments. The challenges of orbital satellite placement for LEO include constellation development, satellite parameter optimization, bandwidth optimization, consideration of signal impairment, and coverage optimization. This paper presents a comprehensive review of SOP and coverage optimization, examines prevalent issues affecting LEO internet connectivity, evaluates existing solutions, and proposes novel solutions to address these challenges. Furthermore, it recommends a machine learning solution for coverage optimization and SOP that can be used to efficiently enhance internet reliability and reachability for LEO satellite networks. This survey will open the gate for developing an optimal solution for global internet connectivity and reachability. Full article
Show Figures

Figure 1

18 pages, 4881 KB  
Article
Study on the Design of Broadcast Ephemeris Parameters for Low Earth Orbit Satellites
by Dongzhu Liu, Xing Su, Xin Xie, Han Zhou and Zhengjian Qu
Remote Sens. 2025, 17(16), 2894; https://doi.org/10.3390/rs17162894 - 20 Aug 2025
Viewed by 931
Abstract
The integration of low Earth orbit (LEO) satellite constellations into the Global Navigation Satellite System (GNSS) has emerged as a prominent research focus, as LEO satellites can significantly enhance the precision of GNSS positioning, navigation, and timing (PNT) services. In the design of [...] Read more.
The integration of low Earth orbit (LEO) satellite constellations into the Global Navigation Satellite System (GNSS) has emerged as a prominent research focus, as LEO satellites can significantly enhance the precision of GNSS positioning, navigation, and timing (PNT) services. In the design of LEO navigation constellations, the development of an efficient broadcast ephemeris model is critical for delivering high-accuracy navigation solutions. This study extends the conventional 16-parameter Keplerian broadcast ephemeris model by proposing enhanced 18-, 20-, 22-, and 24-parameter models, ensuring compatibility with existing GNSS ephemeris standards. The performance of these models was evaluated using precise science orbit from five satellites at varying altitudes, ranging from 320 km to 1336 km. By analyzing fitting errors, Signal-in-Space Range Error (SISRE), and Message Size Bits (MSB) across different fitting arc durations and parameter counts, the optimal model configuration was identified. The results demonstrate that the 22-parameter model, which was constructed by augmenting the standard 16-parameter ephemeris with (a˙, n˙, Crs3, Crc3, Crs1, Crc1) delivers the best balance of accuracy and efficiency. With a fitting arc length of 20 min, the SISRE for the GRACE-A (320 km), GRACE-C (475 km), Sentinel-2A (786 km), HY-2A (966 km), and Sentinel-6A (1336 km) satellites were measured at 8.88 cm, 6.21 cm, 2.87 cm, 2.11 cm, and 0.75 cm, respectively. Meanwhile, the corresponding MSB remained compact at 501, 490, 491, 487, and 476 bits. These findings confirm that the proposed 22-parameter broadcast ephemeris model meets the stringent accuracy requirements for next-generation LEO-augmented GNSSs, paving the way for enhanced global navigation services. Full article
Show Figures

Figure 1

31 pages, 2294 KB  
Article
On the Space Observation of Resident Space Objects (RSOs) in Low Earth Orbits (LEOs)
by Angel Porras-Hermoso, Randa Qashoa, Regina S. K. Lee, Javier Cubas and Santiago Pindado
Remote Sens. 2025, 17(16), 2844; https://doi.org/10.3390/rs17162844 - 15 Aug 2025
Viewed by 652
Abstract
Space debris is an increasingly severe problem in the space industry. According to projections, the number of satellites will increase from the current 10,000 to 100,000 by 2030, specially in LEO orbits. This significant rise in the number of satellites threatens space sustainability, [...] Read more.
Space debris is an increasingly severe problem in the space industry. According to projections, the number of satellites will increase from the current 10,000 to 100,000 by 2030, specially in LEO orbits. This significant rise in the number of satellites threatens space sustainability, forcing satellites to perform more maneuvers to avoid impacts or leading to the production of more and more space debris due to collisions (Kessler Syndrome). Consequently, substantial efforts have been made to detect and track space debris, leading to the development of the current catalogs. However, with existing technology, detecting and tracking small debris remains challenging. In order to improve the current system, several proposals of Space-Based Situational Awareness (SBSA) have been made. These proposals involve satellites equipped with telescopes to detect space debris and determine their orbits. Unlike prior works, focused primarily on detection rates, this research aims to quantify their accuracy in orbit determination as a function of observation duration, the number of observers, and sensor precision. The Unscented Kalman Filter (UKF) is employed as the core estimation algorithm, leveraging both simulated single-case analyses and Monte Carlo simulations to evaluate system performance under various configurations and uncertainties. The results indicate that a constellation of at least three observers with high-precision instruments and sub-kilometer positioning accuracy can reliably estimate debris orbits within an observation period of 4–7 min, with the mean error in position and velocity obtained being 2.2–3 km and 3–4 m/s, respectively. These findings offer critical insights for designing future SBSA constellations and optimizing their operational parameters to address the growing challenge of orbital debris. Full article
Show Figures

Figure 1

26 pages, 795 KB  
Review
New Space Engineering Design: Characterization of Key Drivers
by Daniele Ferrara, Paolo Cicconi, Angelo Minotti, Michele Trovato and Antonio Casimiro Caputo
Appl. Sci. 2025, 15(15), 8138; https://doi.org/10.3390/app15158138 - 22 Jul 2025
Viewed by 1234
Abstract
The recent evolution of the space industry, commonly referred to as New Space, has changed the way space missions are conceived, developed, and executed. In contrast to traditional approaches, the current paradigm emphasizes accessibility, commercial competitiveness, and rapid and sustainable innovation. This study [...] Read more.
The recent evolution of the space industry, commonly referred to as New Space, has changed the way space missions are conceived, developed, and executed. In contrast to traditional approaches, the current paradigm emphasizes accessibility, commercial competitiveness, and rapid and sustainable innovation. This study proposes a research methodology for selecting relevant literature to identify the key design drivers and associated enablers that characterize the New Space context from an engineering design perspective. These elements are then organized into three categories: the evolution of traditional drivers, emerging manufacturing and integration practices, and sustainability and technology independence. This categorization highlights their role and relevance, providing a baseline for the development of systems for New Space missions. The results are further contextualized within three major application domains, namely Low Earth Orbit (LEO) small satellite constellations, operations and servicing in space, and space exploration, to illustrate their practical role in engineering space systems. By linking high-level industry trends to concrete design choices, this work aims to support the early design phases of New Space innovative systems and promote a more integrated approach between strategic objectives and technical development. Full article
Show Figures

Figure 1

23 pages, 2431 KB  
Article
SatScope: A Data-Driven Simulator for Low-Earth-Orbit Satellite Internet
by Qichen Wang, Guozheng Yang, Yongyu Liang, Chiyu Chen, Qingsong Zhao and Sugai Chen
Future Internet 2025, 17(7), 278; https://doi.org/10.3390/fi17070278 - 24 Jun 2025
Viewed by 1121
Abstract
The rapid development of low-Earth-orbit (LEO) satellite constellations has not only provided global users with low-latency and unrestricted high-speed data services but also presented researchers with the challenge of understanding dynamic changes in global network behavior. Unlike geostationary satellites and terrestrial internet infrastructure, [...] Read more.
The rapid development of low-Earth-orbit (LEO) satellite constellations has not only provided global users with low-latency and unrestricted high-speed data services but also presented researchers with the challenge of understanding dynamic changes in global network behavior. Unlike geostationary satellites and terrestrial internet infrastructure, LEO satellites move at a relative velocity of 7.6 km/s, leading to frequent alterations in their connectivity status with ground stations. Given the complexity of the space environment, current research on LEO satellite internet primarily focuses on modeling and simulation. However, existing LEO satellite network simulators often overlook the global network characteristics of these systems. We present SatScope, a data-driven simulator for LEO satellite internet. SatScope consists of three main components, space segment modeling, ground segment modeling, and network simulation configuration, providing researchers with an interface to interact with these models. Utilizing both space and ground segment models, SatScope can configure various network topology models, routing algorithms, and load balancing schemes, thereby enabling the evaluation of optimization algorithms for LEO satellite communication systems. We also compare SatScope’s fidelity, lightweight design, scalability, and openness against other simulators. Based on our simulation results using SatScope, we propose two metrics—ground node IP coverage rate and the number of satellite service IPs—to assess the service performance of single-layer satellite networks. Our findings reveal that during each network handover, on average, 38.94% of nodes and 83.66% of links change. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

10 pages, 4421 KB  
Proceeding Paper
Geometric Analysis of LEO-Based Monitoring of GNSS Constellations
by Can Oezmaden, Omar García Crespillo, Michael Niestroj, Marius Brachvogel and Michael Meurer
Eng. Proc. 2025, 88(1), 57; https://doi.org/10.3390/engproc2025088057 - 19 May 2025
Viewed by 1155
Abstract
The last decade has seen a surge in the development and deployment of low Earth orbit (LEO) constellations primarily serving broadband communication applications. These developments have also influenced the interest providing positioning, navigation, and timing (PNT) services from LEO. Potential services include new [...] Read more.
The last decade has seen a surge in the development and deployment of low Earth orbit (LEO) constellations primarily serving broadband communication applications. These developments have also influenced the interest providing positioning, navigation, and timing (PNT) services from LEO. Potential services include new ranging signals from LEO, augmentation of global navigation satellite systems (GNSS), and monitoring of GNSS. The latter promises an advantage over existing ground-based monitoring due to the reception of observables with reduced atmospheric error contributions and the potential for lower costs. In this paper, we investigate the influence of LEO constellation design on the line-of-sight visibility conditions for GNSS monitoring. We simulate a series of Walker constellations in LEO with a varying number of total satellites, orbital planes, and orbital heights. From the simulated data, we gather statistics on the number of visible GNSS and LEO satellites, durations of visibility periods, and the quality of this visibility quantified by the dilution of precision (DOP) metric. Our findings indicate that increasing the total number of LEO satellites results in diminishing returns. We find that constellations with relatively few total satellites equally yield an adequate monitoring capability. We also identify orbital geometric constraints resulting in suboptimal performance and discuss optimization strategies. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

22 pages, 4694 KB  
Article
Research on Time-Sensitive Service Transmission Routing and Scheduling Strategies Based on Optical Interconnect Low Earth Orbit Mega-Constellations
by Bingyao Cao, Xiwen Fan, Yiming Hong and Qianqian Zhao
Appl. Sci. 2025, 15(7), 3843; https://doi.org/10.3390/app15073843 - 1 Apr 2025
Viewed by 1187
Abstract
The development of low-orbit satellite communication networks marks the beginning of a new era in global communication. However, in the context of large-scale LEO satellite communication scenarios, the traditional adjacent connection transmission method limits the advantages of low latency in optical communication. Multi-hop [...] Read more.
The development of low-orbit satellite communication networks marks the beginning of a new era in global communication. However, in the context of large-scale LEO satellite communication scenarios, the traditional adjacent connection transmission method limits the advantages of low latency in optical communication. Multi-hop transmission increases the number of hops and propagation distance, thereby affecting time-sensitive business transmissions. Therefore, based on the design of optical interconnect parallel subnetworks, this paper proposes a scheduling strategy for time-sensitive business transmissions between LEO satellites. Firstly, this strategy integrates the gate control scheduling mechanism from Time-Sensitive Networking (TSN) transmission in the interconnect parallel subnetwork scenario. Secondly, considering issues like queuing after subnetwork division, excessive burden, and algorithm complexity, mathematical problem abstraction modeling is applied to subsequent route scheduling, with reinforcement learning used to solve the problem. Through simulation experiments, it has been observed that compared to SPF (Shortest Path First) and ELB (Equal Load Balance), this approach can effectively enhance the control capability of end-to-end latency for TSN services in long-distance transmissions within Low Earth Orbit mega-constellations. The integration of reinforcement learning decision algorithms also reduces the complexity compared to traditional constraint-solving algorithms, ensuring a certain level of practicality. Overall, this solution can enhance the communication efficiency and performance of time-sensitive services between satellite constellations. By integrating time-sensitive network transmission technologies into optically interconnected subnets, further exploration and realization of low-latency and controllable latency satellite communication networks can be pursued. Full article
Show Figures

Figure 1

19 pages, 550 KB  
Article
Serving Cluster Design and Hybrid Precoding for Cell-Free-Assisted LEO Satellite Communications with Nonlinear Power Amplifiers
by Xiaochen Miao, Yu Zhang, Lilan Liu and Zhizhong Zhang
Electronics 2025, 14(7), 1317; https://doi.org/10.3390/electronics14071317 - 26 Mar 2025
Viewed by 748
Abstract
Recently, the concept of cell-free massive multiple-input multiple-output (CF-mMIMO) has been implemented in low-Earth-orbit (LEO) constellations to enhance energy efficiency. However, signal distortion caused by nonlinear power amplifiers (NPAs) significantly degrades the performance of LEO satellite communication (SATCOM) links. In this paper, we [...] Read more.
Recently, the concept of cell-free massive multiple-input multiple-output (CF-mMIMO) has been implemented in low-Earth-orbit (LEO) constellations to enhance energy efficiency. However, signal distortion caused by nonlinear power amplifiers (NPAs) significantly degrades the performance of LEO satellite communication (SATCOM) links. In this paper, we propose a serving cluster scheme and a hybrid precoding framework for CF-mMIMO-assisted LEO SATCOM systems, aiming to suppress the impact of NPAs while reducing onboard hardware complexity and power consumption. Specifically, we first develop a user-centric access point clustering strategy that incorporates elevation constraints and channel fading. Then, we formulate a precoding optimization problem to maximize energy efficiency by treating the product of tightly coupled analog and digital matrices as a single fully digital precoder. The proposed distortion-aware precoding design is achieved by integrating the weighted minimum mean square error (WMMSE) approach with a gradient descent method enhanced by Nesterov’s accelerated momentum. Furthermore, an efficient hybrid precoding method based on alternating minimization is proposed to address the matrix decomposition challenge. Simulation results validate the effectiveness of our proposed user-centric serving clustering algorithm and the WMMSE-based precoding algorithm in CF-mMIMO-assisted LEO SATCOM systems. Full article
Show Figures

Figure 1

11 pages, 1633 KB  
Proceeding Paper
Signal Design and Compatibility Assessment for LEO Navigation Augmentation System
by Tao Yan, Ying Wang, Lang Bian and Yansong Meng
Eng. Proc. 2025, 88(1), 17; https://doi.org/10.3390/engproc2025088017 - 25 Mar 2025
Viewed by 1021
Abstract
With the booming development of low earth orbit (LEO) satellite constellations, improving the global navigation satellite system (GNSS) performance based on LEO satellites is attracting more and more research attention. To shorten the convergence time of precise point positioning (PPP) with the help [...] Read more.
With the booming development of low earth orbit (LEO) satellite constellations, improving the global navigation satellite system (GNSS) performance based on LEO satellites is attracting more and more research attention. To shorten the convergence time of precise point positioning (PPP) with the help of the LEO navigation augmentation system, the dedicated LEO navigation augmentation signals need to be broadcasted, and the signals need to meet some special design requirements. This paper takes the GNSS L1 and L5 frequency bands as examples to design the LEO navigation augmentation signals. From the perspective of reducing interference to GNSS signals, the carrier frequency of the LEO navigation augmentation signal is selected, and the modulation type is designed. In order to support both high-precision measurement and high data rate, it is proposed that the LEO navigation signal consists of a measurement component and a data component with a high data rate. These two signal components are combined into one composite signal using the multiplexing code shift keying (MCSK) method. On this basis, compatibility between LEO navigation augmentation signals and GNSS signals is evaluated. The impact of LEO navigation augmentation signals on GNSS signals is further analyzed. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

Back to TopTop