Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Karaganda basin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4197 KiB  
Article
Optimization of Reinforcement Schemes for Stabilizing the Working Floor in Coal Mines Based on an Assessment of Its Deformation State
by Denis Akhmatnurov, Nail Zamaliyev, Ravil Mussin, Vladimir Demin, Nikita Ganyukov, Krzysztof Zagórski, Krzysztof Skrzypkowski, Waldemar Korzeniowski and Jerzy Stasica
Materials 2025, 18(13), 3094; https://doi.org/10.3390/ma18133094 - 30 Jun 2025
Cited by 1 | Viewed by 365
Abstract
In the Karaganda coal basin, deteriorating geomechanical conditions have been observed, including seam disturbances, diminished strength of argillite–aleurolite strata, water ingress, and pronounced floor heave, all of which markedly increase the labor intensity of maintaining developmental headings. The maintenance and operation of these [...] Read more.
In the Karaganda coal basin, deteriorating geomechanical conditions have been observed, including seam disturbances, diminished strength of argillite–aleurolite strata, water ingress, and pronounced floor heave, all of which markedly increase the labor intensity of maintaining developmental headings. The maintenance and operation of these entries for a reference coal yield of 1000 t necessitate 72–75 man-shifts, of which 90–95% are expended on mitigating ground pressure effects and restoring support integrity. Conventional heave control measures—such as relief drifts, slotting, drainage, secondary blasting, and the application of concrete or rock–bolt systems—deliver either transient efficacy or incur prohibitive labor and material expenditures while lacking unified methodologies for predictive forecasting and support parameter design. This study therefore advocates for an integrated framework that synergizes geomechanical characterization, deformation prognosis, and the tailored selection of reinforcement schemes (incorporating both sidewall and floor-anchoring systems with directed preloading), calibrated to seam depth, geometry, and lithological properties. Employing deformation state assessments to optimize reinforcement layouts for floor stabilization in coal mine workings is projected to curtail repair volumes by 30–40% whilst significantly enhancing operational safety, efficiency, and the punctuality of face preparation. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

23 pages, 5175 KiB  
Article
Risk Assessment of Sudden Coal and Gas Outbursts Based on 3D Modeling of Coal Seams and Integration of Gas-Dynamic and Tectonic Parameters
by Vassiliy Portnov, Adil Mindubayev, Andrey Golik, Nurlan Suleimenov, Alexandr Zakharov, Rima Madisheva, Konstantin Kolikov and Sveta Imanbaeva
Fire 2025, 8(6), 234; https://doi.org/10.3390/fire8060234 - 17 Jun 2025
Viewed by 439
Abstract
Sudden coal and gas outbursts pose a significant hazard in deep-seated coal seam extraction, necessitating reliable risk assessment methods. Traditionally, assessments focus on gas-dynamic parameters, but experience shows they must be supplemented with tectonic factors such as fault-related disturbances, weak interlayers, and increased [...] Read more.
Sudden coal and gas outbursts pose a significant hazard in deep-seated coal seam extraction, necessitating reliable risk assessment methods. Traditionally, assessments focus on gas-dynamic parameters, but experience shows they must be supplemented with tectonic factors such as fault-related disturbances, weak interlayers, and increased fracturing. Even minor faults in the Karaganda Basin can weaken the coal massif and trigger outbursts. The integration of 3D modeling enhances risk evaluation by incorporating both dynamic (gas-related) and static (tectonic) parameters. Based on exploratory drilling and geophysical studies, these models map coal seam geometry, fault positioning, and high-risk structural zones. In weakened coal areas, stress distribution changes can lead to avalanche-like gas releases, even under normal gas-dynamic conditions. An expert scoring system was used to convert geological and gas-dynamic data into a comprehensive risk index guiding preventive measures. An analysis of Karaganda Basin incidents (1959–2021) shows all outbursts occurred in geological disturbance zones, with 43% linked to fault proximity, 30% to minor tectonic shifts, and 21% to sudden coal seam changes. Advancing 3D modeling, geomechanical analysis, and microseismic monitoring will improve predictive accuracy, ensuring safer coal mining operations. Full article
Show Figures

Figure 1

21 pages, 9618 KiB  
Article
Trace Elements Distribution in the k7 Seam of the Karaganda Coal Basin, Kazakhstan
by Aiman Kopobayeva, Irina Baidauletova, Altynay Amangeldikyzy and Nazym Askarova
Geosciences 2024, 14(6), 143; https://doi.org/10.3390/geosciences14060143 - 24 May 2024
Cited by 8 | Viewed by 2027
Abstract
We investigated the distribution patterns and evaluated the average contents of trace elements in the k7 seam of the Karaganda coal basin in Central Kazakhstan. This paper presents the results of studying the geochemistry of 34 elements in 85 samples of the [...] Read more.
We investigated the distribution patterns and evaluated the average contents of trace elements in the k7 seam of the Karaganda coal basin in Central Kazakhstan. This paper presents the results of studying the geochemistry of 34 elements in 85 samples of the k7 seam. The study employed a suite of advanced high-resolution analytical methods, including atomic emission spectrometry with inductively coupled plasma (ICP–OES) and mass spectrometry with inductively coupled plasma (ICP–MS), along with their processing and interpretation. It was determined that the concentrations of trace elements in the k7 seam are primarily associated with lithophile elements, revealing high concentrations of Li, V, Sc, Zr, Hf, and Ba. Additionally, increased concentrations of Nb, Ta, Se, Te, Ag, and Th were observed compared to the coal Clarke. Specific Nb(Ta)–Zr(Hf)–Li mineralization accompanied by a group of associated metals (Ba, V, Sc, etc.) was identified. The study revealed lateral and vertical heterogeneity of the rare elements’ distributions in coals, attributed to the formation dynamics of the coal basin. A correlation between Li and Al2O3 with a less positive relationship with K2O suggests the affinity of certain elements (Li, Ta, Nb, and Ba) to kaolinite. Clay layers showed increased radioactivity, with Th—13.2 ppm and U—2.6 ppm, indicating the possible presence of volcanogenic pyroclastic rocks characterized by radioactivity. Taken together, these data reveal the features of the rock composition of the source area, which is considered a mineralization source. According to geochemical data, it was found that the source area mainly consists of igneous felsic rocks, indicating that the formation occurred under conditions of a volcanic arc. This study’s novelty lies in estimating the average trace elements in the k7 seam, with elevated concentrations of certain elements that suggest promising prospects for industrial extraction from coals and coal wastes. These findings offer insights into considering coal as a potential source of raw material for rare metal production, guiding the industrial processing of key elements within coal. The potential extraction of metals from coal deposits, including from dumps, holds significance for industrial and commercial technologies, as processing critical coal elements can reduce disposal costs and mitigate their environmental impact. Full article
(This article belongs to the Topic Petroleum Geology and Geochemistry of Sedimentary Basins)
Show Figures

Figure 1

19 pages, 14288 KiB  
Article
Mineralogical and Geochemical Features of Coals and Clay Layers of the Karaganda Coal Basin
by Aiman Kopobayeva, Altynay Amangeldikyzy, Gulim Blyalova and Nazym Askarova
Minerals 2024, 14(4), 349; https://doi.org/10.3390/min14040349 - 27 Mar 2024
Cited by 7 | Viewed by 1802
Abstract
A comprehensive assessment of the critical elements contained in coal is essential for understanding the geological processes that affect the enrichment of these elements, which can then be used to fully utilize coal in an economically and environmentally friendly manner. In order to [...] Read more.
A comprehensive assessment of the critical elements contained in coal is essential for understanding the geological processes that affect the enrichment of these elements, which can then be used to fully utilize coal in an economically and environmentally friendly manner. In order to understand the geology of an area and the impact of demolition rock on the formation and enrichment of trace elements, as well as rare earth elements (REE) in coals, we have presented a range of recent geochemical and mineralogical data from the k7 coal seam in the Karaganda Formation of the Karaganda Coal Basin. The study revealed that the geochemical characteristics of coal-bearing deposits in the Karaganda Basin reflect the features of its geological evolution. Despite high tectonic activity and volcanic activity in the Paleozoic era, the specific composition of the rocks on the slopes and bases of coal-bearing valleys has determined the low potential for rare metals in the basin. It has been found that the coal in the Karaganda Basin is, in general, similar in terms of concentrations of most trace elements to the average for world coal. The main area of provenance of the trace elements was established using discriminant diagrams. It was established that the main source of the trace elements, including REEs in the basin coals, was the Tekturmas accretionary complex that represented the main upland (anticlinorium) during the coals’ formation. SEM studies identified micro-mineral forms that indicated the presence of trace elements of Zr, Ti, Se, and Fe in the samples of stratum k7. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

17 pages, 7618 KiB  
Article
Application of Image Processing in Evaluation of Hydraulic Fracturing with Liquid Nitrogen: A Case Study of Coal Samples from Karaganda Basin
by Sotirios Nik. Longinos, Azza Hashim Abbas, Arman Bolatov, Piotr Skrzypacz and Randy Hazlett
Appl. Sci. 2023, 13(13), 7861; https://doi.org/10.3390/app13137861 - 4 Jul 2023
Cited by 23 | Viewed by 1901
Abstract
Research of microstructure and permeability evolution of coal following LN2 treatment elucidate the process of cryogenic fracturing due to environmentally friendly behavior in comparison with conventional hydraulic fracturing. The evolution of the 2D microstructure of bituminous coal before and after LN2 [...] Read more.
Research of microstructure and permeability evolution of coal following LN2 treatment elucidate the process of cryogenic fracturing due to environmentally friendly behavior in comparison with conventional hydraulic fracturing. The evolution of the 2D microstructure of bituminous coal before and after LN2 treatment was examined using a high-resolution camera. The image processing was implemented using functions from the OpenCV Python library that are sequentially applied to digital images of original coal samples. The images were converted into binary pixel matrices to identify cracks and to evaluate the number of cracks, crack density, total crack area, and average crack length. Results were visualized using Seaborn and Matplotlib Python libraries. There were calculations of total crack area (TCA), total number of cracks (TNC), crack density (CD), the average length of cracks (Q2), first (Q1) and third (Q3) quartiles in fracture length statistics. Our findings demonstrate a progressive increase in the Total Crack Area (δTCA) with longer freezing times and an increased number of freezing–thawing cycles. In contrast, the change in crack density (δCD) was generally unaffected by freezing time alone but exhibited a significant increase after several freezing–thawing cycles. Among the freezing times investigated, the highest crack density (CD) value of 300 m−1 was achieved in FT60, while the lowest CD value of 31.25 m−1 was observed in FT90 after liquid nitrogen (LN2) treatment. Additionally, the FTC4 process resulted in a 50% augmentation in the number of cracks, whereas the FTC5 process tripled the number of small cracks. Full article
Show Figures

Figure 1

19 pages, 3333 KiB  
Article
Analysis of the Water Quality of the Ishim River within the Akmola Region (Kazakhstan) Using Hydrochemical Indicators
by Natalya S. Salikova, Javier Rodrigo-Ilarri, Kulyash K. Alimova and María-Elena Rodrigo-Clavero
Water 2021, 13(9), 1243; https://doi.org/10.3390/w13091243 - 29 Apr 2021
Cited by 17 | Viewed by 6006
Abstract
For the first time in scientific literature, this work addresses the current situation of the Ishim River water quality in the Akmola Region (Northern Kazakhstan). This work uses environmental monitoring techniques to analyze the current state of surface waters in the river. The [...] Read more.
For the first time in scientific literature, this work addresses the current situation of the Ishim River water quality in the Akmola Region (Northern Kazakhstan). This work uses environmental monitoring techniques to analyze the current state of surface waters in the river. The content of main ions, biogenic and inorganic ions, heavy metals, organic impurities in seasonal and annual dynamics have been studied. Results show that, despite the tightening of requirements for wastewater discharge into the Ishim River basin, a number of water quality indicators did not fulfill the regulatory requirements for surface water bodies during 2013–2019. It has been identified that the greatest pollution in the Ishim River is brought by enterprises of the Karaganda-Temirtau technogenic region, located in the upper reaches of the river. Future water quality monitoring is needed and should include increasing the number of sampling locations and the sampling frequency in order to characterize the spatial and temporal variability of hydrochemical parameters and allow a comprehensive monitoring of legally fixed water quality parameters/indicators. Full article
(This article belongs to the Special Issue River Water Management and Water Quality)
Show Figures

Figure 1

Back to TopTop