Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (150)

Search Parameters:
Keywords = Inconel 718 superalloys

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6709 KiB  
Article
Influence of Cutting Parameters and MQL on Surface Finish and Work Hardening of Inconel 617
by Rachel Lai, Andres Hurtado Carreon, Jose M. DePaiva and Stephen C. Veldhuis
Appl. Sci. 2025, 15(11), 5869; https://doi.org/10.3390/app15115869 - 23 May 2025
Viewed by 450
Abstract
Inconel 617 is a nickel-based superalloy that is a primary candidate for use in next-generation nuclear applications such as the Gen IV Molten Salt Reactor (MSR) and Very-High-Temperature Reactor (VHTR) due to its corrosion and oxidation resistance and high strength in elevated temperatures. [...] Read more.
Inconel 617 is a nickel-based superalloy that is a primary candidate for use in next-generation nuclear applications such as the Gen IV Molten Salt Reactor (MSR) and Very-High-Temperature Reactor (VHTR) due to its corrosion and oxidation resistance and high strength in elevated temperatures. However, Inconel 617 machinability is poor due to its hardness and tendency to work harden during manufacturing. While the machinability of its sister grade, Inconel 718, has been widely studied and understood due to its applications in aerospace, there is a lack of knowledge regarding the behaviour of Inconel 617 in machining. To address this gap, this paper investigates the influence of cutting parameters in the turning of Inconel 617 and compares the impact of Minimum Quantity Lubrication (MQL) turning against conventional coolant. This investigation was performed through three distinct studies: Study A compared the performance of commercial coatings, Study B investigated the influence of cutting parameters on the surface finish, and Study C compared the performance of MQL to flood coolant. This work demonstrated that AlTiN coatings performed the best and doubled the tool life of a standard tungsten carbide insert compared to its uncoated form. Additionally, the feed rate had the largest impact on the surface roughness, especially at high feeds, with the best surface quality found at the lowest feed rate of 0.075 mm/rev. The utilization of MQL had mixed results compared to a conventional flood coolant in the machining of Inconel 617. Surface finish was improved as high as 47% under MQL conditions compared to the flood coolant; however, work hardening at the surface was also shown to increase by 10–20%. Understanding this, it is possible that MQL can completely remove the need for a conventional coolant in the machining of Inconel 617 components for the manufacturing of next-generation reactors. Full article
(This article belongs to the Special Issue Advances in Manufacturing and Machining Processes)
Show Figures

Figure 1

21 pages, 14390 KiB  
Article
Crystal Plasticity Modeling of Strain Hardening Induced by Coherent Precipitates in Inconel 718 Superalloy
by Changfeng Wan and Biao Wang
Materials 2025, 18(11), 2436; https://doi.org/10.3390/ma18112436 - 23 May 2025
Cited by 2 | Viewed by 439
Abstract
In this work, a crystal plasticity (CP)-based continuum modeling approach is employed to investigate the interaction between dislocations and coherent γ precipitates in the Inconel 718 (IN718) superalloy. A finite element (FE) model is developed to accurately represent realistic microstructures in IN718, [...] Read more.
In this work, a crystal plasticity (CP)-based continuum modeling approach is employed to investigate the interaction between dislocations and coherent γ precipitates in the Inconel 718 (IN718) superalloy. A finite element (FE) model is developed to accurately represent realistic microstructures in IN718, specifically incorporating a disk-shaped precipitate embedded within a matrix phase. A length-scale-dependent CP modeling simulation informed by molecular dynamics (MD) findings is conducted. The results indicate that the three γ variants behave differently under uniaxial loading conditions, altering the deformation process in the γ phase and leading to significant strain and stress heterogeneities. The presence of dislocation shearing in the γ variants reduces the localization of strain and dislocation densities in the adjacent γ phase. The strain gradient-governed geometrically necessary dislocation (GND) density plays a dominant role in influencing strain hardening behavior. The length scale effect is further quantified by considering four different precipitate sizes, with the major axis ranging from 12.5 nm to 100 nm. The findings show that smaller precipitate sizes result in stronger strain hardening, and the size of γ precipitates significantly alters GND density evolution. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

11 pages, 3397 KiB  
Article
The Influence of Alloying Elements on the Hot Corrosion Behavior of Nickel-Based Superalloys
by Teodor-Adrian Badea and Mădălin Dombrovschi
Materials 2025, 18(9), 1996; https://doi.org/10.3390/ma18091996 - 28 Apr 2025
Viewed by 719
Abstract
Nickel-based superalloys are extensively used in high-temperature applications because of their exceptional oxidation and corrosion resistance. However, their performance in aggressive environments containing molten salts, such as Na2SO4 and V2O5, remains a critical challenge. This study [...] Read more.
Nickel-based superalloys are extensively used in high-temperature applications because of their exceptional oxidation and corrosion resistance. However, their performance in aggressive environments containing molten salts, such as Na2SO4 and V2O5, remains a critical challenge. This study investigated the hot corrosion behavior of Inconel 718, Udimet 710, Nimonic 75, and Inconel 625, focusing on the role of the alloying elements in the corrosion layers and degradation mechanisms. The superalloys were exposed to 50/50 wt.% Na2SO4–V2O5 at 900 °C for 8, 48, and 96 h, and their corrosion resistance was evaluated through weight gain measurements, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). These results indicate that Mo is a key factor in accelerating degradation, with Inconel 625 exhibiting the highest weight gain owing to the formation of thermally unstable Mo-rich phases. Fe also negatively impacted the stability of the protective scale of Inconel 718, contributing to an increased corrosion rate. In contrast, Nimonic 75 exhibited the best resistance, forming more of the NiCr2O4 spinel phase through the reaction of Cr2O3 with NiO from the high Ni and Cr contents in the corrosive layers. These findings highlight the importance of alloy composition in optimizing corrosion resistance and suggest that using superalloys with lower Mo and Fe contents and higher Cr and Ni concentrations can significantly enhance the durability of superalloys in molten salt environments. Full article
(This article belongs to the Special Issue Corrosion Mechanism and Protection Technology of Metallic Materials)
Show Figures

Figure 1

26 pages, 14205 KiB  
Article
Cutting Fluid Effectiveness in the High-Speed Finish Machining of Inconel 718 Using a Whisker-Reinforced Ceramic Tool
by Walid Jomaa, Monzer Daoud, Hamid Javadi and Philippe Bocher
J. Manuf. Mater. Process. 2025, 9(4), 123; https://doi.org/10.3390/jmmp9040123 - 7 Apr 2025
Viewed by 776
Abstract
This paper aims to investigate the effectiveness of cutting fluid during the high-speed face-turning of superalloy Inconel 718 using chamfered whisker-reinforced ceramic inserts. It addresses this topic by providing a comprehensive understanding of the machinability of Inconel 718 under both dry and wet [...] Read more.
This paper aims to investigate the effectiveness of cutting fluid during the high-speed face-turning of superalloy Inconel 718 using chamfered whisker-reinforced ceramic inserts. It addresses this topic by providing a comprehensive understanding of the machinability of Inconel 718 under both dry and wet conditions through analytical friction modeling and a detailed analysis of the chip formation process. Two new indexes, named the Area Function (AF) and the Shape Function (SF), were derived to assess the serration intensity of the chips. Particular attention was paid to the interaction between the cutting speed and the cutting fluid. The results showed that wet conditions promote uniform chip formation, more stable forces, a lower coefficient of friction, and the absence of notch wear. At low cutting speed (60 m/min) and dry machining results in high serration intensity (SF = 0.7) and segmentation frequency (fseg = 22.08 kHz) compared to the SF of 0.4 and fseg = 19.69 kHz in wet conditions. The segmentation frequency increases significantly with cutting speed, reaching 71.03 kHz and 63.32 kHz at a cutting speed of 225 m/min for dry and wet conditions, respectively. It was also found that the rate of increase in the tangential force was lower (20.49 N/s) when using cutting fluid at a high cutting speed (225 m/min) compared to dry conditions (27.37 N/s). Full article
Show Figures

Figure 1

24 pages, 7784 KiB  
Article
Enhancing the Surface Integrity of a Laser Powder Bed Fusion Inconel 718 Alloy by Tailoring the Microstructure and Microrelief Using Various Finishing Methods
by Dmytro Lesyk, Bohdan Mordyuk, Silvia Martinez, Vitaliy Dzhemelinskyi, Daniel Grochala, Andriy Kotko and Aitzol Lamikiz
Coatings 2025, 15(4), 425; https://doi.org/10.3390/coatings15040425 - 3 Apr 2025
Viewed by 806
Abstract
Heat-performance nickel-based superalloys are commonly applied in various critical industries. In this work, test samples in the form of turbine blades were manufactured by means of laser powder bed fusion (LPBF) 3D technology. This research focused on comparison of the influences of various [...] Read more.
Heat-performance nickel-based superalloys are commonly applied in various critical industries. In this work, test samples in the form of turbine blades were manufactured by means of laser powder bed fusion (LPBF) 3D technology. This research focused on comparison of the influences of various surface finishing methods. The mechanical surface post-processing of the LPBF-manufactured Inconel 718 alloy samples consisted of ultrasonic impact treatment (UIT), ultrasonic shot peening (USP), shot peening (SP), and barrel finishing (BF). The surface microrelief was evaluated using a high-precision laser profilometer, while the microstructural features were studied by light optical microscopy (LOM), scanning/transmission electron microscopy (SEM/TEM), and X-ray diffraction (XRD). Potentiodynamic polarization tests were also conducted to compare the surface finishing methods in terms of corrosion resistance improvement of the LPBF-manufactured 718 alloy samples. The effects of the surface microstructure and hardening intensity in combination with residual stresses and surface relief coupled with roughness profile shapes on the room temperature corrosion behavior of plastically deformed 718 alloy specimens manufactured by LPBF were studied. The corrosion rate (CR) of the LPBF-manufactured samples was reduced after post-processing: BF (~16 μm/year), USP (~15 μm/year), SP (~6.5 μm/year), and UIT (~5.5 μm/year). The experimental trends also agreed well with the theoretical trends of uniform corrosion of the studied alloy. Full article
(This article belongs to the Special Issue Laser Surface Engineering: Technologies and Applications)
Show Figures

Graphical abstract

18 pages, 12981 KiB  
Article
The Influence of Accidental Overheating on the Microstructure and Hardness of the Inconel 718 Alloy
by Alin-Daniel Rizea, Elisabeta Roxana Arva Ungureanu, Denis Aurelian Negrea, Sorin Georgian Moga, Marioara Abrudeanu, Mircea Ionut Petrescu, Radu Stefanoiu, Anita Haeussler, Daniel-Constantin Anghel and Luminita Mirela Constantinescu
Appl. Sci. 2025, 15(6), 3057; https://doi.org/10.3390/app15063057 - 12 Mar 2025
Cited by 1 | Viewed by 808
Abstract
The Inconel 718 alloy is a nickel-based superalloy that can be strengthened through precipitation hardening. Due to its exceptional mechanical properties, high corrosion resistance, and good workability, it is particularly suitable for applications where components operate in corrosive environments at temperatures up to [...] Read more.
The Inconel 718 alloy is a nickel-based superalloy that can be strengthened through precipitation hardening. Due to its exceptional mechanical properties, high corrosion resistance, and good workability, it is particularly suitable for applications where components operate in corrosive environments at temperatures up to 600 °C. Under these conditions, overheating frequently occurs, leading to structural transformations and changes in mechanical properties. This experimental study examined the effect of repeated overheating on the alloy’s structure, the formation of oxide layers, and hardness. The cyclic overheating process was simulated using thermal shocks induced by solar energy, with temperatures exceeding the recommended range, between 700 and 1000 °C. Morphological characterization, elemental chemical analysis, qualitative phase analysis, and microhardness measurements highlighted the transformations induced by cyclic thermal stress at high temperatures. Full article
Show Figures

Figure 1

23 pages, 24751 KiB  
Article
From Powders to Performance—A Comprehensive Study of Two Advanced Cutting Tool Materials Sintered with Pressure Assisted Methods
by Kinga Momot, Piotr Klimczyk, Beata Leszczyńska-Madej, Marcin Podsiadło, Yuliia Rumiantseva and Agnieszka Gubernat
Materials 2025, 18(2), 461; https://doi.org/10.3390/ma18020461 - 20 Jan 2025
Viewed by 1065
Abstract
This paper presents a comprehensive study of two tool materials designed for the machining of Inconel 718 superalloy, produced through two distinct sintering techniques: High Pressure–High Temperature (HPHT) sintering and Spark Plasma Sintering (SPS). The first composite (marked as BNT), composed of 65 [...] Read more.
This paper presents a comprehensive study of two tool materials designed for the machining of Inconel 718 superalloy, produced through two distinct sintering techniques: High Pressure–High Temperature (HPHT) sintering and Spark Plasma Sintering (SPS). The first composite (marked as BNT), composed of 65 vol% cubic boron nitride (cBN), was sintered from the cBN–TiN–Ti3SiC2 system using the HPHT technique at a pressure of 7.7 GPa. The second composite (marked as AZW) was fabricated from the Al2O3–ZrO2–WC system using SPS at a pressure of 63 MPa. The final phase composition of BNT material differed significantly from the initial composition due to reactions occurred during sintering. In contrast, the phase composition of the AZW ceramic composite before and after sintering was similar. The materials exhibited high quality, as evidenced by a Young’s modulus of 580 GPa for BNT and 470 GPa for AZW, along with hardness of 26 GPa for BNT and 21 GPa for AZW. Both composites were used to prepare cutting inserts that were evaluated for their performance in machining Inconel 718 alloy. While both inserts showed durability comparable to their respective reference commercial inserts, they differed in performance and price relative to one another. Full article
Show Figures

Figure 1

14 pages, 9070 KiB  
Article
Behavior of YSZ (High Y2O3 Content) Layer on Inconel to Electro-Chemical Corrosion
by Ionut Adomniței, Ramona Cimpoeșu, Daniela Lucia Chicet, Margareta Coteață, Fabian Cezar Lupu, Costică Bejinariu, Liviu Andrușcă, Petronela Paraschiv, Mihai Axinte, Gheorghe Bădărău and Nicanor Cimpoeșu
Materials 2025, 18(2), 400; https://doi.org/10.3390/ma18020400 - 16 Jan 2025
Cited by 1 | Viewed by 895
Abstract
The high yttria content of a stabilized zirconia (YSZ) (38 wt% Y2O3) coating was deposited by atmospheric plasma spraying (APS) from Metco 207 powders on an Inconel 718 (Ni-based superalloy) substrate. As a metal coating connection, a layer of [...] Read more.
The high yttria content of a stabilized zirconia (YSZ) (38 wt% Y2O3) coating was deposited by atmospheric plasma spraying (APS) from Metco 207 powders on an Inconel 718 (Ni-based superalloy) substrate. As a metal coating connection, a layer of cermet powder (Ni-20% Al—410NS) was used before the ceramic layer deposition. The electro-chemical corrosion resistance of these materials was tested using Inconel cylinders with a diameter of 10 mm and a thickness of 1 mm, with and without the ceramic layer. Linear and cyclic measurements were obtained in H2SO4 electrolyte media at pH = 2. Electro-impedance spectroscopy (EIS) experiments were performed on the sample covered with the ceramic layer to evaluate the interface behavior. Scanning electron microscopy (SEM), along with equipment to determine chemical composition, and an energy dispersive spectrometry (EDS) detector were used to characterize the material surface before and after corrosion tests. It was observed that the corrosion resistance of Inconel was influenced by the bonding layer and the ceramic coating. Full article
(This article belongs to the Special Issue Corrosion and Formation of Surface Films on Metals and Alloys)
Show Figures

Figure 1

38 pages, 18491 KiB  
Review
Review of the Microstructural Impact on Creep Mechanisms and Performance for Laser Powder Bed Fusion Inconel 718
by Guillian Bryndza, Jérôme Tchoufang Tchuindjang, Fan Chen, Anne Marie Habraken, Héctor Sepúlveda, Víctor Tuninetti, Anne Mertens and Laurent Duchêne
Materials 2025, 18(2), 276; https://doi.org/10.3390/ma18020276 - 9 Jan 2025
Cited by 3 | Viewed by 2250
Abstract
Inconel 718 (IN718) is a polycrystalline nickel-based superalloy and one of the most widely used materials in the aerospace industry owing to its excellent mechanical performances at high temperatures, including creep resistance. Interest in additively manufactured components in aerospace is greatly increasing due [...] Read more.
Inconel 718 (IN718) is a polycrystalline nickel-based superalloy and one of the most widely used materials in the aerospace industry owing to its excellent mechanical performances at high temperatures, including creep resistance. Interest in additively manufactured components in aerospace is greatly increasing due to their ability to reduce material consumption, to manufacture complex parts, and to produce out-of-equilibrium microstructures, which can be beneficial for mechanical behavior. IN718’s properties are, however, very sensitive to microstructural features, which strongly depend on the manufacturing process and subsequent heat treatments. Additive manufacturing and, more specifically, Laser Powder Bed Fusion (LPBF) induces very high thermal gradients and anisotropic features due to its inherently directional nature, which largely defines the microstructure of the alloy. Hence, defining appropriate manufacturing parameters and heat treatments is critical to obtain appropriate mechanical behavior. This review aims to present the main microstructural features of IN718 produced by LPBF, the creep mechanisms taking place, the optimal microstructure for creep strength, and the most efficient heat treatments to yield such an optimized microstructure. Full article
Show Figures

Figure 1

28 pages, 4725 KiB  
Review
High Energy Density Welding of Ni-Based Superalloys: An Overview
by Riccardo Donnini, Alessandra Varone, Alessandra Palombi, Saveria Spiller, Paolo Ferro and Giuliano Angella
Metals 2025, 15(1), 30; https://doi.org/10.3390/met15010030 - 1 Jan 2025
Cited by 2 | Viewed by 1963
Abstract
High energy density technologies for welding processes provide opportune solutions to joint metal materials and repair components in several industrial applications. Their high-performance levels are related to the high penetration depth and welding speed achievable. Moreover, the localized thermal input helps in reducing [...] Read more.
High energy density technologies for welding processes provide opportune solutions to joint metal materials and repair components in several industrial applications. Their high-performance levels are related to the high penetration depth and welding speed achievable. Moreover, the localized thermal input helps in reducing distortion and residual stresses in the welds, minimizing the extension of the fusion zone and heat-affected zone. The use of these welding technologies can be decisive in the employment of sophisticated alloys such as Ni-based superalloys, which are notoriously excellent candidates for industrial components subjected to high temperatures and corrosive work conditions. Nonetheless, the peculiar crystallographic and chemical complexity of Ni-based superalloys (whether characterized by polycrystalline, directionally solidified, or single-crystal microstructure) leads to high susceptibility to welding processes and, in general, challenging issues related to the microstructural features of the welded joints. The present review highlights the advantages and drawbacks of high energy density (Laser Beam and Electron Beam) welding techniques applied to Ni-based superalloy. The effects of process parameters on cracking susceptibility have been analyzed to better understand the correlation between them and the microstructure-mechanical properties of the welds. The weldability of three different polycrystalline Ni superalloys, one solid solution-strengthened alloy, Inconel 625, and two precipitation-strengthen alloys, Nimonic 263 and Inconel 718, is reviewed in detail. In addition, a variant of the latter, the AF955 alloy, is also presented for its great potential in terms of weldability. Full article
(This article belongs to the Special Issue Advanced Welding Technology in Metals III)
Show Figures

Figure 1

17 pages, 19581 KiB  
Article
Investigation of Anti-Friction Properties of MoS2 and SiO2 Nanolubricants Based on the Friction Pairs of Inconel 718 Superalloy and YG6 Carbide
by Lijie Ma, Fengnan Li, Shijie Ba, Zunyan Ma, Xinhui Mao, Qigao Feng and Kang Yang
Lubricants 2025, 13(1), 4; https://doi.org/10.3390/lubricants13010004 - 27 Dec 2024
Cited by 1 | Viewed by 842
Abstract
In order to improve the anti-friction property of common mineral oil and develop a high-performance lubricant, MoS2 and SiO2 nano-additives were individually dispersed into the 350SN mineral oil at various weight percentages to prepare nanolubricants. Then, the viscosity, wettability, and tribological [...] Read more.
In order to improve the anti-friction property of common mineral oil and develop a high-performance lubricant, MoS2 and SiO2 nano-additives were individually dispersed into the 350SN mineral oil at various weight percentages to prepare nanolubricants. Then, the viscosity, wettability, and tribological properties of the nanolubricants were measured and analyzed with a rotary viscometer, a contact angle measuring instrument, and a friction tester. Finally, the action mechanism of two nano-additives was explained based on the energy spectrum test results of the abrasion surface. The results show that MoS2 and SiO2 nano-additives could improve the viscosity of the base fluid and change its wettability, giving nanolubricants better anti-friction performance than the base fluid. Due to the difference in physical properties, SiO2 and MoS2 nanolubricants presented different friction reduction rules with the increase in nano-additive percentage. Under experimental conditions, SiO2 nanolubricants showed better anti-friction effects than MoS2 nanolubricants. When the SiO2 percentage was 10 wt% and 15 wt%, the maximum friction coefficient was reduced to 0.06, which was about 1/3 of that with the base fluid. In this case, the abrasion surface quality was significantly improved, and the abrasion trace size was about half that of the base fluid. The energy spectrum test results show that the action mechanism of the MoS2 nano-additive is the adsorption film effect and mending effect of nanoparticles, while the main action mechanism of the SiO2 nano-additive should be the polishing effect and rolling effect of nanoparticles. Full article
(This article belongs to the Special Issue Mechanical Tribology and Surface Technology)
Show Figures

Figure 1

23 pages, 18016 KiB  
Article
A Study of the Response Surface Methodology and Finite Element Method to Model Aircraft Engine Body Deformations During Hole Drilling
by Andrzej Matras and Magdalena Machno
Materials 2024, 17(24), 6214; https://doi.org/10.3390/ma17246214 - 19 Dec 2024
Viewed by 622
Abstract
The aviation industry is still looking for effective manufacturing methods. Currently, the challenge is still the machining of shapes in thin-walled materials. This work focuses on the analysis of the influence of these parameters on deformations during the drilling process of holes in [...] Read more.
The aviation industry is still looking for effective manufacturing methods. Currently, the challenge is still the machining of shapes in thin-walled materials. This work focuses on the analysis of the influence of these parameters on deformations during the drilling process of holes in the adapters of aircraft engine body accessories. The drilling process was carried out in the thin-walled superalloy Inconel 718, which is classified as a difficult-to-machine material. During the analyses, experimental studies based on the Response Surface Method (RSM) and finite element method (FEM) calculations were carried out simultaneously. The aim of this work was to analyze the developed mathematical models describing nonlinear relationships between cutting parameters, cutting forces, and deformations of the aircraft engine body characterized by a complex, thin-walled geometric structure. By using the proposed solutions, it is possible to achieve integration between the techniques of conducting research, performing calculations using FEM, and designing the machining. The advantage of this comprehensive approach used in our work is the development of mathematical models that strongly fit the results of the research. The results of analyses and calculations presented in the article and the research methodology used can be applied to industrial conditions. Full article
Show Figures

Figure 1

26 pages, 6021 KiB  
Article
Towards Sustainability in Hydraulic Machinery Manufacturing by 3D Printing
by Abel Remache, Modesto Pérez-Sánchez, Víctor Hugo Hidalgo, Helena M. Ramos and Francisco-Javier Sánchez-Romero
Processes 2024, 12(12), 2664; https://doi.org/10.3390/pr12122664 - 26 Nov 2024
Cited by 4 | Viewed by 5245
Abstract
Material wear, maintenance costs, performance, efficiency, and corrosion are some of the issues that turbomachinery impellers may encounter. The optimization of impellers through additive manufacturing (AM) has been the focus of extensive research, aiming to address these challenges in turbine, pump, compressor, fan, [...] Read more.
Material wear, maintenance costs, performance, efficiency, and corrosion are some of the issues that turbomachinery impellers may encounter. The optimization of impellers through additive manufacturing (AM) has been the focus of extensive research, aiming to address these challenges in turbine, pump, compressor, fan, and mixer components. This research aims to identify and analyze the main techniques currently being developed to tackle several of these issues. Evaluating the published research, the methodology highlights various AM techniques applied to impellers and related components, as well as the diverse materials used in functional system elements. The analysis revealed that the most commonly used additive manufacturing technologies for the production of turbomachinery components are FDM, with a 22% application rate, and powder bed fusion technology, accounting for 35%, utilized for high-complexity parts and even superalloys. Although more expensive, these technologies employ materials with superior resistance capabilities, surpass the limitations of conventional machining, optimize manufacturing times, and allow for the fine-tuning of multiple parameters. In terms of wear and corrosion resistance, materials such as Inconel 718 exhibited a loss of less than 0.1 mpy (mils per year) in highly corrosive environments, representing a significant improvement over traditional materials. Full article
Show Figures

Figure 1

17 pages, 7244 KiB  
Article
Microstructure Refinement of Bulk Inconel 718 Parts During Fabrication with EB-PBF Using Scanning Strategies: Transition from Bidirectional-Raster to Stochastic Point-Based Melting
by Shadman Tahsin Nabil, Cristian Banuelos, Michael E. Madigan, Sammy Tin, Jacob I. Rodriguez, Lawrence E. Murr, Ryan B. Wicker and Francisco Medina
J. Manuf. Mater. Process. 2024, 8(6), 241; https://doi.org/10.3390/jmmp8060241 - 31 Oct 2024
Cited by 2 | Viewed by 2295
Abstract
Inconel 718 is a widely popular aerospace superalloy known for its high-temperature performance and resistance to oxidation, creep, and corrosion. Traditional manufacturing methods, like casting and powder metallurgy, face challenges with intricate shapes that can result in porosity and uniformity issues. On the [...] Read more.
Inconel 718 is a widely popular aerospace superalloy known for its high-temperature performance and resistance to oxidation, creep, and corrosion. Traditional manufacturing methods, like casting and powder metallurgy, face challenges with intricate shapes that can result in porosity and uniformity issues. On the other hand, Additive Manufacturing (AM) techniques such as Powder Bed Fusion (PBF) and Direct Energy Deposition (DED) can allow the creation of intricate single-part components to reduce weight and maintain structural integrity. However, AM parts often exhibit directional solidification, leading to anisotropic properties and potential crack propagation sites. To address this, post-processing treatments like HIP and heat treatment are necessary. This study explores the effects of the raster and stochastic spot melt scanning strategies on the microstructural and mechanical properties of IN718 parts fabricated using Electron Beam Powder Bed Fusion (EB-PBF). This research demonstrates that raster scanning produces columnar grains with higher mean aspect ratios. Stochastic spot melt scanning facilitates the formation of equiaxed grains, which enhances microstructural refinement and lowers anisotropy. The highest microstructural values were recorded in the raster-produced columnar grain structure. Conversely, the stochastic melt-produced transition from columnar to equiaxed grain structure demonstrated increased hardness with decreasing grain size; however, the hardness of the smallest equiaxed grain structure was slightly less than that of the columnar grain structure. These findings underscore the vital importance of scanning strategies in optimizing the EB-PBF process to enhance material properties. Full article
(This article belongs to the Special Issue High-Performance Metal Additive Manufacturing)
Show Figures

Figure 1

16 pages, 70466 KiB  
Article
Experimental Research on the Influence of Repeated Overheating on the Thermal Diffusivity of the Inconel 718 Alloy
by Elisabeta Roxana Ungureanu Arva, Marioara Abrudeanu, Denis Aurelian Negrea, Andrei Galatanu, Magdalena Galatanu, Alin-Daniel Rizea, Daniel-Constantin Anghel, Mihai Branzei, Alexandra Ion Jinga and Mircea Ionut Petrescu
Appl. Sci. 2024, 14(18), 8574; https://doi.org/10.3390/app14188574 - 23 Sep 2024
Viewed by 1724
Abstract
The Inconel 718 superalloy, a precipitation-hardenable material, is of particular interest for applications involving components operating under extreme conditions due to its excellent mechanical properties, high corrosion resistance at temperatures up to 700 °C, and good workability. At high temperatures, thermal transfer processes [...] Read more.
The Inconel 718 superalloy, a precipitation-hardenable material, is of particular interest for applications involving components operating under extreme conditions due to its excellent mechanical properties, high corrosion resistance at temperatures up to 700 °C, and good workability. At high temperatures, thermal transfer processes are crucial for temperature distribution across the component’s section, structural transformations, and variations in the alloy’s properties. The history of accidental overheating events is critical for the microstructure and properties of the alloy. Studies on thermal transfer in the Inconel 718 alloy available in the literature typically focus on the alloy in its as-delivered state. The experimental research presented in this paper examines the influence of repeated overheating history on the thermal diffusivity of the alloy. Full article
Show Figures

Figure 1

Back to TopTop