Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (143)

Search Parameters:
Keywords = Helmholtz energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
58 pages, 10593 KiB  
Article
Statistical Physics of Fissure Swarms and Dike Swarms
by Agust Gudmundsson
Geosciences 2025, 15(8), 301; https://doi.org/10.3390/geosciences15080301 - 4 Aug 2025
Abstract
Fissure swarms and dike swarms in Iceland constitute the main parts of volcanic systems that are 40–150 km long, 5–20 km wide, extend to depths of 10–20 km, and contain 2 × 1014 outcrop-scale (≥0.1 m) and 1022–23 down to grain-scale [...] Read more.
Fissure swarms and dike swarms in Iceland constitute the main parts of volcanic systems that are 40–150 km long, 5–20 km wide, extend to depths of 10–20 km, and contain 2 × 1014 outcrop-scale (≥0.1 m) and 1022–23 down to grain-scale (≥1 mm) fractures, suggesting that statistical physics is an appropriate method of analysis. Length-size distributions of 565 outcrop-scale Holocene fissures (tension fractures and normal faults) and 1041 Neogene dikes show good to excellent fits with negative power laws and exponential laws. Here, the Helmholtz free energy is used to represent the energy supplied to the swarms and to derive the Gibbs–Shannon entropy formula. The calculated entropies of 12 sets and subsets of fissures and 3 sets and subsets of dikes all show strong positive correlations with sets/subsets length ranges and scaling exponents. Statistical physics considerations suggest that, at a given time, the probability of the overall state of stress in a crustal segment being heterogeneous is much greater than the state of stress being homogeneous and favourable to the propagation of a fissure or a dike. In a heterogeneous stress field, most fissures/dikes become arrested after a short propagation—which is a formal explanation of the observed statistical size-length distributions. As the size of the stress-homogenised rock volume increases larger fissures/dikes can form, increasing the length range of the distribution (and its entropy) which may, potentially, transform from an exponential distribution into a power-law distribution. Full article
Show Figures

Figure 1

28 pages, 3506 KiB  
Review
A Review of Electromagnetic Wind Energy Harvesters Based on Flow-Induced Vibrations
by Yidan Zhang, Shen Li, Weilong Wang, Pengfei Zen, Chunlong Li, Yizhou Ye and Xuefeng He
Energies 2025, 18(14), 3835; https://doi.org/10.3390/en18143835 - 18 Jul 2025
Viewed by 245
Abstract
The urgent demand of wireless sensor nodes for long-life and maintenance-free miniature electrical sources with output power ranging from microwatts to milliwatts has accelerated the development of energy harvesting technologies. For the abundant and renewable nature of wind in environments, flow-induced vibration (FIV)-based [...] Read more.
The urgent demand of wireless sensor nodes for long-life and maintenance-free miniature electrical sources with output power ranging from microwatts to milliwatts has accelerated the development of energy harvesting technologies. For the abundant and renewable nature of wind in environments, flow-induced vibration (FIV)-based wind energy harvesting has emerged as a promising approach. Electromagnetic FIV wind energy harvesters (WEHs) show great potential for realistic applications due to their excellent durability and stability. However, electromagnetic WEHs remain less studied than piezoelectric WEHs, with few dedicated review articles available. This review analyzes the working principle, device structure, and performance characteristics of electromagnetic WEHs based on vortex-induced vibration, galloping, flutter, wake galloping vibration, and Helmholtz resonator. The methods to improve the output power, broaden the operational wind speed range, broaden the operational wind direction range, and enhance the durability are then discussed, providing some suggestions for the development of high-performance electromagnetic FIV WEHs. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

14 pages, 9327 KiB  
Article
DFT Prediction of Structural and Physical Properties of Cr3AlC2 Under Pressure
by Jianhui Yang, Shenghai Fan, Haijun Hou and Qiang Fan
Nanomaterials 2025, 15(14), 1082; https://doi.org/10.3390/nano15141082 - 11 Jul 2025
Viewed by 247
Abstract
This work explores the physical properties of the MAX-phase material Cr3AlC2 through the application of density functional theory (DFT). The refined lattice parameters were determined through the minimization of the total energy. In order to explore the electronic properties and [...] Read more.
This work explores the physical properties of the MAX-phase material Cr3AlC2 through the application of density functional theory (DFT). The refined lattice parameters were determined through the minimization of the total energy. In order to explore the electronic properties and bonding features, we carried out computations on the band structure and charge density distribution. The calculated elastic constants (Cij) validated the mechanical stability of Cr3AlC2. To assess the material’s ductility or brittleness, we calculated Pugh’s ratio, Poisson’s ratio, and Cauchy pressure. The hardness was determined. This study examined the anisotropic behavior of Cr3AlC2 using directional analyses of its elastic properties and by computing relevant anisotropy indicators. We examined several key properties of Cr3AlC2, including the Grüneisen parameter, acoustic characteristics, Debye temperature, thermal conductivity, melting point, heat capacity, Helmholtz free energy, entropy, and internal energy. Phonon dispersion spectra were analyzed to assess the dynamic stability of Cr3AlC2. Full article
Show Figures

Figure 1

13 pages, 851 KiB  
Article
Thermodynamic Properties of a Diatomic Molecule Under Effects of Small Oscillations in an Elastic Environment
by Ricardo L. L. Vitória, Carlos F. S. Pereira and Sergio Murilo da Silva Braga Martins
Symmetry 2025, 17(7), 1038; https://doi.org/10.3390/sym17071038 - 2 Jul 2025
Viewed by 365
Abstract
In this paper, we analytically investigate a diatomic molecule subject to the Morse potential under the small oscillations regime, immersed in a medium with a point defect representing impurities or vacancies in an elastic system. Initially, we apply the small oscillations method to [...] Read more.
In this paper, we analytically investigate a diatomic molecule subject to the Morse potential under the small oscillations regime, immersed in a medium with a point defect representing impurities or vacancies in an elastic system. Initially, we apply the small oscillations method to the Morse potential to obtain an analogue to the harmonic potential, and then we solve the generalized Schrödinger equation considering the geometric effects of the defect. The solutions obtained for the bound states reveal that the energy levels and the radial stability point of the molecule are modified by the presence of the defect, depending on the parameters associated with the geometry of the medium. In a second step, we analyze the thermodynamic properties of the system in contact with a thermal reservoir at finite temperature. We derive analytical expressions for the internal energy, Helmholtz free energy, entropy, and specific heat, showing that all these quantities are influenced by the presence of the point defect. The results demonstrate how structural defects alter the quantum and thermodynamic behavior of confined molecules, contributing to the understanding of systems in non-trivial elastic media. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

24 pages, 3393 KiB  
Article
Kolmogorov–Smirnov-Based Edge Centrality Measure for Metric Graphs
by Christina Durón, Hannah Kravitz and Moysey Brio
Dynamics 2025, 5(2), 16; https://doi.org/10.3390/dynamics5020016 - 2 May 2025
Viewed by 1320
Abstract
In this work, we introduce an edge centrality measure for the Helmholtz equation on metric graphs, a particular flow network, based on spectral edge energy density. This measure identifies influential edges whose removal significantly changes the energy flow on the network, as indicated [...] Read more.
In this work, we introduce an edge centrality measure for the Helmholtz equation on metric graphs, a particular flow network, based on spectral edge energy density. This measure identifies influential edges whose removal significantly changes the energy flow on the network, as indicated by statistically significant p-values from the two-sample Kolmogorov–Smirnov test comparing edge energy densities in the original network to those with a single edge removed. We compare the proposed measure with eight vertex centrality measures applied to a line graph representation of each metric graph, as well as with two edge centrality measures applied directly to each metric graph. Both methods are evaluated on two undirected and weighted metric graphs—a power grid network adapted from the IEEE 14-bus system and an approximation of Poland’s road network—both of which are multigraphs. Two experiments evaluate how each measure’s edge ranking impacts the energy flow on the network. The results demonstrate that the proposed measure effectively identifies influential edges in metric graphs that significantly change the energy distribution. Full article
Show Figures

Figure 1

14 pages, 2341 KiB  
Article
Gibbs Free Energy and Enthalpy–Entropy Compensation in Protein Folding
by María J. Benítez and Juan S. Jiménez
Biophysica 2025, 5(1), 2; https://doi.org/10.3390/biophysica5010002 - 13 Jan 2025
Viewed by 2713
Abstract
The thermodynamic study of protein folding shows the generation of a narrow range of ΔG° values, as a net result of large changes in the ΔH° and TΔS° values of the folding process. The obvious consequence of this narrow range of values is [...] Read more.
The thermodynamic study of protein folding shows the generation of a narrow range of ΔG° values, as a net result of large changes in the ΔH° and TΔS° values of the folding process. The obvious consequence of this narrow range of values is that a linear enthalpy–entropy relationship, showing apparent enthalpy–entropy compensation (EEC), is clearly observed to be associated with the study of protein folding. Herein, we show the ΔH°, TΔS°, and ΔG° values for a set of 583 data from protein folding processes, at various temperatures, as calculated by using the Gibbs–Helmholtz equations. This set of thermodynamic data was calculated from the melting temperature (Tm), the melting enthalpy (ΔHm), and the change in heat capacity (ΔCp°) values, all of them associated with the heat-induced protein unfolding processes and included in the ProTherm Data Base. The average values of enthalpy (ΔH°av), entropy (TΔS°av), and free energy (ΔG°av) for the folding process were calculated within the range of temperature from 0 °C to the average value of Tm. The values and temperature dependency of TΔS°av within this temperature range are practically equal to those corresponding to ΔH°av, while ΔG°av remains small and displaying a curve with a minimum at about 10 °C and a value of ΔG° = −30.9 kJ/mol at the particular temperature of 25 °C. The large negative value of TΔS°av, together with the also large and negative value of ΔCp°av, suggests large conformational changes and important EEC, thus causing the small average value of ΔG° for protein folding, which is enough to guarantee both protein stability and molecular flexibility to allow for adaptation to the chemical potentials of the environment. Our analysis suggests that EEC may be the quantum-mechanical evolutive mechanism to make functional proteins adaptative to environmental temperature and metabolite concentrations. The analysis of protein folding data, compared with those of protein–ligand interaction, allows us to suggest strategies to overcome EEC in the design of new drugs. Full article
(This article belongs to the Collection Feature Papers in Biophysics)
Show Figures

Figure 1

24 pages, 5685 KiB  
Article
Computational Modeling and Experimental Investigation of CO2-Hydrocarbon System Within Cross-Scale Porous Media
by Feiyu Chen, Linghui Sun, Bowen Li, Xiuxiu Pan, Boyu Jiang, Xu Huo, Zhirong Zhang and Chun Feng
Molecules 2025, 30(2), 277; https://doi.org/10.3390/molecules30020277 - 12 Jan 2025
Viewed by 1266
Abstract
CO2 flooding plays a crucial role in enhancing oil recovery and achieving carbon reduction targets, particularly in unconventional reservoirs with complex pore structures. The phase behavior of CO2 and hydrocarbons at different scales significantly affects oil recovery efficiency, yet its underlying [...] Read more.
CO2 flooding plays a crucial role in enhancing oil recovery and achieving carbon reduction targets, particularly in unconventional reservoirs with complex pore structures. The phase behavior of CO2 and hydrocarbons at different scales significantly affects oil recovery efficiency, yet its underlying mechanisms remain insufficiently understood. This study improves existing thermodynamic models by introducing Helmholtz free energy as a convergence criterion and incorporating adsorption effects in micro- and nano-scale pores. This study refines existing thermodynamic models by incorporating Helmholtz free energy as a convergence criterion, offering a more accurate representation of confined phase behavior. Unlike conventional Gibbs free energy-based models, this approach effectively accounts for confinement-induced deviations in phase equilibrium, ensuring improved predictive accuracy for nanoscale reservoirs. Additionally, adsorption effects in micro- and nano-scale pores are explicitly integrated to enhance model reliability. A multi-scale thermodynamic model for CO2-hydrocarbon systems is developed and validated through physical simulations. Key findings indicate that as the scale decreases from bulk to 10 nm, the bubble point pressure shows a deviation of 5% to 23%, while the density of confined fluids increases by approximately 2%. The results also reveal that smaller pores restrict gas expansion, leading to an enhanced CO2 solubility effect and stronger phase mixing behavior. Through phase diagram analysis, density expansion, multi-stage contact, and differential separation simulations, we further clarify how confinement influences CO2 injection efficiency. These findings provide new insights into phase behavior changes in confined porous media, improving the accuracy of CO2 flooding predictions. The proposed model offers a more precise framework for evaluating phase transitions in unconventional reservoirs, aiding in the optimization of CO2-based enhanced oil recovery strategies. Full article
Show Figures

Figure 1

27 pages, 7982 KiB  
Article
Contact Dynamic Behaviors of Magnetic Hydrogel Soft Robots
by Yunian Shen and Yiming Zou
Gels 2025, 11(1), 20; https://doi.org/10.3390/gels11010020 - 31 Dec 2024
Viewed by 952
Abstract
Magnetic hydrogel soft robots have shown great potential in various fields. However, their contact dynamic behaviors are complex, considering stick–slip motion at the contact interface, and lack accurate computational models to analyze them. This paper improves the numerical computational method for hydrogel materials [...] Read more.
Magnetic hydrogel soft robots have shown great potential in various fields. However, their contact dynamic behaviors are complex, considering stick–slip motion at the contact interface, and lack accurate computational models to analyze them. This paper improves the numerical computational method for hydrogel materials with magneto-mechanical coupling effect, analyses the inchworm-like contact motion of the biomimetic bipedal magnetic hydrogel soft robot, and designs and optimizes the robot’s structure. In the constitutive model, a correction factor representing the influence of the direction of magnetic flux density on the domain density has been introduced. The magnetic part of the Helmholtz free energy has been redefined as the magnetic potential energy, which can be used to explain the phenomenon that the material will still deform when the magnetic flux density is parallel to the external magnetic field. The accuracy of the simulation is verified by comparing numerical solutions with experimental results for a magnetic hydrogel cantilever beam. Furthermore, employing the present methods, the locomotion of a magnetic hydrogel soft robot modeled after the inchworm’s gait is simulated, and the influence of the coefficient of friction on its movement is discussed. The numerical results clearly display the control effect of the external magnetic field on the robot’s motion. Full article
Show Figures

Figure 1

26 pages, 13142 KiB  
Article
Introducing Silencers on Micro Turboshafts Powering Unmanned Aerial Vehicles
by Andrei-George Totu, Cristian Olariu, Marius Deaconu, Laurențiu Cristea, Luminița Drăgășanu and Constantin Sandu
Acoustics 2024, 6(4), 1154-1179; https://doi.org/10.3390/acoustics6040063 - 16 Dec 2024
Viewed by 1338
Abstract
The transition to alternative electrical energy solutions for drone propulsion systems presents several challenges, particularly in managing noise. This noise, compounded by that from the propellers, can produce spectra that are either unpleasant to humans or detrimental to mission objectives. This study explores [...] Read more.
The transition to alternative electrical energy solutions for drone propulsion systems presents several challenges, particularly in managing noise. This noise, compounded by that from the propellers, can produce spectra that are either unpleasant to humans or detrimental to mission objectives. This study explores potential solutions to mitigate noise produced by a micro turboshaft engine, focusing on the solutions’ impact on weight, power output, and acoustic level. We propose two modular, scalable designs—one for the intake and one for the exhaust—based on well-known applications in cold and hot flows. These designs aim to operate effectively across the audible frequency spectrum and incorporate various Helmholtz resonator geometries, including combinations of different lengths, perforated metal sheet parameters, and cavity-filling materials, to enhance bandwidth and noise reduction. Experimental results indicate that these designs can achieve tonal noise reductions of up to 40 dB. While the results are promising, further analysis is required to evaluate the practical applicability and comprehensive impact of these solutions on drone performance. Full article
(This article belongs to the Special Issue Machinery Noise: Emission, Modelling and Control)
Show Figures

Figure 1

12 pages, 2865 KiB  
Article
Thermodynamic Behavior of Doped Graphene: Impact of Heavy Dopant Atoms
by L. Palma-Chilla and Juan A. Lazzús
Entropy 2024, 26(12), 1093; https://doi.org/10.3390/e26121093 - 14 Dec 2024
Viewed by 801
Abstract
This study investigates the effect of incorporating heavy dopant atoms on the topological transitions in the energy spectrum of graphene, as well as on its thermodynamic properties. A tight-binding model is employed that incorporates a lattice composition parameter associated with the dopant’s effect [...] Read more.
This study investigates the effect of incorporating heavy dopant atoms on the topological transitions in the energy spectrum of graphene, as well as on its thermodynamic properties. A tight-binding model is employed that incorporates a lattice composition parameter associated with the dopant’s effect to obtain the electronic spectrum of graphene. Thus, the substitutional atoms in the lattice impact the electronic structure of graphene by altering the connectivity of the Dirac cones and the symmetry of the energy surface in their spectrum. The Gibbs entropy is numerically calculated from the energy surface of the electronic spectrum, and other thermodynamic properties, such as temperature, specific heat, and Helmholtz free energy, are derived from theoretical principles. The results show that topological changes induced by the heavy dopant atoms in the graphene lattice significantly affect its electronic structure and thermodynamic properties, leading to observable changes in the distances between Dirac cones, the range of the energy spectrum, entropy, positive and negative temperatures, divergences in specific heat, and instabilities within the system. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

29 pages, 4080 KiB  
Article
Prediction of the Specific Energy of Supercapacitors with Polymeric Materials Using Advanced Molecular Dynamics Simulations
by Daniela Ionescu and Maria Kovaci
Polymers 2024, 16(23), 3404; https://doi.org/10.3390/polym16233404 - 3 Dec 2024
Cited by 1 | Viewed by 1226
Abstract
Supercapacitor/pseudocapacitor structures with electrodes and electrolytes based on conductive polymers, but not only, have been analyzed using advanced molecular dynamics simulation techniques. Results indicated in the literature were used to confirm the results obtained for the specific capacitance and energetic performances of the [...] Read more.
Supercapacitor/pseudocapacitor structures with electrodes and electrolytes based on conductive polymers, but not only, have been analyzed using advanced molecular dynamics simulation techniques. Results indicated in the literature were used to confirm the results obtained for the specific capacitance and energetic performances of the systems. New material classes like Polymer-MXene electrodes ((PANI)/Ti3C2, PFDs/Ti3C2Tx) present increased capacitance in comparison with simple polymeric composites (PETC or PTh). Combinations of polymers and metallic oxide, like PANI/V2O5, present high capacitance, but new variants can provide improved performance. Different techniques, like electrode doping, adding different salts in the electrolyte (gel electrolyte), and using porous electrodes, can also improve performance. Steps for the non-invasive simulation method with HFSS (Ansys) are defined, and the materials are described at the molecular level as well as the interactions between atomic groups. Macroscopic properties of the system are determined (conductivity, specific energy) and represented on parametric graphs. A complex set of parameters is varied in order to optimize the structures through parameter correlation. Different stages of correlation are considered in order to establish the final sample design and improve energetic performance. An increase of about 8–28% can be obtained concerning the specific energy of the supercapacitor. Prediction, design, atypical behavior, and resonance are addressed using this technique. Full article
(This article belongs to the Special Issue Advances in Polymer Applied in Batteries and Capacitors)
Show Figures

Graphical abstract

29 pages, 11222 KiB  
Article
Computational Study on Flow Characteristics of Shocked Light Backward-Triangular Bubbles in Polyatomic Gas
by Salman Saud Alsaeed and Satyvir Singh
Axioms 2024, 13(12), 843; https://doi.org/10.3390/axioms13120843 - 1 Dec 2024
Cited by 1 | Viewed by 712
Abstract
This study computationally examined the Richtmyer–Meshkov instability (RMI) evolution in a helium backward-triangular bubble immersed in monatomic argon, diatomic nitrogen, and polyatomic methane under planar shock wave interactions. Using high-fidelity numerical simulations based on the compressible Navier–Fourier equations based on the Boltzmann–Curtiss kinetic [...] Read more.
This study computationally examined the Richtmyer–Meshkov instability (RMI) evolution in a helium backward-triangular bubble immersed in monatomic argon, diatomic nitrogen, and polyatomic methane under planar shock wave interactions. Using high-fidelity numerical simulations based on the compressible Navier–Fourier equations based on the Boltzmann–Curtiss kinetic framework and simulated via a modal discontinuous Galerkin scheme, we analyze the complex interplay of shock-bubble dynamics. Key findings reveal distinct thermal non-equilibrium effects, vorticity generation, enstrophy evolution, kinetic energy dissipation, and interface deformation across gases. Methane, with its molecular complexity and higher viscosity, exhibits the highest levels of vorticity production, enstrophy, and kinetic energy, leading to pronounced Kelvin–Helmholtz instabilities and enhanced mixing. Conversely, argon, due to its simpler atomic structure, shows weaker deformation and mixing. Thermal non-equilibrium effects, quantified by the Rayleigh–Onsager dissipation function, are most significant in methane, indicating delayed energy relaxation and intense turbulence. This study highlights the pivotal role of molecular properties, specific heat ratio, and bulk viscosity in shaping RMI dynamics in polyatomic gases, offering insights on uses such as high-speed aerodynamics, inertial confinement fusion, and supersonic mixing. Full article
Show Figures

Figure 1

17 pages, 899 KiB  
Article
Corrected Thermodynamics of Black Holes in f(R) Gravity with Electrodynamic Field and Cosmological Constant
by Mou Xu, Yuying Zhang, Liu Yang, Shining Yang and Jianbo Lu
Entropy 2024, 26(10), 868; https://doi.org/10.3390/e26100868 - 15 Oct 2024
Cited by 2 | Viewed by 1522
Abstract
The thermodynamics of black holes (BHs) and their corrections have become a hot topic in the study of gravitational physics, with significant progress made in recent decades. In this paper, we study the thermodynamics and corrections of spherically symmetric BHs in models [...] Read more.
The thermodynamics of black holes (BHs) and their corrections have become a hot topic in the study of gravitational physics, with significant progress made in recent decades. In this paper, we study the thermodynamics and corrections of spherically symmetric BHs in models f(R)=R+αR2 and f(R)=R+2γR+8Λ under the f(R) theory, which includes the electrodynamic field and the cosmological constant. Considering thermal fluctuations around equilibrium states, we find that, for both f(R) models, the corrected entropy is meaningful in the case of a negative cosmological constant (anti-de Sitter–RN spacetime) with Λ=1. It is shown that when the BHs’ horizon radius is small, thermal fluctuations have a more significant effect on the corrected entropy. Using the corrected entropy, we derive expressions for the relevant corrected thermodynamic quantities (such as Helmholtz free energy, internal energy, Gibbs free energy, and specific heat) and calculate the effects of the correction terms. The results indicate that the corrections to Helmholtz free energy and Gibbs free energy, caused by thermal fluctuations, are remarkable for small BHs. In addition, we explore the stability of BHs using specific heat. The study reveals that the corrected BH thermodynamics exhibit locally stable for both models, and corrected systems undergo a Hawking–Page phase transition. Considering the requirement on the non-negative volume of BHs, we also investigate the constraint on the EH radius of BHs. Full article
(This article belongs to the Special Issue The Black Hole Information Problem)
Show Figures

Figure 1

32 pages, 6740 KiB  
Review
Magnetohydrodynamic Waves in Asymmetric Waveguides and Their Applications in Solar Physics—A Review
by Robertus Erdélyi and Noémi Kinga Zsámberger
Symmetry 2024, 16(9), 1228; https://doi.org/10.3390/sym16091228 - 18 Sep 2024
Cited by 3 | Viewed by 1220
Abstract
The solar atmosphere is a complex, coupled, highly dynamic plasma environment, which shows rich structuring due to the presence of gravitational and magnetic fields. Several features of the Sun’s atmosphere can serve as guiding media for magnetohydrodynamic (MHD) waves. At the same time, [...] Read more.
The solar atmosphere is a complex, coupled, highly dynamic plasma environment, which shows rich structuring due to the presence of gravitational and magnetic fields. Several features of the Sun’s atmosphere can serve as guiding media for magnetohydrodynamic (MHD) waves. At the same time, these waveguides may contain flows of various magnitudes, which can then destabilise the waveguides themselves. MHD waves were found to be ubiquitously present in the solar atmosphere, thanks to the continuous improvement in the spatial, temporal, and spectral resolution of both space-born and ground-based observatories. These detections, coupled with recent theoretical advancements, have been used to obtain diagnostic information about the solar plasma and the magnetic fields that permeate it, by applying the powerful concept of solar magneto-seismology (SMS). The inclusion of asymmetric shear flows in the MHD waveguide models used may considerably affect the seismological results obtained. Further, they also influence the threshold for the onset of the Kelvin–Helmholtz instability, which, at high enough relative flow speeds, can lead to energy dissipation and contribute to the heating of the solar atmosphere—one of the long-standing and most intensely studied questions in solar physics. Full article
(This article belongs to the Special Issue Symmetry in Magnetohydrodynamic Flows and Their Applications)
Show Figures

Figure 1

17 pages, 4862 KiB  
Article
Modelling and Characterisation of Orthotropic Damage in Aluminium Alloy 2024
by Nenad Djordjevic, Ravindran Sundararajah, Rade Vignjevic, James Campbell and Kevin Hughes
Materials 2024, 17(17), 4281; https://doi.org/10.3390/ma17174281 - 29 Aug 2024
Cited by 1 | Viewed by 895
Abstract
The aim of the work presented in this paper was development of a thermodynamically consistent constitutive model for orthotopic metals and determination of its parameters based on standard characterisation methods used in the aerospace industry. The model was derived with additive decomposition of [...] Read more.
The aim of the work presented in this paper was development of a thermodynamically consistent constitutive model for orthotopic metals and determination of its parameters based on standard characterisation methods used in the aerospace industry. The model was derived with additive decomposition of the strain tensor and consisted of an elastic part, derived from Helmholtz free energy, Hill’s thermodynamic potential, which controls evolution of plastic deformation, and damage orthotopic potential, which controls evolution of damage in material. Damage effects were incorporated using the continuum damage mechanics approach, with the effective stress and energy equivalence principle. Material characterisation and derivation of model parameters was conducted with standard specimens with a uniform cross-section, although a number of tests with non-uniform cross-sections were also conducted here. The tests were designed to assess the extent of damage in material over a range of plastic deformation values, where displacement was measured locally using digital image correlation. The new model was implemented as a user material subroutine in Abaqus and verified and validated against the experimental results for aerospace-grade aluminium alloy 2024-T3. Verification was conducted in a series of single element tests, designed to separately validate elasticity, plasticity and damage-related parts of the model. Validation at this stage of the development was based on comparison of the numerical results with experimental data obtained in the quasistatic characterisation tests, which illustrated the ability of the modelling approach to predict experimentally observed behaviour. A validated user material subroutine allows for efficient simulation-led design improvements of aluminium components, such as stiffened panels and the other thin-wall structures used in the aerospace industry. Full article
Show Figures

Figure 1

Back to TopTop