Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = II–VI semiconductor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2479 KB  
Article
Comparison of Quantum Transition Characteristics of Group II–VI (ZnO), Group III–V (GaN) Compound Semiconductors, and Intrinsic (Si) Semiconductors in Response to Externally Applied Energy
by Herie Park and Su-Ho Lee
Materials 2025, 18(20), 4709; https://doi.org/10.3390/ma18204709 - 14 Oct 2025
Viewed by 449
Abstract
In this paper, we study the line-shape (LS), which indicates the amount of absorbed energy, and the line-width (LW), which indicates the scattering factor, according to the vibrational direction of the externally applied energy in the electron–phonon potential interaction system of representative semiconductor [...] Read more.
In this paper, we study the line-shape (LS), which indicates the amount of absorbed energy, and the line-width (LW), which indicates the scattering factor, according to the vibrational direction of the externally applied energy in the electron–phonon potential interaction system of representative semiconductor bonding types, group II–VI (ZnO) and group III–V (GaN) bonded compound semiconductors and pure group IV (Si) bonded semiconductors. One of the two systems receives the externally applied energy of right-handed circular polarization vibration, and the other receives the externally applied energy of left-handed circular polarization vibration. To analyze the quantum transport, we first employ quantum transport theory (QTR) for an electron system confined within a square-well potential, where the projected Liouville equation is addressed using the balanced-average projection method. In analyzing quantum transitions, phonon emission is linked to the transition line-width (LW), whereas phonon absorption is evaluated through the transition line-shape (LS), highlighting its sensitivity to temperature and magnetic field variations. As a result of analyzing the line-width (LW), which is a quantum scattering coefficient, and the line-shape (LS), which represents the absorbed power, the absorbed power and scattering coefficient were higher for the left circularly polarized vibration under the influence of the external magnetic field. In contrast, the right polarization produced smaller values. In addition, the scattering coefficient (LW) and the absorbed power according to the bonding type of the semiconductor were the largest in Si, a group IV bonded semiconductor, followed by group III–V (GaN) and group II–VI (ZnO) bonded semiconductors. Full article
(This article belongs to the Special Issue Feature Papers in Materials Physics (2nd Edition))
Show Figures

Figure 1

16 pages, 2644 KB  
Perspective
Perovskites to Photonics: Engineering NIR LEDs for Photobiomodulation
by Somnath Mahato, Hendradi Hardhienata and Muhammad Danang Birowosuto
Micromachines 2025, 16(9), 1002; https://doi.org/10.3390/mi16091002 - 30 Aug 2025
Viewed by 1011
Abstract
Photobiomodulation (PBM) harnesses near-infrared (NIR) light to stimulate cellular processes, offering non-invasive treatment options for a range of conditions, including chronic wounds, inflammation, and neurological disorders. NIR light-emitting diodes (LEDs) are emerging as safer and more scalable alternatives to conventional lasers, but optimizing [...] Read more.
Photobiomodulation (PBM) harnesses near-infrared (NIR) light to stimulate cellular processes, offering non-invasive treatment options for a range of conditions, including chronic wounds, inflammation, and neurological disorders. NIR light-emitting diodes (LEDs) are emerging as safer and more scalable alternatives to conventional lasers, but optimizing their performance for clinical use remains a challenge. This perspective explores the latest advances in NIR-emitting materials, spanning Group III–V, IV, and II–VI semiconductors, organic small molecules, polymers, and perovskites, with an emphasis on their applicability to PBM. Particular attention is given to the promise of perovskite LEDs, including lead-free and lanthanide-doped variants, for delivering narrowband, tunable NIR emission. Furthermore, we examine photonic and plasmonic engineering strategies that enhance light extraction, spectral precision, and device efficiency. By integrating advances in materials science and nanophotonics, it is increasingly feasible to develop flexible, biocompatible, and high-performance NIR LEDs tailored for next-generation therapeutic applications. Full article
(This article belongs to the Special Issue Recent Advances in Nanophotonic Materials and Devices)
Show Figures

Figure 1

20 pages, 7945 KB  
Review
Recent Progress and Future Opportunities for Optical Manipulation in Halide Perovskite Photodetectors
by Jiarui Zhang and Chi Ma
Nanomaterials 2025, 15(11), 816; https://doi.org/10.3390/nano15110816 - 28 May 2025
Cited by 2 | Viewed by 1551
Abstract
Perovskite, as a promising class of photodetection material, demonstrates considerable potential in replacing conventional bulk light-detection materials such as silicon, III–V, or II–VI compound semiconductors and has been widely applied in various special light detection. Relying solely on the intrinsic photoelectric properties of [...] Read more.
Perovskite, as a promising class of photodetection material, demonstrates considerable potential in replacing conventional bulk light-detection materials such as silicon, III–V, or II–VI compound semiconductors and has been widely applied in various special light detection. Relying solely on the intrinsic photoelectric properties of perovskite gradually fails to meet the evolving requirements attributed to the escalating demand for low-cost, lightweight, flexible, and highly integrated photodetection. Direct manipulation of electrons and photons with differentiation of local electronic field through predesigned optical nanostructures is a promising strategy to reinforce the detectivity. This review provides a concise overview of the optical manipulation strategy in perovskite photodetector through various optical nanostructures, such as isolated metallic nanoparticles and continuous metallic gratings. Furthermore, the special light detection techniques involving more intricate nanostructure designs have been summarized and discussed. Reviewing these optical manipulation strategies could be beneficial to the next design of perovskite photodetector with high performance and special light recognition. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

27 pages, 19227 KB  
Article
Copper(II) Complex with a 3,3′-Dicarboxy-2,2′-Dihydroxydiphenylmethane-Based Carboxylic Ligand: Synthesis, Spectroscopic, Optical, Density Functional Theory, Cytotoxic, and Molecular Docking Approaches for a Potential Anti-Colon Cancer Control
by Ayman H. Ahmed, Ibrahim O. Althobaiti, Kamal A. Soliman, Yazeed M. Asiri, Ebtsam K. Alenezy, Saad Alrashdi and Ehab S. Gad
Inorganics 2025, 13(5), 151; https://doi.org/10.3390/inorganics13050151 - 6 May 2025
Cited by 2 | Viewed by 1676
Abstract
The chemical interaction of salicylic acid, formaldehyde, and sulfuric acid produced a disalicylic ligand (3,3′-dicarboxy-2,2′-dihydroxydiphenylmethane, DCM), which was then allowed to coordinate with copper (II) ions. The solid compounds’ chemical structures were determined using elemental analysis, UV-Vis, FT-IR, MS, 1H-NMR, PXRD, SEM, [...] Read more.
The chemical interaction of salicylic acid, formaldehyde, and sulfuric acid produced a disalicylic ligand (3,3′-dicarboxy-2,2′-dihydroxydiphenylmethane, DCM), which was then allowed to coordinate with copper (II) ions. The solid compounds’ chemical structures were determined using elemental analysis, UV-Vis, FT-IR, MS, 1H-NMR, PXRD, SEM, TEM, magnetic studies, as well as molecular modeling based on DFT (density functional theory) calculations. It was proposed that the ligand coordinates in a tetradentate fashion with the copper ion to give a square-planar binuclear complex. A significant difference in the diffraction patterns between Cu(II)–DCM (amorphous) and DCM (crystalline) was displayed using an X-ray diffraction analysis. Spherical granules were identified throughout through morphology analysis using SEM and TEM. UV-Vis spectra were used to quantify the optical characteristics such as the energy gap, optical conductivity, refractive index, and penetration depth. The band gap values that lie within the semiconductor region suggested that the compounds could be used for electronic applications. The optimized structure of the synthesized Cu(II)–DCM complex was investigated using DFT and TD-DFT (time-dependent density functional theory) at the B3LYP/6-31G(d, p) level, with the LANL2DZ basis set for Cu in an ethanol solvent and the gas environment modeled by CPCM. The experimental data suggest a square-planar geometry of the Cu(II) binuclear complex. The theoretical calculations support the proposed structure of the compound. The cytotoxicity of the DCM against HCT–116 (human colon cancer) cells was tested, and the outcome exhibited good inhibitions of growth. A molecular docking (MD) examination was carried out to illustrate the binding mode/affinity of the prepared compounds (DCM and Cu(II)–DCM) in the active site of the receptor protein [CDK2 enzyme, PDB ID: 6GUE]. The compounds formed hydrogen bonds with the amino acid residues of the protein, increasing the binding affinity from −7.2 to −9.3 kcal/mol through the coordination process. The information from this current study, particularly the copper complex, is beneficial for exploring new compounds that have anticancer potential. Full article
(This article belongs to the Special Issue Applications and Future Trends for Novel Copper Complexes)
Show Figures

Figure 1

18 pages, 8764 KB  
Article
Synergistic Removal of Cr(VI) Utilizing Oxalated-Modified Zero-Valent Iron: Enhanced Electron Selectivity and Dynamic Fe(II) Regeneration
by Song Hou, Jiangkun Du, Haibo Ling, Sen Quan, Jianguo Bao and Chuan Yi
Nanomaterials 2025, 15(9), 669; https://doi.org/10.3390/nano15090669 - 28 Apr 2025
Viewed by 855
Abstract
To address the challenges of environmental adaptability and passivation in nanoscale zero-valent iron (nFe0) systems, we developed oxalate-modified nFe0 (nFeoxa) through a coordination-driven synthesis strategy, aiming to achieve high-efficiency Cr(VI) removal with improved stability and reusability. Structural characterization [...] Read more.
To address the challenges of environmental adaptability and passivation in nanoscale zero-valent iron (nFe0) systems, we developed oxalate-modified nFe0 (nFeoxa) through a coordination-driven synthesis strategy, aiming to achieve high-efficiency Cr(VI) removal with improved stability and reusability. Structural characterization (STEM and FT-IR) confirmed the formation of a FeC2O4/nFe0 heterostructure, where oxalate coordinated with Fe(II) to construct a semiconductor interface that effectively inhibits anoxic passivation while enabling continuous electron supply, achieving 100% Cr(VI) removal efficiency within 20 min at an optimal oxalate/Fe molar ratio of 1/29. Mechanistic studies revealed that the oxalate ligand accelerates electron transfer from the Fe0 core to the surface via the FeC2O4-mediated pathway, as evidenced by EIS and LSV test analyses. This process dynamically regenerates surface Fe(II) active sites rather than relying on static-free Fe(II) adsorption. XPS and STEM further demonstrated that Cr(VI) was reduced to Cr(III) and uniformly co-precipitated with Fe(II/III)-oxalate complexes, effectively immobilizing chromium. The synergy between the protective semiconductor layer and the ligand-enhanced electron transfer endows nFeoxa with superior reactivity. This work provides a ligand-engineering strategy to design robust nFe0-based materials for sustainable remediation of metal oxyanion-contaminated water. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

15 pages, 5711 KB  
Article
Engineering Nonvolatile Polarization in 2D α-In2Se3/α-Ga2Se3 Ferroelectric Junctions
by Peipei Li, Delin Kong, Jin Yang, Shuyu Cui, Qi Chen, Yue Liu, Ziheng He, Feng Liu, Yingying Xu, Huiyun Wei, Xinhe Zheng and Mingzeng Peng
Nanomaterials 2025, 15(3), 163; https://doi.org/10.3390/nano15030163 - 22 Jan 2025
Cited by 1 | Viewed by 1666
Abstract
The advent of two-dimensional (2D) ferroelectrics offers a new paradigm for device miniaturization and multifunctionality. Recently, 2D α-In2Se3 and related III–VI compound ferroelectrics manifest room-temperature ferroelectricity and exhibit reversible spontaneous polarization even at the monolayer limit. Here, we employ first-principles [...] Read more.
The advent of two-dimensional (2D) ferroelectrics offers a new paradigm for device miniaturization and multifunctionality. Recently, 2D α-In2Se3 and related III–VI compound ferroelectrics manifest room-temperature ferroelectricity and exhibit reversible spontaneous polarization even at the monolayer limit. Here, we employ first-principles calculations to investigate group-III selenide van der Waals (vdW) heterojunctions built up by 2D α-In2Se3 and α-Ga2Se3 ferroelectric (FE) semiconductors, including structural stability, electrostatic potential, interfacial charge transfer, and electronic band structures. When the FE polarization directions of α-In2Se3 and α-Ga2Se3 are parallel, both the α-In2Se3/α-Ga2Se3 P↑↑ (UU) and α-In2Se3/α-Ga2Se3 P↓↓ (NN) configurations possess strong built-in electric fields and hence induce electron–hole separation, resulting in carrier depletion at the α-In2Se3/α-Ga2Se3 heterointerfaces. Conversely, when they are antiparallel, the α-In2Se3/α-Ga2Se3 P↓↑ (NU) and α-In2Se3/α-Ga2Se3 P↑↓ (UN) configurations demonstrate the switchable electron and hole accumulation at the 2D ferroelectric interfaces, respectively. The nonvolatile characteristic of ferroelectric polarization presents an innovative approach to achieving tunable n-type and p-type conductive channels for ferroelectric field-effect transistors (FeFETs). In addition, in-plane biaxial strain modulation has successfully modulated the band alignments of the α-In2Se3/α-Ga2Se3 ferroelectric heterostructures, inducing a type III–II–III transition in UU and NN, and a type I–II–I transition in UN and NU, respectively. Our findings highlight the great potential of 2D group-III selenides and ferroelectric vdW heterostructures to harness nonvolatile spontaneous polarization for next-generation electronics, nonvolatile optoelectronic memories, sensors, and neuromorphic computing. Full article
(This article belongs to the Special Issue Advanced 2D Materials for Emerging Application)
Show Figures

Figure 1

22 pages, 7074 KB  
Article
Characterization and Cytotoxic Assessment of Bis(2-hydroxy-3-carboxyphenyl)methane and Its Nickel(II) Complex
by Ayman H. Ahmed, Ibrahim O. Althobaiti, Ebtsam K. Alenezy, Yazeed M. Asiri, Sobhy Ghalab and Omar A. Hussein
Molecules 2024, 29(17), 4239; https://doi.org/10.3390/molecules29174239 - 6 Sep 2024
Cited by 1 | Viewed by 1460
Abstract
A condensation reaction of salicylic acid with formaldehyde in the presence of sulfuric acid led to the synthesization of the bis(2-hydroxy-3-carboxyphenyl)methane (BHCM) ligand, which was subsequently allowed to bind with nickel (II) ions. In light of the information obtained from the elemental analyses [...] Read more.
A condensation reaction of salicylic acid with formaldehyde in the presence of sulfuric acid led to the synthesization of the bis(2-hydroxy-3-carboxyphenyl)methane (BHCM) ligand, which was subsequently allowed to bind with nickel (II) ions. In light of the information obtained from the elemental analyses (C, H, and M), spectral (IR, MS, 1H-NMR, and UV–Vis) and thermal and magnetic measurements, the most likely structures of the ligand and complex have been identified. It has been suggested that the BHCM coordinates in a tetradentate manner with two Ni(II) ions to produce an octahedral binuclear complex. The SEM and TEM morphology of the compounds showed spherical shapes. An X-ray diffraction analysis indicated a considerable difference in the diffraction patterns between BHCM (crystalline) and Ni–BHCM (amorphous), and the Scherrer equation was used to calculate the crystallite size. Some optical characteristics were estimated from UV–Vis spectra. The ligand and its nickel(II) complex underlie the range of semiconductors. It was verified that for human lung (A-549) cancer, the BHCM compound displayed a significant barrier to the proliferation test in noncancerous cells (human lung fibroblasts, WI-38), which was also undertaken. To demonstrate the binding affinities of the chosen compounds (BHCM and Ni–BHCM) in the receptor protein’s active site [PDB ID: 5CAO], a molecular docking (MD) study was carried out. Full article
(This article belongs to the Special Issue Advances in Coordination Chemistry 2.0)
Show Figures

Figure 1

21 pages, 3867 KB  
Review
A Review of Deep-Red (650–700 nm)-Emitting Semiconductor Nanocrystals
by Geyu Jin, Fangze Liu, Jing Wei and Hongbo Li
Crystals 2024, 14(9), 788; https://doi.org/10.3390/cryst14090788 - 5 Sep 2024
Cited by 1 | Viewed by 2095
Abstract
Deep-red light has significant application value in various fields, including biomedicine, plant cultivation, and displays. The development of high-efficiency deep-red luminescent materials is therefore of great importance. Semiconductor nanocrystals have been extensively studied as novel luminescent materials due to their wavelength tunability, narrow [...] Read more.
Deep-red light has significant application value in various fields, including biomedicine, plant cultivation, and displays. The development of high-efficiency deep-red luminescent materials is therefore of great importance. Semiconductor nanocrystals have been extensively studied as novel luminescent materials due to their wavelength tunability, narrow emission linewidth, and high luminescence efficiency. However, the advancement of deep-red nanocrystals has lagged behind that of red, green, and blue nanocrystals, primarily due to material selection limitations. This review summarizes the recent progress in the synthesis of deep-red nanocrystals based on their material composition, including II-VI, III-V, I-III-VI, and perovskite nanocrystals. Full article
(This article belongs to the Special Issue Advances of Perovskite Solar Cells—2nd Edition)
Show Figures

Figure 1

27 pages, 10789 KB  
Review
Syntheses, Properties, and Applications of ZnS-Based Nanomaterials
by Amartya Chakrabarti and Emily Alessandri
Appl. Nano 2024, 5(3), 116-142; https://doi.org/10.3390/applnano5030010 - 26 Aug 2024
Cited by 18 | Viewed by 8343
Abstract
ZnS is a II-VI semiconductor with a wide bandgap. ZnS-based nanomaterials have been produced in a variety of morphologies with unique properties and characteristic features. An extensive collection of research activities is available on various synthetic methodologies to produce such a wide variety [...] Read more.
ZnS is a II-VI semiconductor with a wide bandgap. ZnS-based nanomaterials have been produced in a variety of morphologies with unique properties and characteristic features. An extensive collection of research activities is available on various synthetic methodologies to produce such a wide variety of ZnS-based nanomaterials. In this comprehensive review, we thoroughly covered all the different synthetic techniques employed by researchers across the globe to produce zero-dimensional, one-dimensional, two-dimensional, and three-dimensional ZnS-based nanomaterials. Depending on their morphologies and properties, ZnS-based nanomaterials have found many applications, including optoelectronics, sensors, catalysts, batteries, solar cells, and biomedical fields. The properties and applications of ZnS-based nanostructures are described, and the scope of the future direction is highlighted. Full article
(This article belongs to the Collection Review Papers for Applied Nano Science and Technology)
Show Figures

Figure 1

27 pages, 6533 KB  
Article
An Improved Cascaded Boost Converter with an Ultra-High Voltage Gain Suitable for Dielectric Quality Tests
by Hossein Gholizadeh, Reza Sharifi Shahrivar, Saeed Amini and Tohid Rahimi
Energies 2024, 17(15), 3861; https://doi.org/10.3390/en17153861 - 5 Aug 2024
Cited by 9 | Viewed by 2033
Abstract
Dielectric quality tests require a high AC voltage with a frequency range of 0.0001 Hz to 1000 Hz. However, providing a high AC voltage with such a frequency variety is challenging. Providing a high DC voltage and then applying such a voltage to [...] Read more.
Dielectric quality tests require a high AC voltage with a frequency range of 0.0001 Hz to 1000 Hz. However, providing a high AC voltage with such a frequency variety is challenging. Providing a high DC voltage and then applying such a voltage to an inverter to adjust the frequency can be an acceptable solution for such a challenge. Notably, a high DC voltage is required for DC tests. This study proposes an improved form of the cascaded boost converter, whose merits are as follows: (i) the high voltage gain providing low duty cycles is possible; (ii) the input current is continuous, which decreases the current ripple of the input filter capacitor; (iii) the current stress of the semiconductors is less than the input current, and most of them have a large difference with it; (iv) the voltage stress of the semiconductors is less than the output voltage with a large difference; (v) only one switch with a simple drive circuit is used; (vi) the common ground of the load and input source decreases the EMI noise; (vii) besides the high voltage gain, the voltage density of the converter based on the number of inductors, capacitors, switches, diodes, and whole components is greater than that of the recently proposed converters; (viii) only two stacked connections of the proposed topology can provide a 2.6 kV voltage for a higher DC voltage test of dielectrics. The functional details of the converter are extracted in ideal and continuous conduction (CCM) modes. Moreover, the converter’s voltage gain and density are compared with the recently proposed converters to show the superiority of the proposed converter. Finally, the experimental results are presented to validate the theoretical relations in a 140 W output power. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

24 pages, 8817 KB  
Article
“Core/Shell” Nanocomposites as Photocatalysts for the Degradation of the Water Pollutants Malachite Green and Rhodamine B
by Joana Zaharieva, Martin Tsvetkov, Milena Georgieva, Dimitar Tzankov and Maria Milanova
Int. J. Mol. Sci. 2024, 25(12), 6755; https://doi.org/10.3390/ijms25126755 - 19 Jun 2024
Cited by 3 | Viewed by 1670
Abstract
“Core/shell” composites are based on a ferrite core coated by two layers with different properties, one of them is an isolator, SiO2, and the other is a semiconductor, TiO2. These composites are attracting interest because of their structure, photocatalytic [...] Read more.
“Core/shell” composites are based on a ferrite core coated by two layers with different properties, one of them is an isolator, SiO2, and the other is a semiconductor, TiO2. These composites are attracting interest because of their structure, photocatalytic activity, and magnetic properties. Nanocomposites of the “core/shell” МFe2O4/SiO2/TiO2 (М = Zn(II), Co(II)) type are synthesized with a core of MFe2O4 produced by two different methods, namely the sol-gel method (SG) using propylene oxide as a gelling agent and the hydrothermal method (HT). SiO2 and TiO2 layer coating is performed by means of tetraethylorthosilicate, TEOS, Ti(IV) tetrabutoxide, and Ti(OBu)4, respectively. A combination of different experimental techniques is required to prove the structure and phase composition, such as XRD, UV-Vis, TEM with EDS, photoluminescence, and XPS. By Rietveld analysis of the XRD data unit cell parameters, the crystallite size and weight fraction of the polymorphs anatase and rutile of the shell TiO2 and of the ferrite core are determined. The magnetic properties of the samples, and their activity for the photodegradation of the synthetic industrial dyes Malachite Green and Rhodamine B are measured in model water solutions under UV light irradiation and simulated solar irradiation. The influence of the water matrix on the photocatalytic activity is determined using artificial seawater in addition to ultrapure water. The rate constants of the photocatalytic process are obtained along with the reaction mechanism, established using radical scavengers where the role of the radicals is elucidated. Full article
Show Figures

Figure 1

29 pages, 6987 KB  
Review
II–VI Semiconductor-Based Conductometric Gas Sensors: Is There a Future for These Sensors?
by Ghenadii Korotcenkov
Sensors 2024, 24(12), 3861; https://doi.org/10.3390/s24123861 - 14 Jun 2024
Cited by 6 | Viewed by 1979
Abstract
A review of the state of research in the development of conductometric gas sensors based on II–VI semiconductors is given. It was shown that II–VI compounds indeed have properties that are necessary for the development of highly efficient gas sensors. In this case, [...] Read more.
A review of the state of research in the development of conductometric gas sensors based on II–VI semiconductors is given. It was shown that II–VI compounds indeed have properties that are necessary for the development of highly efficient gas sensors. In this case, to achieve the required parameters, all approaches developed for metal oxides can be used. At the same time, during a detailed review, it was concluded that sensors based on II–VI compounds have no prospects for appearing on the gas sensor market. The main obstacle is the instability of the surface state, which leads to poor reproducibility of parameters and drift of sensor characteristics during operation. Full article
(This article belongs to the Special Issue Gas Sensors: Materials, Mechanism and Applications)
Show Figures

Figure 1

22 pages, 16123 KB  
Article
Franklinite-Zincochromite-Gahnite Solid Solutions for Cool Red Ceramic Pigments with Visible Light Photocatalysis
by Guillermo Monrós, José A. Badenes, Mario Llusar and Carolina Delgado
Ceramics 2024, 7(1), 342-363; https://doi.org/10.3390/ceramics7010022 - 1 Mar 2024
Cited by 2 | Viewed by 2539
Abstract
Franklinite-zincochromite-gahnite solid solutions were prepared using ceramic or coprecipitation methods, and their pigmenting capacity as cool ceramic pigments in different glazes (double and single firing frits and porcelain frit) was studied. XRD, UV–Vis–NIR diffuse reflectance, CIEL*a*b* colour analysis, band gap measurements, and the [...] Read more.
Franklinite-zincochromite-gahnite solid solutions were prepared using ceramic or coprecipitation methods, and their pigmenting capacity as cool ceramic pigments in different glazes (double and single firing frits and porcelain frit) was studied. XRD, UV–Vis–NIR diffuse reflectance, CIEL*a*b* colour analysis, band gap measurements, and the photocatalytic degradation of Orange II were carried out to characterise the samples. The following criteria for high red colouring capacity and high NIR reflectance at the minimum Cr amount were found to be the optimal compositions for an intense reddish cool pigment: Zn(Fe1.8Cr0.2), Zn(Al1.5Cr0.5) and Zn(Al1.3Cr0.5Fe0.2)O4. All the powders showed a direct semiconductor behaviour, with a band gap of approximately 2 eV, which fell in the visible range (620 nm); the visible light photocatalysis of Orange II was moderate, but franklinite-zincochromite Zn(Fe1.8Cr0.2) stood out compared with silver orthophosphate. Full article
(This article belongs to the Special Issue Advances in Ceramics, 2nd Edition)
Show Figures

Graphical abstract

21 pages, 3415 KB  
Article
Impact of Copper(II)-Imidazole Complex Modification on Polycrystalline TiO2: Insights into Formation, Characterization, and Photocatalytic Performance
by Ganeshraja Ayyakannu Sundaram, Rajkumar Kanniah, Krishnamoorthy Anbalagan, Kaviyarasan Kulandaivelu and Héctor Valdés
Catalysts 2024, 14(3), 169; https://doi.org/10.3390/catal14030169 - 26 Feb 2024
Cited by 8 | Viewed by 2510
Abstract
Micrometer-sized polycrystalline anatase particles are widely used in materials and life sciences, serving as essential components in photocatalytic materials. The ability to tailor their composition, shape, morphology, and functionality holds significant importance. In this study, we identified and examined the non-destructive route of [...] Read more.
Micrometer-sized polycrystalline anatase particles are widely used in materials and life sciences, serving as essential components in photocatalytic materials. The ability to tailor their composition, shape, morphology, and functionality holds significant importance. In this study, we identified and examined the non-destructive route of Copper(II) implantation at the surface of polycrystalline TiO2. The [Cu(en)(Im)2]2+ complex ion demonstrated a remarkable affinity to concentrate and bind with the semiconductor’s surface, such as anatase, forming a surface-bound adduct: ≡TiO2 + [Cu(en)(Im)2]2+ → ≡TiO2//[Cu(en)(Im)2]2+. The misalignment of Fermi levels in TiO2//[Cu(en)(Im)2]2+ triggered electron transfer, leading to the reduction of the metal center, releasing Copper(I) in the process. Although less efficient, the released Copper(I) encountered a highly favorable environment, resulting in the formation of the surface complex TiO2:CuIIsc. The implanted Cu(I) was converted back into Cu(II) due to re-oxidation by dissolved oxygen. The penetration of the metal ion into the surface level of the polycrystalline TiO2 lattice was influenced by surface residual forces, making surface grafting of the Cu(II) ion inevitable due to surface chemistry. FTIR, UV–vis, Raman, XRD, EPR, and surface morphological (SEM, EDAX, and HRTEM) analyses identified the typical surface grafting of the Cu(II) cluster complex on the anatase surface matrix. Moreover, the XRD results also showed the formation of an impure phase. The TiO2 polycrystalline materials, modified by the incorporation of copper complexes, demonstrated an enhanced visible-light photocatalytic capability in the degradation of Rhodamine B dye in aqueous solutions. This modification significantly improved the efficiency of the photocatalytic process, expanding the applicability of TiO2 to visible light wavelengths. These studies open up the possibility of using copper complexes grafted on metal oxide surfaces for visible-light active photocatalytic applications. Moreover, this investigation not only showcases the improved visible-light photocatalytic behavior of copper-modified TiO2 polycrystalline materials, but also underscores the broader implications of this improvement in the advancement of sustainable and efficient water treatment technologies. Full article
Show Figures

Graphical abstract

17 pages, 3046 KB  
Article
Mammalian Cell Cytotoxicity, Antibacterial Activity and the Properties of Methylenebis(Hydroxybenzoic Acid) and Its Related Zinc(II) Complex
by Ayman H. Ahmed, Ibrahim O. Althobaiti, Marwah Aljohani, Ehab S. Gad, Yazeed M. Asiri and Omar A. Hussein
Crystals 2024, 14(1), 88; https://doi.org/10.3390/cryst14010088 - 17 Jan 2024
Cited by 1 | Viewed by 2482
Abstract
Formaldehyde, sulfuric acid and salicylic acid were combined to create a 3,3′-methylenebis(2-hydroxybenzoic acid) (MHB) ligand, which was subsequently permitted to bind with zinc(II) ions. The ligand and its zinc(II) complex (Zn–MHB) have been described by a combination of elemental analyses, spectral analyses (UV–Vis, [...] Read more.
Formaldehyde, sulfuric acid and salicylic acid were combined to create a 3,3′-methylenebis(2-hydroxybenzoic acid) (MHB) ligand, which was subsequently permitted to bind with zinc(II) ions. The ligand and its zinc(II) complex (Zn–MHB) have been described by a combination of elemental analyses, spectral analyses (UV–Vis, IR, MS and NMR), XRD, TEM, as well as TGA measurement. The ligand has been suggested to coordinate to the zinc center in a tetradentate manner forming the binuclear tetrahedral complex. An X-ray analysis indicated a considerable difference between MHB (crystalline) and Zn–MHB (amorphous). The UV–Vis spectra were used to determine the optical properties such as bandgap, refractive index, optical conductivity and penetration depth. The possibility of employing the samples for optoelectronic applications was indicated from the band gap values which underlie the range of semiconductors. TEM revealed the spherical shapes and mutation of ligand particles into the nano-scale by complexation. The antimicrobial potential of the MHB towards Gram-positive and Gram-negative bacterial growths has been investigated. The results suggested that it would be possible to employ MHB to prevent bacterial development, particularly that of salmonella typhimurium. The cytotoxicity of the MHB was assessed against two types of mammalian cells: VERO (the kidney of an African green monkey) and HFB4 (human skin melanocytes). Lower sensitivity was observed in VERO cells. Full article
(This article belongs to the Special Issue Coordination Complexes: Synthesis, Characterization and Application)
Show Figures

Figure 1

Back to TopTop