Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = Inkjet printing (IJP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3259 KiB  
Article
Inkjet-Printed Flexible Piezoelectric Sensor for Large Deformation Applications
by Giulia Mecca, Roberto Bernasconi, Valentina Zega, Raffaella Suriano, Marco Menegazzo, Gianlorenzo Bussetti, Alberto Corigliano and Luca Magagnin
Technologies 2025, 13(5), 206; https://doi.org/10.3390/technologies13050206 - 17 May 2025
Viewed by 666
Abstract
Next-generation flexible, soft, and stretchable sensors and electronic devices are conquering the technological scene due to their extremely innovative applications. Especially when produced via innovative technologies like additive manufacturing (AM) and/or inkjet printing (IJP), they represent an undeniable strategic asset for Industry 5.0. [...] Read more.
Next-generation flexible, soft, and stretchable sensors and electronic devices are conquering the technological scene due to their extremely innovative applications. Especially when produced via innovative technologies like additive manufacturing (AM) and/or inkjet printing (IJP), they represent an undeniable strategic asset for Industry 5.0. Within the growing sensor market, they offer advantages in terms of sensitivity and maximum sensing range. In addition, the use of AM/IJP reduces material waste, enhances scalability, and lowers cost production. In the present work, the design and fabrication of a highly flexible inkjet-printed piezoelectric sensor on top of a thin highly flexible polyimide substrate are presented. The silver top and bottom electrodes were inkjet-printed together with a P(VDF-TrFE) active layer with a nominal thickness of 3 μm which is located between them. The experimental results demonstrate that, even in extreme bending conditions and at different bending speeds, the fabricated sensors are able to maintain their performance without mechanical delamination, giving a stable and repeatable output peak-to-peak signal of 850 mV under cyclic bending. The material combination and the IJP-based fabrication technique employed for the first time in this work to produce highly flexible sensors represent a promising novelty in terms of both sensor performance and customization possibilities. Full article
Show Figures

Figure 1

24 pages, 2594 KiB  
Review
3D-Printed Lithium-Ion Battery Electrodes: A Brief Review of Three Key Fabrication Techniques
by Alexander A. Pavlovskii, Konstantin Pushnitsa, Alexandra Kosenko, Pavel Novikov and Anatoliy A. Popovich
Materials 2024, 17(23), 5904; https://doi.org/10.3390/ma17235904 - 2 Dec 2024
Cited by 2 | Viewed by 1911
Abstract
In recent years, 3D printing has emerged as a promising technology in energy storage, particularly for the fabrication of Li-ion battery electrodes. This innovative manufacturing method offers significant material composition and electrode structure flexibility, enabling more complex and efficient designs. While traditional Li-ion [...] Read more.
In recent years, 3D printing has emerged as a promising technology in energy storage, particularly for the fabrication of Li-ion battery electrodes. This innovative manufacturing method offers significant material composition and electrode structure flexibility, enabling more complex and efficient designs. While traditional Li-ion battery fabrication methods are well-established, 3D printing opens up new possibilities for enhancing battery performance by allowing for tailored geometries, efficient material usage, and integrating multifunctional components. This article examines three key 3D printing methods for fabricating Li-ion battery electrodes: (1) material extrusion (ME), which encompasses two subcategories—fused deposition modeling (FDM), also referred to as fused filament fabrication (FFF), and direct ink writing (DIW); (2) material jetting (MJ), including inkjet printing (IJP) and aerosol jet printing (AJP) methods; and (3) vat photopolymerization (VAT-P), which includes the stereolithographic apparatus (SLA) subcategory. These methods have been applied in fabricating substrates, thin-film electrodes, and electrolytes for half-cell and full-cell Li-ion batteries. This discussion focuses on their strengths, limitations, and potential advancements for energy storage applications. Full article
Show Figures

Figure 1

13 pages, 4592 KiB  
Article
Inkjet-Printed Silver Lithiophilic Sites on Copper Current Collectors: Tuning the Interfacial Electrochemistry for Anode-Free Lithium Batteries
by Seyedalireza Mirbagheri, Eugenio Gibertini and Luca Magagnin
Batteries 2024, 10(10), 369; https://doi.org/10.3390/batteries10100369 - 17 Oct 2024
Cited by 1 | Viewed by 2086
Abstract
Anode-free lithium batteries (AFLBs) present an opportunity to eliminate the need for conventional graphite electrodes or excess lithium–metal anodes, thus increasing the cell energy density and streamlining the manufacturing process. However, their attributed poor coulombic efficiency leads to rapid capacity decay, underscoring the [...] Read more.
Anode-free lithium batteries (AFLBs) present an opportunity to eliminate the need for conventional graphite electrodes or excess lithium–metal anodes, thus increasing the cell energy density and streamlining the manufacturing process. However, their attributed poor coulombic efficiency leads to rapid capacity decay, underscoring the importance of achieving stable plating and stripping of Li on the negative electrode for the success of this cell configuration. A promising approach is the utilization of lithiophilic coatings such as silver to mitigate the Li nucleation overpotential on the Cu current collector, thereby improving the process of Li plating/stripping. On the other hand, inkjet printing (IJP) emerges as a promising technique for electrode modification in the manufacturing process of lithium batteries, offering a fast and scalable technology capable of depositing both thin films and patterned structures. In this work, a Fujifilm Dimatix inkjet printer was used to deposit Ag sites on a Cu current collector, aiming to modulate the interfacial electrochemistry of the system. Samples were fabricated with varying areas of coverage and the electrochemical performance of the system was systematically evaluated from bare Cu (non-lithiophilic) to a designed pattern (partially lithiophilic) and the fully coated thin film case (lithiophilic). Increasing lithiophilicity resulted in lower charge transfer resistance, higher exchange current density and reduced Li nucleation overpotential (from 55.75 mV for bare Cu to 13.5 mV for the fully coated case). Enhanced half-cell cyclability and higher coulombic efficiency were also achieved (91.22% CE over 76 cycles for bare Cu, 97.01% CE over 250 cycles for the fully coated case), alongside more uniform lithium deposition and fewer macroscopic irregularities. Moreover, our observations demonstrated that surface patterning through inkjet printing could represent an innovative, easy and scalable strategy to provide preferential Li nucleation sites to guide the subsequent Li deposition. Full article
Show Figures

Figure 1

11 pages, 4494 KiB  
Article
Influence of Surface Chemical and Topographical Properties on Morphology, Wettability and Surface Coverage of Inkjet-Printed Graphene-Based Materials
by Iulia Salaoru, Dave Morris, Ecaterina Ware and Krishna Nama Manjunatha
Micromachines 2024, 15(6), 681; https://doi.org/10.3390/mi15060681 - 22 May 2024
Viewed by 1306
Abstract
The inkjet printing of water-based graphene and graphene oxide inks on five substrates, two rigid (silicon and glass) and three flexible (cellulose, indium tin oxide-coated polyethylene terephthalate (ITO-PET) and ceramic coated paper (PEL paper)), is reported in this work. The physical properties of [...] Read more.
The inkjet printing of water-based graphene and graphene oxide inks on five substrates, two rigid (silicon and glass) and three flexible (cellulose, indium tin oxide-coated polyethylene terephthalate (ITO-PET) and ceramic coated paper (PEL paper)), is reported in this work. The physical properties of the inks, the chemical/topographical properties of selected substrates, and the inkjet printing (IJP) of the graphene-based materials, including the optimisation of the printing parameters together with the morphological characterisation of the printed layers, are investigated and described in this article. Furthermore, the impact of both the chemical and topographical properties of the substrates and the physical properties of graphene-based inks on the morphology, wettability and surface coverage of the inkjet-printed graphene patterns is studied and discussed in detail. Full article
(This article belongs to the Section D3: 3D Printing and Additive Manufacturing)
Show Figures

Figure 1

34 pages, 8842 KiB  
Review
A Review on Progress, Challenges, and Prospects of Material Jetting of Copper and Tungsten
by V. Vinay K. Doddapaneni, Kijoon Lee, Havva Eda Aysal, Brian K. Paul, Somayeh Pasebani, Konstantinos A. Sierros, Chinedum E. Okwudire and Chih-hung Chang
Nanomaterials 2023, 13(16), 2303; https://doi.org/10.3390/nano13162303 - 10 Aug 2023
Cited by 15 | Viewed by 3905
Abstract
Copper (Cu) and tungsten (W) possess exceptional electrical and thermal conductivity properties, making them suitable candidates for applications such as interconnects and thermal conductivity enhancements. Solution-based additive manufacturing (SBAM) offers unique advantages, including patterning capabilities, cost-effectiveness, and scalability among the various methods for [...] Read more.
Copper (Cu) and tungsten (W) possess exceptional electrical and thermal conductivity properties, making them suitable candidates for applications such as interconnects and thermal conductivity enhancements. Solution-based additive manufacturing (SBAM) offers unique advantages, including patterning capabilities, cost-effectiveness, and scalability among the various methods for manufacturing Cu and W-based films and structures. In particular, SBAM material jetting techniques, such as inkjet printing (IJP), direct ink writing (DIW), and aerosol jet printing (AJP), present a promising approach for design freedom, low material wastes, and versatility as either stand-alone printers or integrated with powder bed-based metal additive manufacturing (MAM). Thus, this review summarizes recent advancements in solution-processed Cu and W, focusing on IJP, DIW, and AJP techniques. The discussion encompasses general aspects, current status, challenges, and recent research highlights. Furthermore, this paper addresses integrating material jetting techniques with powder bed-based MAM to fabricate functional alloys and multi-material structures. Finally, the factors influencing large-scale fabrication and potential prospects in this area are explored. Full article
(This article belongs to the Special Issue Scalable Fabrication of Nanostructured Materials and Devices)
Show Figures

Figure 1

23 pages, 1866 KiB  
Review
Electrode Fabrication Techniques for Li Ion Based Energy Storage System: A Review
by Veena Singh, Sudhanshu Kuthe and Natalia V. Skorodumova
Batteries 2023, 9(3), 184; https://doi.org/10.3390/batteries9030184 - 20 Mar 2023
Cited by 15 | Viewed by 6763
Abstract
Development of reliable energy storage technologies is the key for the consistent energy supply based on alternate energy sources. Among energy storage systems, the electrochemical storage devices are the most robust. Consistent energy storage systems such as lithium ion (Li ion) based energy [...] Read more.
Development of reliable energy storage technologies is the key for the consistent energy supply based on alternate energy sources. Among energy storage systems, the electrochemical storage devices are the most robust. Consistent energy storage systems such as lithium ion (Li ion) based energy storage has become an ultimate system utilized for both domestic and industrial scales due to its advantages over the other energy storage systems. Considering the factors related to Li ion-based energy storage system, in the present review, we discuss various electrode fabrication techniques including electrodeposition, chemical vapor deposition (CVD), stereolithography, pressing, roll to roll, dip coating, doctor blade, drop casting, nanorod growing, brush coating, stamping, inkjet printing (IJP), fused deposition modelling (FDM) and direct ink writing (DIW). Additionally, we analyze the statistics of publications on these fabrication techniques and outline challenges and future prospects for the Li ion battery market. Full article
Show Figures

Graphical abstract

14 pages, 4111 KiB  
Article
All-Inkjet-Printed Ti3C2 MXene Capacitor for Textile Energy Storage
by Eugenio Gibertini, Federico Lissandrello, Luca Bertoli, Prisca Viviani and Luca Magagnin
Coatings 2023, 13(2), 230; https://doi.org/10.3390/coatings13020230 - 18 Jan 2023
Cited by 11 | Viewed by 3113
Abstract
The emerging wearable electronics integrated into textiles are posing new challenges both in materials and micro-fabrication strategies to produce textile-based energy storage and power source micro-devices. In this regard, inkjet printing (IJP) offers unique features for rapid prototyping for various thin-film (2D) devices. [...] Read more.
The emerging wearable electronics integrated into textiles are posing new challenges both in materials and micro-fabrication strategies to produce textile-based energy storage and power source micro-devices. In this regard, inkjet printing (IJP) offers unique features for rapid prototyping for various thin-film (2D) devices. However, all-inkjet-printed capacitors were very rarely reported in the literature. In this work, we formulated a stable Ti3C2 MXene aqueous ink for inkjet printing current-collector-free electrodes on TPU-coated cotton fabric, together with an innovative inkjet-printable and UV-curable solvent-based electrolyte precursor. The electrolyte was inkjet-printed on the electrode’s surface, and after UV polymerization, a thin and soft gel polymer electrolyte (GPE) was obtained, resulting in an all-inkjet-printed symmetrical capacitor (a-IJPSC). The highest ionic conductivity (0.60 mS/cm) was achieved with 10 wt.% of acrylamide content, and the capacitance retention was investigated both at rest (flat) and under bending conditions. The flat a-IJPSC textile-based device showed the areal capacitance of 0.89 mF/cm2 averaged on 2k cycles. Finally, an array of a-IJPSCs were demonstrated to be feasible as both a textile-based energy storage and micro-power source unit able to power a blue LED for several seconds. Full article
Show Figures

Figure 1

10 pages, 2803 KiB  
Article
Development and Characterizations of Novel Aqueous-Based Ceramic Inks for Inkjet Printing
by Haibing Li, Linyu Yang, Feng Li and Qinglong Xian
Materials 2023, 16(1), 21; https://doi.org/10.3390/ma16010021 - 21 Dec 2022
Cited by 4 | Viewed by 2427
Abstract
Stable rheological properties of ceramic ink are a key requirement for inkjet printing (IJP), which should be satisfied in terms of the Reynolds and Weber numbers. In this paper, the reverse microemulsion was introduced for the synthesis of monodispersed nanosized ceramic powders, and [...] Read more.
Stable rheological properties of ceramic ink are a key requirement for inkjet printing (IJP), which should be satisfied in terms of the Reynolds and Weber numbers. In this paper, the reverse microemulsion was introduced for the synthesis of monodispersed nanosized ceramic powders, and the average size was less than 100 nm. A comparison of two different dispersants, i.e., polyacrylic ammonium (PAANH4) and polyacrylic aid (PAA), revealed that the former exerted a good dispersion effect on the ceramic ink. The sedimentation ratio, zeta potential, surface tension, viscosity, and density of the inks were measured, and the Reynolds and Weber numbers, as well as Z value, were calculated. A stable, homogeneous, and high solid loading (20 wt%) ceramic ink could be achieved after aging for a period of 72 h. Finally, the ceramic inks showed the desired printable property in the inkjet printing process. Combining inkjet printing technology with a sintering process, Ni-Mn-O films have the potential to monitor temperature and humidity parameters for intelligent wearable devices. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

18 pages, 5678 KiB  
Article
Rotation Grids for Improved Electrical Properties of Inkjet-Printed Strain Gauges
by Matthias Rehberger, Jonas Mertin, Christian Vedder, Jochen Stollenwerk and Johannes Henrich Schleifenbaum
Sensors 2022, 22(16), 6119; https://doi.org/10.3390/s22166119 - 16 Aug 2022
Cited by 2 | Viewed by 2225
Abstract
We report an image data driven approach for inkjet printing (IJP) to improve the electrical properties of printed metallic strain gauges (SGs). The examined SGs contain narrow conducting paths of multiple orientations and therefore suffer from two challenges: 1. The printing direction of [...] Read more.
We report an image data driven approach for inkjet printing (IJP) to improve the electrical properties of printed metallic strain gauges (SGs). The examined SGs contain narrow conducting paths of multiple orientations and therefore suffer from two challenges: 1. The printing direction of inkjet printed conducting paths has an impact on film formation and electrical properties. 2. A loss-free rotation algorithm for IJP image data is lacking. New ways of IJP image data processing are required to compensate for quality-reducing effects. Novel grid types in terms of loss-free rotation algorithms are introduced. For this purpose, a new grid (e.g., 45° tilted) with a different grid constant is placed over a given pixel grid in such a way that all cell centers of the given pixel grid can be transferred to the rotated grid. Via straightening the tilt, the image data is rotated without interpolation and information loss. By applying these methods to measurement gratings of a full bridge with two perpendicular grating orientations, the influence on the manufacturing quality is investigated. It turns out that the electrical detuning of full bridges can be reduced by one order of magnitude compared to state-of-the-art printing by using so-called diagonal rotation grids. Full article
(This article belongs to the Special Issue Frontiers in Flexible Electronics and Sensors)
Show Figures

Figure 1

23 pages, 39270 KiB  
Article
Effect of Process Parameters on the Performance of Drop-On-Demand 3D Inkjet Printing: Geometrical-Based Modeling and Experimental Validation
by Ahmed Elkaseer, Stella Schneider, Yaqi Deng and Steffen G. Scholz
Polymers 2022, 14(13), 2557; https://doi.org/10.3390/polym14132557 - 23 Jun 2022
Cited by 27 | Viewed by 5539
Abstract
As additive manufacturing has evolved, 3D inkjet printing (IJP) has become a promising alternative manufacturing method able to manufacture functional multi-material parts in a single process. However, issues with part quality in terms of dimensional errors and lack of precision still restrict its [...] Read more.
As additive manufacturing has evolved, 3D inkjet printing (IJP) has become a promising alternative manufacturing method able to manufacture functional multi-material parts in a single process. However, issues with part quality in terms of dimensional errors and lack of precision still restrict its industrial and commercial applications. This study aims at improving the dimensional accuracy of 3D IJP parts by developing an optimization-oriented simulation tool of droplet behavior during the drop-on-demand 3D IJP process. The simulation approach takes into consideration the effect of droplet volume, droplet center-to-center distance, coverage percentage of jetted droplets, the contact angle of the ink on the solid substrate and coalescence performance of overlapping droplets, in addition to the number of printed layers. Following the development of the simulation tool using MATLAB, its feasibility was experimentally validated and the results showed a good agreement with a maximum deviation of 2.25% for horizontal features. In addition, the simulated horizontal features are compared with the results of “Inkraster” software, which also illustrates droplet behavior, however, only in 2D. For vertical features, a dial gauge indicator is used to measure the sample height, and the validation results show that the simulation tool can predicate the height of the sample with an average error of 10.89% for a large droplet diameter and 8.09% for a small diameter. The simulation results were found to be in a good agreement with the dimensions of the printed parts. The developed tool was then used to elucidate the effect of resolution of processed TIFF image and droplet diameter on the dimensional accuracy of 3D IJP parts. Full article
(This article belongs to the Special Issue High-Performance 3D Printing Polymers)
Show Figures

Figure 1

9 pages, 4638 KiB  
Article
Direct Inkjet Printing of Digitally Designed 2D TiN Patterns
by Joaquin Yus, Juan Antonio Escribano, Antonio Javier Sanchez-Herencia, Carmen Galassi and Begoña Ferrari
Coatings 2022, 12(6), 729; https://doi.org/10.3390/coatings12060729 - 25 May 2022
Cited by 4 | Viewed by 2191
Abstract
TiN is a non-oxidic ceramic widely employed as a hard coating material for cutting tools due to its high thermal and chemical stability. Among all 2D coating techniques, Inkjet printing (IJP) is one of the most promising for the fabrication of layers with [...] Read more.
TiN is a non-oxidic ceramic widely employed as a hard coating material for cutting tools due to its high thermal and chemical stability. Among all 2D coating techniques, Inkjet printing (IJP) is one of the most promising for the fabrication of layers with customized designs. However, despite its advantages, this process has not been used so far with this material. In this work, we prepared TiN suspensions for their implementation in IJP with a nozzle of 70 μm. A complete study of the ink properties was performed to formulate a suitable ink with a high level of dispersion and to evaluate the jetting during the printing process. Moreover, after a sintering process at 1100 °C under vacuum, a complete hardness analysis of the coated discs was performed, resulting in values ranging from ~4 to 7 GPa, depending on the grid design. Full article
(This article belongs to the Special Issue Additive Manufacturing of Metallic Components for Hard Coatings)
Show Figures

Figure 1

16 pages, 2521 KiB  
Article
Printing Drugs onto Nails for Effective Treatment of Onychomycosis
by Thomas D. Pollard, Margherita Bonetti, Adam Day, Simon Gaisford, Mine Orlu, Abdul W. Basit, Sudaxshina Murdan and Alvaro Goyanes
Pharmaceutics 2022, 14(2), 448; https://doi.org/10.3390/pharmaceutics14020448 - 19 Feb 2022
Cited by 13 | Viewed by 5008
Abstract
Inkjet printing (IJP) is an emerging technology for the precision dosing of medicines. We report, for the first time, the printing of the antifungal drug terbinafine hydrochloride directly onto nails for the treatment of onychomycosis. A commercial cosmetic nail printer was modified by [...] Read more.
Inkjet printing (IJP) is an emerging technology for the precision dosing of medicines. We report, for the first time, the printing of the antifungal drug terbinafine hydrochloride directly onto nails for the treatment of onychomycosis. A commercial cosmetic nail printer was modified by removing the ink from the cartridge and replacing it with an in-house prepared drug-loaded ink. The drug-loaded ink was designed so that it was comparable to the commercial ink for key printability properties. Linear drug dosing was shown by changing the lightness of the colour selected for printing (R2 = 0.977) and by printing multiple times (R2 = 0.989). The drug loads were measured for heart (271 µg), world (205 µg) and football (133 µg) shapes. A disc diffusion assay against Trpytophan rubrum showed inhibition of fungal growth with printed-on discs. In vitro testing with human nails showed substantial inhibition with printed-on nails. Hence, this is the first study to demonstrate the ability of a nail printer for drug delivery, thereby confirming its potential for onychomycosis treatment. Full article
Show Figures

Graphical abstract

15 pages, 5283 KiB  
Article
Synthesis of Printable Polyvinyl Alcohol for Aerosol Jet and Inkjet Printing Technology
by Mahmuda Akter Monne, Chandan Qumar Howlader, Bhagyashree Mishra and Maggie Yihong Chen
Micromachines 2021, 12(2), 220; https://doi.org/10.3390/mi12020220 - 22 Feb 2021
Cited by 9 | Viewed by 4192
Abstract
Polyvinyl Alcohol (PVA) is a promising polymer due to its high solubility with water, availability in low molecular weight, having short polymer chain, and cost-effectiveness in processing. Printed technology is gaining popularity to utilize processible solution materials at low/room temperature. This work demonstrates [...] Read more.
Polyvinyl Alcohol (PVA) is a promising polymer due to its high solubility with water, availability in low molecular weight, having short polymer chain, and cost-effectiveness in processing. Printed technology is gaining popularity to utilize processible solution materials at low/room temperature. This work demonstrates the synthesis of PVA solution for 2.5% w/w, 4.5% w/w, 6.5% w/w, 8.5% w/w and 10.5% w/w aqueous solution was formulated. Then the properties of the ink, such as viscosity, contact angle, surface tension, and printability by inkjet and aerosol jet printing, were investigated. The wettability of the ink was investigated on flexible (Kapton) and non-flexible (Silicon) substrates. Both were identified as suitable substrates for all concentrations of PVA. Additionally, we have shown aerosol jet printing (AJP) and inkjet printing (IJP) can produce multi-layer PVA structures. Finally, we have demonstrated the use of PVA as sacrificial material for micro-electro-mechanical-system (MEMS) device fabrication. The dielectric constant of printed PVA is 168 at 100 kHz, which shows an excellent candidate material for printed or traditional transistor fabrication. Full article
(This article belongs to the Special Issue 3D Printing of MEMS Technology)
Show Figures

Figure 1

10 pages, 2091 KiB  
Article
Clinical Evaluation of Stretchable and Wearable Inkjet-Printed Strain Gauge Sensor for Respiratory Rate Monitoring at Different Body Postures
by Ala’aldeen Al-Halhouli, Loiy Al-Ghussain, Saleem El Bouri, Fuad Habash, Haipeng Liu and Dingchang Zheng
Appl. Sci. 2020, 10(2), 480; https://doi.org/10.3390/app10020480 - 9 Jan 2020
Cited by 35 | Viewed by 6196
Abstract
Respiratory rate (RR) is a vital sign with continuous, convenient, and accurate measurement which is difficult and still under investigation. The present study investigates and evaluates a stretchable and wearable inkjet-printed strain gauge sensor (IJP) to estimate the RR continuously by detecting the [...] Read more.
Respiratory rate (RR) is a vital sign with continuous, convenient, and accurate measurement which is difficult and still under investigation. The present study investigates and evaluates a stretchable and wearable inkjet-printed strain gauge sensor (IJP) to estimate the RR continuously by detecting the respiratory volume change in the chest area. As the volume change could cause different strain changes at different body postures, this study aims to investigate the accuracy of the IJP RR sensor at selected postures. The evaluation was performed twice on 15 healthy male subjects (mean ± SD of age: 24 ± 1.22 years). The RR was simultaneously measured in breaths per minute (BPM) by the IJP RR sensor and a reference RR sensor (e-Health nasal thermal sensor) at each of the five body postures namely standing, sitting at 90°, Flower’s position at 45°, supine, and right lateral recumbent. There was no significant difference in measured RR between IJP and reference sensors, between two trials, or between different body postures (all p > 0.05). Body posture did not have any significant effect on the difference of RR measurements between IJP and the reference sensors (difference <0.01 BPM for each measurement in both trials). The IJP sensor could accurately measure the RR at different body postures, which makes it a promising, simple, and user-friendly option for clinical and daily uses. Full article
(This article belongs to the Special Issue Human Health Engineering Volume II)
Show Figures

Figure 1

21 pages, 5824 KiB  
Article
Fabrication and Evaluation of a Novel Non-Invasive Stretchable and Wearable Respiratory Rate Sensor Based on Silver Nanoparticles Using Inkjet Printing Technology
by Ala’aldeen Al-Halhouli, Loiy Al-Ghussain, Saleem El Bouri, Haipeng Liu and Dingchang Zheng
Polymers 2019, 11(9), 1518; https://doi.org/10.3390/polym11091518 - 18 Sep 2019
Cited by 45 | Viewed by 6225
Abstract
The respiration rate (RR) is a key vital sign that links to adverse clinical outcomes and has various important uses. However, RR signals have been neglected in many clinical practices for several reasons and it is still difficult to develop low-cost RR sensors [...] Read more.
The respiration rate (RR) is a key vital sign that links to adverse clinical outcomes and has various important uses. However, RR signals have been neglected in many clinical practices for several reasons and it is still difficult to develop low-cost RR sensors for accurate, automated, and continuous measurement. This study aims to fabricate, develop and evaluate a novel stretchable and wearable RR sensor that is low-cost and easy to use. The sensor is fabricated using the soft lithography technique of polydimethylsiloxane substrates (PDMS) for the stretchable sensor body and inkjet printing technology for creating the conductive circuit by depositing the silver nanoparticles on top of the PDMS substrates. The inkjet-printed (IJP) PDMS-based sensor was developed to detect the inductance fluctuations caused by respiratory volumetric changes. The output signal was processed in a Wheatstone bridge circuit to derive the RR. Six different patterns for a IJP PDMS-based sensor were carefully designed and tested. Their sustainability (maximum strain during measurement) and durability (the ability to go bear axial cyclic strains) were investigated and compared on an automated mechanical stretcher. Their repeatability (output of the sensor in repeated tests under identical condition) and reproducibility (output of different sensors with the same design under identical condition) were investigated using a respiratory simulator. The selected optimal design pattern from the simulator evaluation was used in the fabrication of the IJP PDMS-based sensor where the accuracy was inspected by attaching it to 37 healthy human subjects (aged between 19 and 34 years, seven females) and compared with the reference values from e-Health nasal sensor. Only one design survived the inspection procedures where design #6 (array consists of two horseshoe lines) indicated the best sustainability and durability, and went through the repeatability and reproducibility tests. Based on the best pattern, the developed sensor accurately measured the simulated RR with an error rate of 0.46 ± 0.66 beats per minute (BPM, mean ± SD). On human subjects, the IJP PDMS-based sensor and the reference e-Health sensor showed the same RR value, without any observable differences. The performance of the sensor was accurate with no apparent error compared with the reference sensor. Considering its low cost, good mechanical property, simplicity, and accuracy, the IJP PDMS-based sensor is a promising technique for continuous and wearable RR monitoring, especially under low-resource conditions. Full article
(This article belongs to the Special Issue Polymer-Based Flexible Printed Electronics and Sensors)
Show Figures

Graphical abstract

Back to TopTop