Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = Kangaroo Island

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 6582 KiB  
Article
Trends in Rescue and Rehabilitation of Marsupials Surviving the Australian 2019–2020 Bushfires
by Holly R. Cope, Clare McArthur, Rachael Gray, Thomas M. Newsome, Christopher R. Dickman, Aditi Sriram, Ron Haering and Catherine A. Herbert
Animals 2024, 14(7), 1019; https://doi.org/10.3390/ani14071019 - 27 Mar 2024
Cited by 4 | Viewed by 4137
Abstract
The 2019–2020 Australian bushfire season had a devastating impact on native wildlife. It was estimated that 3 billion native animals were impacted by the fires, yet there are few estimates of the number of animals that were rescued and rehabilitated post-fire. Focusing on [...] Read more.
The 2019–2020 Australian bushfire season had a devastating impact on native wildlife. It was estimated that 3 billion native animals were impacted by the fires, yet there are few estimates of the number of animals that were rescued and rehabilitated post-fire. Focusing on the state of New South Wales (NSW) and Kangaroo Island, South Australia, we used a case study approach to determine the number of marsupials that were reported rescued due to the 2019–2020 bushfires in these areas and analysed species-specific trends in rescue and release success. In NSW, we found 889 reports of fire-affected marsupials in 2019–2020, mostly comprising kangaroos and wallabies (macropods; n = 458), koalas (n = 204), and possums (n = 162), with a smaller number of wombats (n = 43) and other marsupial species. Most reports of fire-affected marsupials occurred 6–8 weeks after fire ignition, and there was no difference in temporal frequency of rescues between marsupial groups. For the three main groups, the probability of survival and subsequent release differed, with macropods having the lowest probability of release after rescue (0.15 ± 0.04) compared to koalas (0.47 ± 0.04) and possums (0.55 ± 0.10). The type of injury was the main predictor of survival during rehabilitation for all three marsupial groups, with those malnourished/moribund or with traumatic injuries less likely to survive rehabilitation. Death or euthanasia occurred on the day of rescue for 77% of macropods, 48% of possums and 15% of koalas. Koalas most often died during rehabilitation rather than on the day of rescue, with 73% either dying or being euthanised between day 1 and 30 post-rescue, representing a potential welfare concern. On Kangaroo Island, koalas were the most frequently rescued marsupial species; most euthanasia cases and deaths occurred in a hospital, whereas other marsupials were mostly euthanised at triage. In both jurisdictions, koalas were over-represented while possums were under-represented relative to baseline population densities and wildlife rescue trends in the years before the 2019–2020 bushfires. These species differences in presentation post-fire warrant further investigation, as do the differences in triage, survival and release outcomes. It is hypothesised that the high intensity and large scale of the 2019–2020 fires impeded marsupial fire evasion tactics, as evidenced by the small number of animals found for rescue, and the differing rates of presentation relative to underlying population densities for the main marsupial groups. Based on our findings, there is a need for detailed record keeping and data sharing, development of consistent and evidence-based triage, treatment and euthanasia guidelines and deployment of trained wildlife emergency rescue teams with advanced search techniques to minimise animal suffering where safe to do so. Full article
Show Figures

Figure 1

16 pages, 2086 KiB  
Article
Strong Population Genetic Structure for the Endangered Micro-Trapdoor Spider Moggridgea rainbowi (Mygalomorphae, Migidae) in Unburnt Habitat after Catastrophic Bushfires
by Jessica R. Marsh, Tessa M. Bradford and Steven J. B. Cooper
Diversity 2023, 15(7), 827; https://doi.org/10.3390/d15070827 - 30 Jun 2023
Cited by 1 | Viewed by 2079
Abstract
Catastrophic wildfires impacted large areas of western Kangaroo Island (KI), South Australia in 2019–2020, burning habitat for many species, including large proportions of the distributional range of the KI micro-trapdoor spider Moggridgea rainbowi, which led to it being listed as Endangered under [...] Read more.
Catastrophic wildfires impacted large areas of western Kangaroo Island (KI), South Australia in 2019–2020, burning habitat for many species, including large proportions of the distributional range of the KI micro-trapdoor spider Moggridgea rainbowi, which led to it being listed as Endangered under Australia’s Environment Protection and Biodiversity Conservation Act (EPBC Act). In order to assess population genetic structure in M. rainbowi and detect diagnosable lineages and their distributional patterns across KI, 28 individuals were genotyped for 2495 loci, sampling from all known populations of the species. Population genetic and phylogenetic analyses of nuclear and mitochondrial sequence data provided strong support for three Evolutionarily Significant Units (ESUs) within M. rainbowi; two populations on eastern KI and a heavily fire-impacted western population. High levels of divergence and fixed allelic differences between 5 and 16% indicate a lack of gene flow between ESUs and long periods of isolation. Distributional patterns of these lineages match likely locations of isolation events caused by successive changes to sea level during the Quaternary (2.58 million years ago to present), which led to KI being intermittently connected to the mainland or separated into one or more islands. Our findings have strong conservation implications for M. rainbowi and highlight the importance of inclusion of population genetic structure to inform conservation strategies and to conserve lineage biodiversity at the species level and below. Full article
(This article belongs to the Special Issue Genetic Diversity, Ecology and Conservation of Endangered Species)
Show Figures

Figure 1

22 pages, 3709 KiB  
Article
Human Positioning in Close-Encounter Photographs and the Effect on Public Perceptions of Zoo Animals
by Meghan N. Shaw, Emily M. McLeod, William T. Borrie and Kelly K. Miller
Animals 2022, 12(1), 11; https://doi.org/10.3390/ani12010011 - 21 Dec 2021
Cited by 14 | Viewed by 20321
Abstract
With the rising popularity of social media, conservation organisations and zoos need to understand its impact on public perceptions of the animals they house and their role in conservation. In addition, many zoos offer close-encounter experiences, and visitors frequently share images from these [...] Read more.
With the rising popularity of social media, conservation organisations and zoos need to understand its impact on public perceptions of the animals they house and their role in conservation. In addition, many zoos offer close-encounter experiences, and visitors frequently share images from these experiences online. This study measured the effects that viewing such encounter images had on public perceptions of both the zoo and the animals they saw. One of sixteen images was randomly presented to participants in two samples: one of Zoo Community followers and members of Zoos Victoria (n = 963), and a representative sample of the Australian public (n = 1619). Each image featured one of four animals (Eclectus parrot, Kangaroo Island kangaroo, Monteith’s leaf insect, Centralian carpet python) and one of four human positions (human and animal touching, human and animal ~30 cm apart, human and animal ~1 m apart, animal alone). Results indicated that viewing different animals and the different human positions within these human–animal encounter images can affect public perceptions of zoo animals. In particular, the closer the proximity of a human to an animal in an image, the more likely respondents were to think that the animal was not displaying a natural behaviour and the more likely it was for General Public respondents to think that the animal would make a good pet. These findings can be used by zoos, wildlife tourism, and media organisations to ensure that they are sending clear, positive, and intended messages about zoo facilities and animals, as well as providing insights into animal encounter images in wider settings. Full article
(This article belongs to the Section Human-Animal Interactions, Animal Behaviour and Emotion)
Show Figures

Figure 1

24 pages, 15471 KiB  
Article
A New Application of the Disturbance Index for Fire Severity in Coastal Dunes
by Marcio D. DaSilva, David Bruce, Patrick A. Hesp and Graziela Miot da Silva
Remote Sens. 2021, 13(23), 4739; https://doi.org/10.3390/rs13234739 - 23 Nov 2021
Cited by 7 | Viewed by 3285
Abstract
Fires are a disturbance that can lead to short term dune destabilisation and have been suggested to be an initiation mechanism of a transgressive dune phase when paired with changing climatic conditions. Fire severity is one potential factor that could explain subsequent coastal [...] Read more.
Fires are a disturbance that can lead to short term dune destabilisation and have been suggested to be an initiation mechanism of a transgressive dune phase when paired with changing climatic conditions. Fire severity is one potential factor that could explain subsequent coastal dune destabilisations, but contemporary evidence of destabilisation following fire is lacking. In addition, the suitability of conventional satellite Earth Observation methods to detect the impacts of fire and the relative fire severity in coastal dune environments is in question. Widely applied satellite-derived burn indices (Normalised Burn Index and Normalised Difference Vegetation Index) have been suggested to underestimate the effects of fire in heterogenous landscapes or areas with sparse vegetation cover. This work assesses burn severity from high resolution aerial and Sentinel 2 satellite imagery following the 2019/2020 Black Summer fires on Kangaroo Island in South Australia, to assess the efficacy of commonly used satellite indices, and validate a new method for assessing fire severity in coastal dune systems. The results presented here show that the widely applied burn indices derived from NBR differentially assess vegetation loss and fire severity when compared in discrete soil groups across a landscape that experienced a very high severity fire. A new application of the Tasselled Cap Transformation (TCT) and Disturbance Index (DI) is presented. The differenced Disturbance Index (dDI) improves the estimation of burn severity, relative vegetation loss, and minimises the effects of differing soil conditions in the highly heterogenous landscape of Kangaroo Island. Results suggest that this new application of TCT is better suited to diverse environments like Mediterranean and semi-arid coastal regions than existing indices and can be used to better assess the effects of fire and potential remobilisation of coastal dune systems. Full article
(This article belongs to the Special Issue Remote Sensing of Burnt Area)
Show Figures

Graphical abstract

13 pages, 2454 KiB  
Article
An Analysis of Demographic and Triage Assessment Findings in Bushfire-Affected Koalas (Phascolarctos cinereus) on Kangaroo Island, South Australia, 2019–2020
by Evie Dunstan, Oliver Funnell, Jenny McLelland, Felicity Stoeckeler, Elisa Nishimoto, Dana Mitchell, Sam Mitchell, David J. McLelland, Jerome Kalvas, Lynley Johnson, Claire Moore, Lauren J. M. Eyre, Amanda McLune, Ian Hough, Ludovica Valenza, Wayne S. J. Boardman, Ian Smith and Natasha Speight
Animals 2021, 11(11), 3237; https://doi.org/10.3390/ani11113237 - 12 Nov 2021
Cited by 15 | Viewed by 8473
Abstract
In the 2019–2020 Australian bushfires, Kangaroo Island, South Australia, experienced catastrophic bushfires that burnt approximately half the island, with an estimated 80% of the koala population lost. During and after the event, rescued koalas were triaged at a designated facility and a range [...] Read more.
In the 2019–2020 Australian bushfires, Kangaroo Island, South Australia, experienced catastrophic bushfires that burnt approximately half the island, with an estimated 80% of the koala population lost. During and after the event, rescued koalas were triaged at a designated facility and a range of initial data were recorded including rescue location and date, sex, estimation of age, body condition and hydration, and assessment of burn severity (n = 304 records available). Koalas were presented to the triage facility over a span of 10 weeks, with 50.2% during the first 14 days of the bushfire response, the majority of which were rescued from regions of lower fire severity. Burns were observed in 67.4% of koalas, with the majority (60.9%) classified as superficial burns, primarily affecting the limbs and face. Poor body condition was recorded in 74.6% of burnt koalas and dehydration in 77.1%. Negative final outcomes (death or euthanasia, at triage or at a later date) occurred in 45.6% of koalas and were significantly associated with higher mean burn score, maximum burn severity, number of body regions burnt, poor body condition score, and dehydration severity. The findings of this retrospective study may assist clinicians in the field with decision making when triaging koalas in future fire rescue efforts. Full article
(This article belongs to the Special Issue Health and Diseases of Koalas)
Show Figures

Figure 1

19 pages, 3371 KiB  
Article
Selection of Appropriate Dispatch Strategies for Effective Planning and Operation of a Microgrid
by Sk. A. Shezan, Kazi Nazmul Hasan, Akhlaqur Rahman, Manoj Datta and Ujjwal Datta
Energies 2021, 14(21), 7217; https://doi.org/10.3390/en14217217 - 2 Nov 2021
Cited by 37 | Viewed by 3833
Abstract
The power system responsiveness may be improved by determining the ideal size of each component and performing a reliability analysis. This study evaluated the design and optimization of an islanded hybrid microgrid system with multiple dispatch algorithms. As the penetration of renewable power [...] Read more.
The power system responsiveness may be improved by determining the ideal size of each component and performing a reliability analysis. This study evaluated the design and optimization of an islanded hybrid microgrid system with multiple dispatch algorithms. As the penetration of renewable power increases in microgrids, the importance and influence of efficient design and operation of islanded hybrid microgrids grow. The Kangaroo Island in South Australia served as the study’s test microgrid. The sizing of the Kangaroo Island hybrid microgrid system, which includes solar PV, wind, a diesel engine, and battery storage, was adjusted for four dispatch schemes. In this study, the following dispatch strategies were used: (i) load following, (ii) cycle charging, (iii) generator order, and (iv) combination dispatch. The CO2 emissions, net present cost (NPC), and energy cost of the islanded microgrid were all optimized (COE). The HOMER microgrid software platform was used to build all four dispatch algorithms, and DIgSILENT PowerFactory was used to analyze the power system’s responsiveness and dependability. The findings give a framework for estimating the generation mix and required resources for an islanded microgrid’s optimal functioning under various dispatch scenarios. According to the simulation results, load following is the optimum dispatch technique for an islanded hybrid microgrid that achieves the lowest cost of energy (COE) and net present cost (NPC). Full article
Show Figures

Figure 1

28 pages, 30564 KiB  
Article
Unveiling the Factors Responsible for Australia’s Black Summer Fires of 2019/2020
by Noam Levin, Marta Yebra and Stuart Phinn
Fire 2021, 4(3), 58; https://doi.org/10.3390/fire4030058 - 4 Sep 2021
Cited by 29 | Viewed by 14401
Abstract
The summer season of 2019–2020 has been named Australia’s Black Summer because of the large forest fires that burnt for months in southeast Australia, affecting millions of Australia’s citizens and hundreds of millions of animals and capturing global media attention. This extensive fire [...] Read more.
The summer season of 2019–2020 has been named Australia’s Black Summer because of the large forest fires that burnt for months in southeast Australia, affecting millions of Australia’s citizens and hundreds of millions of animals and capturing global media attention. This extensive fire season has been attributed to the global climate crisis, a long drought season and extreme fire weather conditions. Our aim in this study was to examine the factors that have led some of the wildfires to burn over larger areas for a longer duration and to cause more damage to vegetation. To this end, we studied all large forest and non-forest fires (>100 km2) that burnt in Australia between September 2019 and mid-February 2020 (Australia’s Black Summer fires), focusing on the forest fires in southeast Australia. We used a segmentation algorithm to define individual polygons of large fires based on the burn date from NASA’s Visible Infrared Imaging Radiometer Suite (VIIRS) active fires product and the Moderate Resolution Imaging Spectroradiometer (MODIS) burnt area product (MCD64A1). For each of the wildfires, we calculated the following 10 response variables, which served as proxies for the fires’ extent in space and time, spread and intensity: fire area, fire duration (days), the average spread of fire (area/days), fire radiative power (FRP; as detected by NASA’s MODIS Collection 6 active fires product (MCD14ML)), two burn severity products, and changes in vegetation as a result of the fire (as calculated using the vegetation health index (VHI) derived from AVHRR and VIIRS as well as live fuel moisture content (LFMC), photosynthetic vegetation (PV) and combined photosynthetic and non-photosynthetic vegetation (PV+NPV) derived from MODIS). We also computed more than 30 climatic, vegetation and anthropogenic variables based on remotely sensed derived variables, climatic time series and land cover datasets, which served as the explanatory variables. Altogether, 391 large fires were identified for Australia’s Black Summer. These included 205 forest fires with an average area of 584 km2 and 186 non-forest fires with an average area of 445 km2; 63 of the forest fires took place in southeast (SE) Australia (the area between Fraser Island, Queensland, and Kangaroo Island, South Australia), with an average area of 1097 km2. Australia’s Black Summer forest fires burnt for more days compared with non-forest fires. Overall, the stepwise regression models were most successful at explaining the response variables for the forest fires in SE Australia (n = 63; median-adjusted R2 of 64.3%), followed by all forest fires (n = 205; median-adjusted R2 of 55.8%) and all non-forest fires (n = 186; median-adjusted R2 of 48.2%). The two response variables that were best explained by the explanatory variables used as proxies for fires’ extent, spread and intensity across all models for the Black Summer forest and non-forest fires were the change in PV due to fire (median-adjusted R2 of 69.1%) and the change in VHI due to fire (median-adjusted R2 of 66.3%). Amongst the variables we examined, vegetation and fuel-related variables (such as previous frequency of fires and the conditions of the vegetation before the fire) were found to be more prevalent in the multivariate models for explaining the response variables in comparison with climatic and anthropogenic variables. This result suggests that better management of wildland–urban interfaces and natural vegetation using cultural and prescribed burning as well as planning landscapes with less flammable and more fire-tolerant ground cover plants may reduce fire risk to communities living near forests, but this is challenging given the sheer size and diversity of ecosystems in Australia. Full article
(This article belongs to the Special Issue Fire in Human Landscapes)
Show Figures

Figure 1

12 pages, 5741 KiB  
Article
Isotopic Indications of Late Pleistocene and Holocene Paleoenvironmental Changes at Boodie Cave Archaeological Site, Barrow Island, Western Australia
by Jane Skippington, Tiina Manne and Peter Veth
Molecules 2021, 26(9), 2582; https://doi.org/10.3390/molecules26092582 - 28 Apr 2021
Cited by 6 | Viewed by 2710
Abstract
This paper presents the first application of mammal tooth enamel carbonate stable isotope analysis for the purpose of investigating late Pleistocene–early Holocene environmental change in an Australian archaeological context. Stable carbon (δ13C) and oxygen (δ18O) isotope ratios were analyzed [...] Read more.
This paper presents the first application of mammal tooth enamel carbonate stable isotope analysis for the purpose of investigating late Pleistocene–early Holocene environmental change in an Australian archaeological context. Stable carbon (δ13C) and oxygen (δ18O) isotope ratios were analyzed from archaeological and modern spectacled hare wallaby (Lagorchestes conspicillatus) and hill kangaroo (Osphranter robustus) tooth enamel carbonates from Boodie Cave on Barrow Island in Western Australia. δ18O results track the dynamic paleoecological history at Boodie Cave including a clear shift towards increasing aridity preceding the onset of the Last Glacial Maximum and a period of increased humidity in the early to mid-Holocene. Enamel δ13C reflects divergent species feeding ecology and may imply a long-term shift toward increasing diversity in vegetation structure. This study contributes new data to the carbonate-isotope record for Australian fauna and demonstrates the significant potential of stable isotope based ecological investigations for tracking paleoenvironment change to inter-strata resolution. Full article
(This article belongs to the Special Issue Applications of Stable Isotope Analysis)
Show Figures

Figure 1

28 pages, 4994 KiB  
Article
Hydrogen Emanations in Intracratonic Areas: New Guide Lines for Early Exploration Basin Screening
by Isabelle Moretti, Emyrose Brouilly, Keanu Loiseau, Alain Prinzhofer and Eric Deville
Geosciences 2021, 11(3), 145; https://doi.org/10.3390/geosciences11030145 - 22 Mar 2021
Cited by 56 | Viewed by 11231
Abstract
Offshore the emissions of dihydrogen are highlighted by the smokers along the oceanic ridges. Onshore in situ measurements in ophiolitic contexts and in old cratons have also proven the existence of numerous H2 emissive areas. When H2 emanations affect the soils, [...] Read more.
Offshore the emissions of dihydrogen are highlighted by the smokers along the oceanic ridges. Onshore in situ measurements in ophiolitic contexts and in old cratons have also proven the existence of numerous H2 emissive areas. When H2 emanations affect the soils, small depressions and vegetation gaps are observed. These depressions, called fairy circles, have similarities with the pockmark and vent structures recognized for long time in the sea floor when natural gas escapes but also differences. In this paper we present a statistic approach of the density, size, and shape of the fairy circles in various basins. New data from Brazil and Australia are compared to the existing database already gathered in Russia, USA, and again Brazil. The comparison suggests that Australia could be one of the most promising areas for H2 exploration, de facto a couple of wells already found H2, whereas they were drilled to look for hydrocarbons. The sum of areas from where H2 is seeping overpasses 45 km2 in Kangaroo Island as in the Yorke Peninsula. The size of the emitting structures, expressed in average diameter, varies from few meters to kilometers and the footprint expressed in % of the ground within the structures varies from 1 to 17%. However, globally the sets of fairy circles in the various basins are rather similar and one may consider that their characteristics are homogeneous and may help to characterize these H2 emitting zones. Two kinds of size repartitions are observed, one with two maxima (25 m and between 220 m ± 25%) one with a simple Gaussian shape with a single maximum around 175 m ± 20%. Various geomorphological characteristics allow us to differentiate depressions of the ground due to gas emissions from karstic dolines. The more relevant ones are their slope and the ratio diameter vs. depth. At the opposite of the pockmark structures observed on the seafloor for which exclusion zones have been described, the H2 emitting structures may intersect and they often growth by coalescence. These H2 emitting structures are always observed, up to now, above Archean or Neoproterozoic cratons; it suggests that anoxia at the time the sedimentation and iron content play a key role in the H2 sourcing. Full article
Show Figures

Figure 1

23 pages, 759 KiB  
Article
The Green Accommodation Management Practices: The Role of Environmentally Responsible Tourist Markets in Understanding Tourists’ Pro-Environmental Behaviour
by Aise Kim, Ki Pyung Kim and Tan Hai Dang Nguyen
Sustainability 2021, 13(4), 2326; https://doi.org/10.3390/su13042326 - 21 Feb 2021
Cited by 23 | Viewed by 8120
Abstract
The green accommodation sectors are increasingly committed to implementing environmental management practices while enhancing guests’ pro-environmental behaviour. However, it is not easy to change tourists’ behaviour as there are many factors influencing tourists’ participation in green management actions. This paper argues that a [...] Read more.
The green accommodation sectors are increasingly committed to implementing environmental management practices while enhancing guests’ pro-environmental behaviour. However, it is not easy to change tourists’ behaviour as there are many factors influencing tourists’ participation in green management actions. This paper argues that a combination of multiple factors such as visitor characteristics or previous environmental experience needs to be examined to determine how these factors are differently associated with the type of pro-environmental behaviour. In particular, this study also investigates how environmentally responsible tourist markets can engage differently in different types of pro-environmental behaviour. Visitors staying at the green accommodation in Kangaroo Island, South Australia, were studied using self-administered questionnaires. The findings of this study confirmed the significant role of environmentally responsible travel experience as a strong predictor of two types of pro-environmental behaviour (e.g., energy-saving and recycling vs. eco-product consumption behaviour) and its moderating effects on the relationship between visitor characteristics and pro-environmental behaviours (PEBs). Furthermore, this environmental-responsibility-based segmentation approach provides green-oriented accommodation sectors with some managerial implications for improving green accommodation practices that can be operated on different principles for two different targeted markets based on their environmental responsibility. This study recommends that more in-depth investigations of other barriers or facilitators of pro-environmental behaviour are necessary to fully address this issue and to ultimately influence tourists’ responsible support for environmental management practices implemented by the green accommodation sector. Full article
(This article belongs to the Special Issue Responsible and Sustainable Tourism Development)
Show Figures

Figure 1

13 pages, 864 KiB  
Article
Genomic Screening Reveals That the Endangered Eucalyptus paludicola (Myrtaceae) Is a Hybrid
by Kor-jent van Dijk, Michelle Waycott, Joe Quarmby, Doug Bickerton, Andrew H. Thornhill, Hugh Cross and Edward Biffin
Diversity 2020, 12(12), 468; https://doi.org/10.3390/d12120468 - 10 Dec 2020
Cited by 5 | Viewed by 3606
Abstract
A hybrid origin for a conservation listed taxon will influence its status and management options. Here, we investigate the genetic origins of a nationally endangered listed taxon—Eucalyptus paludicola—a tree that is restricted to the Fleurieu Peninsula and Kangaroo Island of South [...] Read more.
A hybrid origin for a conservation listed taxon will influence its status and management options. Here, we investigate the genetic origins of a nationally endangered listed taxon—Eucalyptus paludicola—a tree that is restricted to the Fleurieu Peninsula and Kangaroo Island of South Australia. Since its description in 1995, there have been suggestions that this taxon may potentially be a stable hybrid species. Using a high throughput sequencing approach, we developed a panel of polymorphic loci that were screened across E. paludicola and its putative parental species E. cosmophylla and E. ovata. Bayesian clustering of the genotype data identified separate groups comprising E. ovata and E. cosmophylla while E. paludicola individuals were admixed between these two, consistent with a hybrid origin. Hybrid class assignment tests indicate that the majority of E. paludicola individuals (~70%) are F1 hybrids with a low incidence of backcrossing. Most of the post-F1 hybrids were associated with revegetation sites suggesting they may be maladapted and rarely reach maturity under natural conditions. These data support the hypothesis that E. paludicola is a transient hybrid entity rather than a distinct hybrid species. We briefly discuss the conservation implications of our findings. Full article
Show Figures

Figure 1

29 pages, 20307 KiB  
Article
Contextualizing the 2019–2020 Kangaroo Island Bushfires: Quantifying Landscape-Level Influences on Past Severity and Recovery with Landsat and Google Earth Engine
by Mitchell T. Bonney, Yuhong He and Soe W. Myint
Remote Sens. 2020, 12(23), 3942; https://doi.org/10.3390/rs12233942 - 2 Dec 2020
Cited by 26 | Viewed by 9960
Abstract
The 2019–2020 Kangaroo Island bushfires in South Australia burned almost half of the island. To understand how to avoid future severe ‘mega-fires’ and how vegetation may recover from 2019–2020, we can utilize information from the bulk of historical fires in an area. Landsat [...] Read more.
The 2019–2020 Kangaroo Island bushfires in South Australia burned almost half of the island. To understand how to avoid future severe ‘mega-fires’ and how vegetation may recover from 2019–2020, we can utilize information from the bulk of historical fires in an area. Landsat time-series of vegetation change provide this opportunity, but there has been little analysis of large numbers of fires to build a landscape-level understanding and quantify drivers in an Australian context. In this study, we built a yearly cloud-free surface reflectance normalized burn ratio (NBR) time-series (1988–2020) using all available summer Landsat images over Kangaroo Island. Data were collected in Google Earth Engine and fitted with LandTrendr. Burn severity and post-fire recovery were quantified for 47 fires, with a new recovery metric facilitating comparison where fire frequency is high. Variables representing the current burn, fire history, vegetation structure, and topography were related to severity and yearly recovery with random forest and bivariate analysis. Results show that the 2019–2020 bushfires were the most widespread and severe, followed by 2007–2008. Vegetation recovers quickly, with NBR stabilizing ten years post-fire on average. Severity is most influenced by fire frequency, vegetation capacity and land use with more severe burns in nature conservation areas with dense vegetation and a history of frequent fires. Influence on recovery varied with time since fire, with initial (year 1–3) faster recovery observed in areas with less surviving vegetation. Later (year 6–10) recovery was most influenced by a variable representing burn year and further investigation indicates that precipitation increases in later post-fire years likely facilitated faster recovery. The relative abundance of eucalypt woodlands also has a positive influence on recovery in middle and later years. These results provide valuable information to land managers on Kangaroo Island and in similar environments, who should consider adjusting practices to limit future mega-fire risk and potential ecosystem shifts if severe fires become more frequent with climate change. Full article
Show Figures

Graphical abstract

19 pages, 1208 KiB  
Article
Elapid Snake Venom Analyses Show the Specificity of the Peptide Composition at the Level of Genera Naja and Notechis
by Aisha Munawar, Maria Trusch, Dessislava Georgieva, Diana Hildebrand, Marcel Kwiatkowski, Henning Behnken, Sönke Harder, Raghuvir Arni, Patrick Spencer, Hartmut Schlüter and Christian Betzel
Toxins 2014, 6(3), 850-868; https://doi.org/10.3390/toxins6030850 - 28 Feb 2014
Cited by 20 | Viewed by 12532
Abstract
Elapid snake venom is a highly valuable, but till now mainly unexplored, source of pharmacologically important peptides. We analyzed the peptide fractions with molecular masses up to 10 kDa of two elapid snake venoms—that of the African cobra, N. m. mossambica (genus Naja [...] Read more.
Elapid snake venom is a highly valuable, but till now mainly unexplored, source of pharmacologically important peptides. We analyzed the peptide fractions with molecular masses up to 10 kDa of two elapid snake venoms—that of the African cobra, N. m. mossambica (genus Naja), and the Peninsula tiger snake, N. scutatus, from Kangaroo Island (genus Notechis). A combination of chromatographic methods was used to isolate the peptides, which were characterized by combining complimentary mass spectrometric techniques. Comparative analysis of the peptide compositions of two venoms showed specificity at the genus level. Three-finger (3-F) cytotoxins, bradykinin-potentiating peptides (BPPs) and a bradykinin inhibitor were isolated from the Naja venom. 3-F neurotoxins, Kunitz/basic pancreatic trypsin inhibitor (BPTI)-type inhibitors and a natriuretic peptide were identified in the N. venom. The inhibiting activity of the peptides was confirmed in vitro with a selected array of proteases. Cytotoxin 1 (P01467) from the Naja venom might be involved in the disturbance of cellular processes by inhibiting the cell 20S-proteasome. A high degree of similarity between BPPs from elapid and viperid snake venoms was observed, suggesting that these molecules play a key role in snake venoms and also indicating that these peptides were recruited into the snake venom prior to the evolutionary divergence of the snakes. Full article
(This article belongs to the Collection Evolution of Venom Systems)
Show Figures

Figure 1

19 pages, 1652 KiB  
Article
Demonstration of Two Portable Scanning LiDAR Systems Flown at Low-Altitude for Investigating Coastal Sea Surface Topography
by Julian Vrbancich, Wolfgang Lieff and Jorg Hacker
Remote Sens. 2011, 3(9), 1983-2001; https://doi.org/10.3390/rs3091983 - 2 Sep 2011
Cited by 19 | Viewed by 8127
Abstract
We demonstrate the efficacy of a commercial portable 2D laser scanner (operating at a wavelength close to 1,000 nm) deployed from a fixed-wing aircraft for measuring the sea surface topography and wave profiles over coastal waters. The LiDAR instrumentation enabled simultaneous measurements of [...] Read more.
We demonstrate the efficacy of a commercial portable 2D laser scanner (operating at a wavelength close to 1,000 nm) deployed from a fixed-wing aircraft for measuring the sea surface topography and wave profiles over coastal waters. The LiDAR instrumentation enabled simultaneous measurements of the 2D laser scanner with two independent inertial navigation units, and also simultaneous measurements with a more advanced 2D laser scanner (operating at a wavelength near 1,500 nm). The latter scanner is used routinely for accurately measuring terrestrial topography and was used as a benchmark in this study. We present examples of sea surface topography and wave profiles based on low altitude surveys (< ~300 m) over coastal waters in the vicinity of Cape de Couedic, Kangaroo Island, South Australia and over the surf zone adjacent to the mouth of the Murray River, South Australia. Relative wave heights in the former survey are shown to be consistent with relative wave heights observed from a waverider buoy located near Cape de Couedic during the LiDAR survey. The sea surface topography of waves in the surf zone was successfully mapped with both laser scanners resolving relative wave height variations and fine structure of the sea surface to within approximately 10 cm. A topographic map of the sea surface referenced to the airborne sensor frame transforms to an accurate altimetry map which may be used with airborne electromagnetic instrumentation to provide an averaged altimetry covering a portion of the larger electromagnetic footprint. This averaged altimetry is deemed to be significantly more reliable as a measurement of altimetry than spot measurements using a nadir-looking laser altimeter and would therefore improve upon the use of airborne electromagnetic methods for bathymetric mapping in surf-zone waters. The aperture range of the scanner does not necessarily determine the swath. We observed that instead, the maximum swath at a given altitude was limited by the angle of incidence of the laser at the water surface. Full article
Show Figures

Figure 1

Back to TopTop