Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = Hu invariant moments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3979 KiB  
Article
Generation and Classification of Novel Segmented Control Charts (SCC) Based on Hu’s Invariant Moments and the K-Means Algorithm
by Roberto Baeza-Serrato
Appl. Sci. 2025, 15(15), 8550; https://doi.org/10.3390/app15158550 (registering DOI) - 1 Aug 2025
Viewed by 177
Abstract
Control charts (CCs) are one of the most important techniques in statistical process control (SPC) used to monitor the behavior of critical variables. SPC is based on the averages of the samples taken. In this way, not every measurement is observed, and errors [...] Read more.
Control charts (CCs) are one of the most important techniques in statistical process control (SPC) used to monitor the behavior of critical variables. SPC is based on the averages of the samples taken. In this way, not every measurement is observed, and errors in measurements or out-of-control behaviors that are not shown graphically can be hidden. This research proposes a novel segmented control chart (SCC) that considers each measurement of the samples, expressed in matrix form. The vision system technique is used to segment measurements by shading and segmenting into binary values based on the control limits of SPC. Once the matrix is segmented, the seven main features of the matrix are extracted using the translation-, scale-, and rotation-invariant Hu moments of the segmented matrices. Finally, a grouping is made to classify the samples in clear and simple language as excellent, good, or regular using the k-means algorithm. The results visually display the total pattern behavior of the samples and their interpretation when they are classified intelligently. The proposal can be replicated in any production sector and strengthen the control of the sampling process. Full article
Show Figures

Figure 1

19 pages, 5377 KiB  
Article
Research on the Shape Classification Method of Rural Homesteads Based on Parcel Scale—Taking Yangdun Village as an Example
by Jie Zhang, Beilei Fan, Hao Li, Yunfei Liu, Ren Wei and Shengping Liu
Remote Sens. 2023, 15(19), 4763; https://doi.org/10.3390/rs15194763 - 28 Sep 2023
Cited by 2 | Viewed by 1568
Abstract
The basic information survey on homesteads requires understanding the shape of homesteads, and the shape of the homesteads based on the spatial location can reflect information such as their outline and regularity, but the current shape classification of rural homesteads at the parcel [...] Read more.
The basic information survey on homesteads requires understanding the shape of homesteads, and the shape of the homesteads based on the spatial location can reflect information such as their outline and regularity, but the current shape classification of rural homesteads at the parcel scale lacks analytical methods. In this study, we endeavor to explore a classification model suitable for characterizing homestead shapes at the parcel scale by assessing the impact of various research methods. Additionally, we aim to uncover the evolutionary patterns in homestead shapes. The study focuses on Yangdun Village, located in Deqing County, Zhejiang Province, as the research area. The data utilized comprise Google Earth satellite imagery and a vector layer representing homesteads at the parcel scale. To classify the shapes of homesteads and compare classification accuracy, we employ a combination of methods, including the fast Fourier transform (FFT), Hu invariant moments (HIM), the Boyce and Clark shape index (BCSI), and the AlexNet model. Our findings reveal the following: (1) The random forest method, when coupled with FFT, demonstrates the highest effectiveness in identifying the shape categories of homesteads, achieving an average accuracy rate of 88.6%. (2) Combining multiple methods does not enhance recognition accuracy; for instance, the accuracy of the FFT + HIM combination was 88.4%. (3) The Boyce and Clark shape index (BCSI) proves unsuitable for classifying homestead shapes, yielding an average accuracy rate of only 58%. Furthermore, there is no precise numerical correlation between the homestead category and the shape index. (4) It is noteworthy that over half of the homesteads in Yangdun Village exhibit rectangular-like shapes. Following the “homesteads reform”, square-like homesteads have experienced significant vacating, resulting in a mixed arrangement of homesteads overall. The research findings can serve as a methodological reference for the investigation of rural homestead shapes. Proficiency in homestead shape classification holds significant importance in the realms of information investigation, regular management, and layout optimization of rural land. Full article
Show Figures

Graphical abstract

33 pages, 125054 KiB  
Article
Seismic Image Identification and Detection Based on Tchebichef Moment Invariant
by Andong Lu and Barmak Honarvar Shakibaei Asli
Electronics 2023, 12(17), 3692; https://doi.org/10.3390/electronics12173692 - 31 Aug 2023
Cited by 6 | Viewed by 2930
Abstract
The research focuses on the analysis of seismic data, specifically targeting the detection, edge segmentation, and classification of seismic images. These processes are fundamental in image processing and are crucial in understanding the stratigraphic structure and identifying oil and natural gas resources. However, [...] Read more.
The research focuses on the analysis of seismic data, specifically targeting the detection, edge segmentation, and classification of seismic images. These processes are fundamental in image processing and are crucial in understanding the stratigraphic structure and identifying oil and natural gas resources. However, there is a lack of sufficient resources in the field of seismic image detection, and interpreting 2D seismic image slices based on 3D seismic data sets can be challenging. In this research, image segmentation involves image preprocessing and the use of a U-net network. Preprocessing techniques, such as Gaussian filter and anisotropic diffusion, are employed to reduce blur and noise in seismic images. The U-net network, based on the Canny descriptor is used for segmentation. For image classification, the ResNet-50 and Inception-v3 models are applied to classify different types of seismic images. In image detection, Tchebichef invariants are computed using the Tchebichef polynomials’ recurrence relation. These invariants are then used in an optimized multi-class SVM network for detecting and classifying various types of seismic images. The promising results of the SVM model based on Tchebichef invariants suggest its potential to replace Hu moment invariants (HMIs) and Zernike moment invariants (ZMIs) for seismic image detection. This approach offers a more efficient and dependable solution for seismic image analysis in the future. Full article
Show Figures

Figure 1

15 pages, 6543 KiB  
Article
Intelligent Identification Method of Geographic Origin for Chinese Wolfberries Based on Color Space Transformation and Texture Morphological Features
by Jiawang He, Tianshu Wang, Hui Yan, Sheng Guo, Kongfa Hu, Xichen Yang, Chenlu Ma and Jinao Duan
Foods 2023, 12(13), 2541; https://doi.org/10.3390/foods12132541 - 29 Jun 2023
Cited by 11 | Viewed by 1736
Abstract
Geographic origins play a vital role in traditional Chinese medicinal materials. Using the geo-authentic crude drug can improve the curative effect. The main producing areas of Chinese wolfberry are Ningxia, Gansu, Qinghai, and so on. The geographic origin of Chinese wolfberry can affect [...] Read more.
Geographic origins play a vital role in traditional Chinese medicinal materials. Using the geo-authentic crude drug can improve the curative effect. The main producing areas of Chinese wolfberry are Ningxia, Gansu, Qinghai, and so on. The geographic origin of Chinese wolfberry can affect its texture, shape, color, smell, nutrients, etc. However, the traditional method for identifying the geographic origin of Chinese wolfberries is still based on human eyes. To efficiently identify Chinese wolfberries from different origins, this paper presents an intelligent identification method for Chinese wolfberries based on color space transformation and texture morphological features. The first step is to prepare the Chinese wolfberry samples and collect the image data. Then the images are preprocessed, and the texture and morphology features of single wolfberry images are extracted. Finally, the random forest algorithm is employed to establish a model of the geographic origin of Chinese wolfberries. The proposed method can accurately predict the origin information of a single wolfberry image and has the advantages of low cost, fast recognition speed, high recognition accuracy, and no damage to the sample. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

24 pages, 5590 KiB  
Article
Micro-Scale Surface Recognition via Microscope System Based on Hu Moments Pattern and Micro Laser Line Projection
by J. Apolinar Muñoz Rodríguez
Metals 2023, 13(5), 889; https://doi.org/10.3390/met13050889 - 4 May 2023
Cited by 1 | Viewed by 1649
Abstract
The surface engineering of metals develops high technology to detect microscale convex, concave and flat surface patterns. It is because the manufacturing industry requires technologies to recognize microscale surface features. Thus, it is necessary to develop microscopic vision technology to recognize microscale concave, [...] Read more.
The surface engineering of metals develops high technology to detect microscale convex, concave and flat surface patterns. It is because the manufacturing industry requires technologies to recognize microscale surface features. Thus, it is necessary to develop microscopic vision technology to recognize microscale concave, convex and flat surfaces. This study addresses microscale concave, convex and flat surface recognition via Hu moments’ patterns based on micro-laser line contouring. In this recognition, a Hu moments’ pattern is generated from a Bezier model to characterize the surface recovered through microscopic scanning. The Bezier model is accomplished by employing a genetic algorithm and surface coordinates. Thus, the flat, convex and concave surfaces are recognized based on the Hu moments’ pattern of each one. The microscope system projects a 40 μm laser line on the object and a camera acquires the object’s contour reflection to retrieve topographic coordinates. The proposed technique enhances the microscale convex, concave, flat, and surface recognition, which is performed via optical microscope systems. The contribution of microscopic shape recognition based on the Hu moments’ pattern and microscopic laser line is elucidated by a discussion based on the microscopic shape recognition performed through the optical microscopic image processing. Full article
(This article belongs to the Special Issue Trends in Technology of Surface Engineering of Metals and Alloys)
Show Figures

Figure 1

16 pages, 7118 KiB  
Article
Typical Fault Modeling and Vibration Characteristics of the Turbocharger Rotor System
by Jiahao Wang, Huabing Wen, Haiyu Qian, Junhua Guo, Junchao Zhu, Jiwei Dong and Hua Shen
Machines 2023, 11(2), 311; https://doi.org/10.3390/machines11020311 - 20 Feb 2023
Cited by 7 | Viewed by 2159
Abstract
To study the typical failure mechanism (rotor unbalance, rotor friction, and rotor crack) and vibration characteristics of the turbocharger rotor system, a rotor system dynamics simulation model was established by an improved four-node aggregate parameter method. The geometric and physical characteristics of the [...] Read more.
To study the typical failure mechanism (rotor unbalance, rotor friction, and rotor crack) and vibration characteristics of the turbocharger rotor system, a rotor system dynamics simulation model was established by an improved four-node aggregate parameter method. The geometric and physical characteristics of the rotor system under three failure states and its dynamics under operation were analyzed. Thus, a typical failure dynamics simulation model of the rotor system was established. On this basis, the output failure simulation signal was extracted using the Hu invariant moment feature extraction method to analyze the system vibration characteristics under each typical failure state of the rotor system. The results show that the model in this paper can effectively reduce the computational volume and computational time, and the errors of numerical simulation were less than 3%. When an unbalance fault occurred in the rotor system, the shaft trajectory was “0” shaped and the response spectrum was dominated by 1X. When the rotor system was frictional, the shaft trajectory was a slightly concave “8” shape, and the response spectrum was dominated by 0.5X. When the rotor system was cracked, the axial trajectory was a “vortex”, and the response spectrum was dominated by 0.5X. Thus, the study of typical failure mechanism and vibration characteristics of a turbocharger rotor system by simulation calculation is effective and has good research prospects, providing an important technical reference for dynamic analysis and fault diagnosis of the rotor system. Full article
(This article belongs to the Special Issue Rotor Dynamics and Rotating Machinery)
Show Figures

Figure 1

18 pages, 1843 KiB  
Article
Computer-Aided Ankle Ligament Injury Diagnosis from Magnetic Resonance Images Using Machine Learning Techniques
by Rodrigo S. Astolfi, Daniel S. da Silva, Ingrid S. Guedes, Caio S. Nascimento, Robertas Damaševičius, Senthil K. Jagatheesaperumal, Victor Hugo C. de Albuquerque and José Alberto D. Leite
Sensors 2023, 23(3), 1565; https://doi.org/10.3390/s23031565 - 1 Feb 2023
Cited by 10 | Viewed by 4046
Abstract
Ankle injuries caused by the Anterior Talofibular Ligament (ATFL) are the most common type of injury. Thus, finding new ways to analyze these injuries through novel technologies is critical for assisting medical diagnosis and, as a result, reducing the subjectivity of this process. [...] Read more.
Ankle injuries caused by the Anterior Talofibular Ligament (ATFL) are the most common type of injury. Thus, finding new ways to analyze these injuries through novel technologies is critical for assisting medical diagnosis and, as a result, reducing the subjectivity of this process. As a result, the purpose of this study is to compare the ability of specialists to diagnose lateral tibial tuberosity advancement (LTTA) injury using computer vision analysis on magnetic resonance imaging (MRI). The experiments were carried out on a database obtained from the Vue PACS–Carestream software, which contained 132 images of ATFL and normal (healthy) ankles. Because there were only a few images, image augmentation techniques was used to increase the number of images in the database. Following that, various feature extraction algorithms (GLCM, LBP, and HU invariant moments) and classifiers such as Multi-Layer Perceptron (MLP), Support Vector Machine (SVM), k-Nearest Neighbors (kNN), and Random Forest (RF) were used. Based on the results from this analysis, for cases that lack clear morphologies, the method delivers a hit rate of 85.03% with an increase of 22% over the human expert-based analysis. Full article
(This article belongs to the Special Issue Innovations in Biomedical Imaging)
Show Figures

Figure 1

20 pages, 43237 KiB  
Article
Fusion of Moment Invariant Method and Deep Learning Algorithm for COVID-19 Classification
by Ervin Gubin Moung, Chong Joon Hou, Maisarah Mohd Sufian, Mohd Hanafi Ahmad Hijazi, Jamal Ahmad Dargham and Sigeru Omatu
Big Data Cogn. Comput. 2021, 5(4), 74; https://doi.org/10.3390/bdcc5040074 - 8 Dec 2021
Cited by 17 | Viewed by 5306
Abstract
The COVID-19 pandemic has resulted in a global health crisis. The rapid spread of the virus has led to the infection of a significant population and millions of deaths worldwide. Therefore, the world is in urgent need of a fast and accurate COVID-19 [...] Read more.
The COVID-19 pandemic has resulted in a global health crisis. The rapid spread of the virus has led to the infection of a significant population and millions of deaths worldwide. Therefore, the world is in urgent need of a fast and accurate COVID-19 screening. Numerous researchers have performed exceptionally well to design pioneering deep learning (DL) models for the automatic screening of COVID-19 based on computerised tomography (CT) scans; however, there is still a concern regarding the performance stability affected by tiny perturbations and structural changes in CT images. This paper proposes a fusion of a moment invariant (MI) method and a DL algorithm for feature extraction to address the instabilities in the existing COVID-19 classification models. The proposed method incorporates the MI-based features into the DL models using the cascade fusion method. It was found that the fusion of MI features with DL features has the potential to improve the sensitivity and accuracy of the COVID-19 classification. Based on the evaluation using the SARS-CoV-2 dataset, the fusion of VGG16 and Hu moments shows the best result with 90% sensitivity and 93% accuracy. Full article
Show Figures

Figure 1

16 pages, 22156 KiB  
Article
FGFF Descriptor and Modified Hu Moment-Based Hand Gesture Recognition
by Beiwei Zhang, Yudong Zhang, Jinliang Liu and Bin Wang
Sensors 2021, 21(19), 6525; https://doi.org/10.3390/s21196525 - 29 Sep 2021
Cited by 5 | Viewed by 5338
Abstract
Gesture recognition has been studied for decades and still remains an open problem. One important reason is that the features representing those gestures are not sufficient, which may lead to poor performance and weak robustness. Therefore, this work aims at a comprehensive and [...] Read more.
Gesture recognition has been studied for decades and still remains an open problem. One important reason is that the features representing those gestures are not sufficient, which may lead to poor performance and weak robustness. Therefore, this work aims at a comprehensive and discriminative feature for hand gesture recognition. Here, a distinctive Fingertip Gradient orientation with Finger Fourier (FGFF) descriptor and modified Hu moments are suggested on the platform of a Kinect sensor. Firstly, two algorithms are designed to extract the fingertip-emphasized features, including palm center, fingertips, and their gradient orientations, followed by the finger-emphasized Fourier descriptor to construct the FGFF descriptors. Then, the modified Hu moment invariants with much lower exponents are discussed to encode contour-emphasized structure in the hand region. Finally, a weighted AdaBoost classifier is built based on finger-earth mover’s distance and SVM models to realize the hand gesture recognition. Extensive experiments on a ten-gesture dataset were carried out and compared the proposed algorithm with three benchmark methods to validate its performance. Encouraging results were obtained considering recognition accuracy and efficiency. Full article
(This article belongs to the Topic Artificial Intelligence in Sensors)
Show Figures

Figure 1

18 pages, 4780 KiB  
Article
Weed and Corn Seedling Detection in Field Based on Multi Feature Fusion and Support Vector Machine
by Yajun Chen, Zhangnan Wu, Bo Zhao, Caixia Fan and Shuwei Shi
Sensors 2021, 21(1), 212; https://doi.org/10.3390/s21010212 - 31 Dec 2020
Cited by 67 | Viewed by 6429
Abstract
Detection of weeds and crops is the key step for precision spraying using the spraying herbicide robot and precise fertilization for the agriculture machine in the field. On the basis of k-mean clustering image segmentation using color information and connected region analysis, a [...] Read more.
Detection of weeds and crops is the key step for precision spraying using the spraying herbicide robot and precise fertilization for the agriculture machine in the field. On the basis of k-mean clustering image segmentation using color information and connected region analysis, a method combining multi feature fusion and support vector machine (SVM) was proposed to identify and detect the position of corn seedlings and weeds, to reduce the harm of weeds on corn growth, and to achieve accurate fertilization, thereby realizing precise weeding or fertilizing. First, the image dataset for weed and corn seedling classification in the corn seedling stage was established. Second, many different features of corn seedlings and weeds were extracted, and dimensionality was reduced by principal component analysis, including the histogram of oriented gradient feature, rotation invariant local binary pattern (LBP) feature, Hu invariant moment feature, Gabor feature, gray level co-occurrence matrix, and gray level-gradient co-occurrence matrix. Then, the classifier training based on SVM was conducted to obtain the recognition model for corn seedlings and weeds. The comprehensive recognition performance of single feature or different fusion strategies for six features is compared and analyzed, and the optimal feature fusion strategy is obtained. Finally, by utilizing the actual corn seedling field images, the proposed weed and corn seedling detection method effect was tested. LAB color space and K-means clustering were used to achieve image segmentation. Connected component analysis was adopted to remove small objects. The previously trained recognition model was utilized to identify and label each connected region to identify and detect weeds and corn seedlings. The experimental results showed that the fusion feature combination of rotation invariant LBP feature and gray level-gradient co-occurrence matrix based on SVM classifier obtained the highest classification accuracy and accurately detected all kinds of weeds and corn seedlings. It provided information on weed and crop positions to the spraying herbicide robot for accurate spraying or to the precise fertilization machine for accurate fertilizing. Full article
(This article belongs to the Special Issue Sensing Technologies for Agricultural Automation and Robotics)
Show Figures

Figure 1

10 pages, 2383 KiB  
Article
Feature Selection of Non-Dermoscopic Skin Lesion Images for Nevus and Melanoma Classification
by Felicia Anisoara Damian, Simona Moldovanu, Nilanjan Dey, Amira S. Ashour and Luminita Moraru
Computation 2020, 8(2), 41; https://doi.org/10.3390/computation8020041 - 30 Apr 2020
Cited by 19 | Viewed by 5350
Abstract
(1) Background: In this research, we aimed to identify and validate a set of relevant features to distinguish between benign nevi and melanoma lesions. (2) Methods: Two datasets with 70 melanomas and 100 nevi were investigated. The first one contained raw images. The [...] Read more.
(1) Background: In this research, we aimed to identify and validate a set of relevant features to distinguish between benign nevi and melanoma lesions. (2) Methods: Two datasets with 70 melanomas and 100 nevi were investigated. The first one contained raw images. The second dataset contained images preprocessed for noise removal and uneven illumination reduction. Further, the images belonging to both datasets were segmented, followed by extracting features considered in terms of form/shape and color such as asymmetry, eccentricity, circularity, asymmetry of color distribution, quadrant asymmetry, fast Fourier transform (FFT) normalization amplitude, and 6th and 7th Hu’s moments. The FFT normalization amplitude is an atypical feature that is computed as a Fourier transform descriptor and focuses on geometric signatures of skin lesions using the frequency domain information. The receiver operating characteristic (ROC) curve and area under the curve (AUC) were employed to ascertain the relevance of the selected features and their capability to differentiate between nevi and melanoma. (3) Results: The ROC curves and AUC were employed for all experiments and selected features. A comparison in terms of the accuracy and AUC was performed, and an evaluation of the performance of the analyzed features was carried out. (4) Conclusions: The asymmetry index and eccentricity, together with F6 Hu’s invariant moment, were fairly competent in providing a good separation between malignant melanoma and benign lesions. Also, the FFT normalization amplitude feature should be exploited due to showing potential in classification. Full article
Show Figures

Figure 1

15 pages, 4519 KiB  
Article
A Novel Approach to Component Assembly Inspection Based on Mask R-CNN and Support Vector Machines
by Haisong Huang, Zhongyu Wei and Liguo Yao
Information 2019, 10(9), 282; https://doi.org/10.3390/info10090282 - 11 Sep 2019
Cited by 24 | Viewed by 4112
Abstract
Assembly is a very important manufacturing process in the age of Industry 4.0. Aimed at the problems of part identification and assembly inspection in industrial production, this paper proposes a method of assembly inspection based on machine vision and a deep neural network. [...] Read more.
Assembly is a very important manufacturing process in the age of Industry 4.0. Aimed at the problems of part identification and assembly inspection in industrial production, this paper proposes a method of assembly inspection based on machine vision and a deep neural network. First, the image acquisition platform is built to collect the part and assembly images. We use the Mask R-CNN model to identify and segment the shape from each part image, and to obtain the part category and position coordinates in the image. Then, according to the image segmentation results, the area, perimeter, circularity, and Hu invariant moment of the contour are extracted to form the feature vector. Finally, the SVM classification model is constructed to identify the assembly defects, with a classification accuracy rate of over 86.5%. The accuracy of the method is verified by constructing an experimental platform. The results show that the method effectively completes the identification of missing and misaligned parts in the assembly, and has good robustness. Full article
(This article belongs to the Special Issue IoT Applications and Industry 4.0)
Show Figures

Figure 1

19 pages, 1961 KiB  
Article
A Fire Detection Algorithm Based on Tchebichef Moment Invariants and PSO-SVM
by Yongming Bian, Meng Yang, Xuying Fan and Yuchao Liu
Algorithms 2018, 11(6), 79; https://doi.org/10.3390/a11060079 - 25 May 2018
Cited by 17 | Viewed by 5461
Abstract
Automatic fire detection, which can detect and raise the alarm for fire early, is expected to help reduce the loss of life and property as much as possible. Due to its advantages over traditional methods, image processing technology has been applied gradually in [...] Read more.
Automatic fire detection, which can detect and raise the alarm for fire early, is expected to help reduce the loss of life and property as much as possible. Due to its advantages over traditional methods, image processing technology has been applied gradually in fire detection. In this paper, a novel algorithm is proposed to achieve fire image detection, combined with Tchebichef (sometimes referred to as Chebyshev) moment invariants (TMIs) and particle swarm optimization-support vector machine (PSO-SVM). According to the correlation between geometric moments and Tchebichef moments, the translation, rotation, and scaling (TRS) invariants of Tchebichef moments are obtained first. Then, the TMIs of candidate images are calculated to construct feature vectors. To gain the best detection performance, a PSO-SVM model is proposed, where the kernel parameter and penalty factor of support vector machine (SVM) are optimized by particle swarm optimization (PSO). Then, the PSO-SVM model is utilized to identify the fire images. Compared with algorithms based on Hu moment invariants (HMIs) and Zernike moment invariants (ZMIs), the experimental results show that the proposed algorithm can improve the detection accuracy, achieving the highest detection rate of 98.18%. Moreover, it still exhibits the best performance even if the size of the training sample set is small and the images are transformed by TRS. Full article
Show Figures

Figure 1

12 pages, 1979 KiB  
Article
A Comparative Study on Weighted Central Moment and Its Application in 2D Shape Retrieval
by Xin Shu, Qianni Zhang, Jinlong Shi and Yunsong Qi
Information 2016, 7(1), 10; https://doi.org/10.3390/info7010010 - 1 Mar 2016
Cited by 6 | Viewed by 4787
Abstract
Moment invariants have been extensively studied and widely used in object recognition. The pioneering investigation of moment invariants in pattern recognition was due to Hu, where a set of moment invariants for similarity transformation were developed using the theory of algebraic invariants. This [...] Read more.
Moment invariants have been extensively studied and widely used in object recognition. The pioneering investigation of moment invariants in pattern recognition was due to Hu, where a set of moment invariants for similarity transformation were developed using the theory of algebraic invariants. This paper details a comparative analysis on several modifications of the original Hu moment invariants which are used to describe and retrieve two-dimensional (2D) shapes with a single closed contour. The main contribution of this paper is that we propose several different weighting functions to calculate the central moment according to human visual processing. The comparative results are detailed through experimental analysis. The results suggest that the moment invariants improved by weighting functions can get a better retrieval performance than the original one does. Full article
Show Figures

Figure 1

21 pages, 1403 KiB  
Article
A Novel Approach for Weed Type Classification Based on Shape Descriptors and a Fuzzy Decision-Making Method
by Pedro Javier Herrera, José Dorado and Ángela Ribeiro
Sensors 2014, 14(8), 15304-15324; https://doi.org/10.3390/s140815304 - 19 Aug 2014
Cited by 79 | Viewed by 9044
Abstract
An important objective in weed management is the discrimination between grasses (monocots) and broad-leaved weeds (dicots), because these two weed groups can be appropriately controlled by specific herbicides. In fact, efficiency is higher if selective treatment is performed for each type of infestation [...] Read more.
An important objective in weed management is the discrimination between grasses (monocots) and broad-leaved weeds (dicots), because these two weed groups can be appropriately controlled by specific herbicides. In fact, efficiency is higher if selective treatment is performed for each type of infestation instead of using a broadcast herbicide on the whole surface. This work proposes a strategy where weeds are characterised by a set of shape descriptors (the seven Hu moments and six geometric shape descriptors). Weeds appear in outdoor field images which display real situations obtained from a RGB camera. Thus, images present a mixture of both weed species under varying conditions of lighting. In the presented approach, four decision-making methods were adapted to use the best shape descriptors as attributes and a choice was taken. This proposal establishes a novel methodology with a high success rate in weed species discrimination. Full article
(This article belongs to the Special Issue Agriculture and Forestry: Sensors, Technologies and Procedures)
Show Figures

Back to TopTop