Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (115)

Search Parameters:
Keywords = Hansen’s solubility parameters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3645 KB  
Article
Investigation of Biodegradable and Non-Biodegradable Solvents for the Fabrication of Polylactic Acid Membranes via Nonsolvent Induced Phase Separation (NIPS) for Air Filtration Applications
by Ebuka Ogbuoji, Odianosen Ewah, Anastasia Myers, Corey Roberts, Anastasia Shaverina and Isabel C. Escobar
Sustain. Chem. 2025, 6(4), 34; https://doi.org/10.3390/suschem6040034 - 14 Oct 2025
Viewed by 568
Abstract
The substitution of hazardous, environmentally persistent solvents (NMP and DMAc) with more sustainable alternatives (ETAc and GBL) in fabricating flat sheet polyactic acid (PLA) membranes via nonsolvent-induced phase separation for air filtration applications was the focus of this study. The polymer-solvent affinity was [...] Read more.
The substitution of hazardous, environmentally persistent solvents (NMP and DMAc) with more sustainable alternatives (ETAc and GBL) in fabricating flat sheet polyactic acid (PLA) membranes via nonsolvent-induced phase separation for air filtration applications was the focus of this study. The polymer-solvent affinity was first evaluated using Hansen solubility parameters, confirming suitable Relative Energy Difference (RED) values (<1) for all solvent candidates. Dope solutions prepared with biodegradable solvents demonstrated higher viscosity compared to those prepared with environmentally persistent solvents. These biodegradable solvent systems also exhibited slower precipitation rates during membrane formation. This resulted in spongelike cross-sectional morphologies, contrasting with the combined fingerlike and spongelike structures observed in membranes fabricated with environmentally persistent NMP and DMAc. Thermal analysis revealed that membranes fabricated with biodegradable solvents exhibited superior thermal stability with higher glass transition temperatures (Tg = 54.39–55.34 °C) compared to those made with environmentally persistent solvents (Tg = 49.97–50.71 °C). Membranes fabricated with ethyl acetate (ETAc) showed the highest hydrophobicity (contact angle = 115.1 ± 9°), airflow rate (12.7 ± 0.28 LPM at 0.4 bar) and maintained filtration efficiency at values greater than 95% for 0.3 μm aerosols. Full article
Show Figures

Graphical abstract

12 pages, 503 KB  
Article
Substitution of Fossil-Based Solvents in Organic Coatings
by Elias Rippatha, Hector Rolando Mendez Rossal, Bernhard Strauß and Clemens Schwarzinger
Clean Technol. 2025, 7(4), 88; https://doi.org/10.3390/cleantechnol7040088 - 10 Oct 2025
Viewed by 384
Abstract
In this work a multi-criteria analysis and an optimization tool were developed, which allows the substitution of fossil-based solvents with bio-based alternatives based on Hansen solubility parameters and various physical parameters, such as the boiling point, evaporation rate, viscosity or wetting behavior. The [...] Read more.
In this work a multi-criteria analysis and an optimization tool were developed, which allows the substitution of fossil-based solvents with bio-based alternatives based on Hansen solubility parameters and various physical parameters, such as the boiling point, evaporation rate, viscosity or wetting behavior. The proof of concept was achieved by formulating two different paints used in coil coatings using the bio-based solvents, and they performed equally as well as their fossil-based counterparts. A potential decrease in CO2 emissions was determined by a life cycle assessment and cradle-to-grave analysis of bio- and fossil-based solvents, which showed a large sustainability bonus when using solvents based on biomass. The introduced methodology provides initial insights into substituting currently used solvents systematically. Overall, implementing bio-based solvents is a viable drop-in method to decrease the environmental impact of paints and coatings, while maintaining the same performance. Full article
Show Figures

Figure 1

27 pages, 359 KB  
Article
Dispersion, Polar, and Hydrogen-Bonding Contributions to Solvation Free Energies
by William E. Acree and Costas Panayiotou
Liquids 2025, 5(4), 25; https://doi.org/10.3390/liquids5040025 - 25 Sep 2025
Viewed by 334
Abstract
A new method is presented for the estimation of contributions to solvation free energy from dispersion, polar, and hydrogen-bonding (HB) intermolecular interactions. COSMO-type quantum chemical solvation calculations are used for the development of four new molecular descriptors of solutes for their electrostatic interactions. [...] Read more.
A new method is presented for the estimation of contributions to solvation free energy from dispersion, polar, and hydrogen-bonding (HB) intermolecular interactions. COSMO-type quantum chemical solvation calculations are used for the development of four new molecular descriptors of solutes for their electrostatic interactions. The new model needs one to three solvent-specific parameters for the prediction of solvation free energies. The widely used Abraham’s LSER model is used for providing the reference solvation free energy data for the determination of the solvent-specific parameters. Extensive calculations in 80 solvent systems have verified the good performance of the model. The very same molecular descriptors are used for the calculation of solvation enthalpies. The advantages of the present model over Abraham’s LSER model are discussed along with the complementary character of the two models. Enthalpy and free-energy solvation information for pure solvents is translated into partial solvation parameters (PSP) analogous to the widely used Hansen solubility parameters and enlarge significantly their range of applications. The potential and the perspectives of the new approach for further molecular thermodynamic developments are discussed. Full article
(This article belongs to the Special Issue Energy Transfer in Liquids)
27 pages, 11789 KB  
Article
Continuous Processing Strategies for Amorphous Solid Dispersions of Itraconazole: Impact of Polymer Selection and Manufacturing Techniques
by Madhuri M. Kshirsagar, Bandoo C. Chatale, Sathish Dyawanapelly, Lalitkumar K. Vora and Purnima D. Amin
Pharmaceutics 2025, 17(9), 1090; https://doi.org/10.3390/pharmaceutics17091090 - 22 Aug 2025
Cited by 1 | Viewed by 1294
Abstract
Background: The limited aqueous solubility of BCS Class II drugs, exemplified by itraconazole (ITR), continues to hinder their bioavailability and therapeutic performance following oral administration. The present study investigated the development of amorphous solid dispersions (ASDs) of ITR via continuous manufacturing technologies, [...] Read more.
Background: The limited aqueous solubility of BCS Class II drugs, exemplified by itraconazole (ITR), continues to hinder their bioavailability and therapeutic performance following oral administration. The present study investigated the development of amorphous solid dispersions (ASDs) of ITR via continuous manufacturing technologies, such as hot melt extrusion (HME) and spray drying (SD), to improve drug release. Methods: Polymer selection was guided by Hansen solubility parameter (HSP) analysis, film casting, and molecular modeling, leading to the identification of aminoalkyl methacrylate copolymer type A (Eudragit® EPO), polyvinyl caprolactam–polyvinyl acetate–polyethylene glycol graft copolymer (Soluplus®), and hypromellose acetate succinate HG (AQOAT® AS-HG) as suitable carriers. ASDs were prepared at drug-to-polymer ratios of 1:1, 1:2, and 2:1. Comprehensive characterization was performed using ATR-FTIR, NMR, DSC, PXRD, SEM, PLM, and contact angle analysis. Results: HME demonstrated higher process efficiency, solvent-free operation, and superior dissolution enhancement compared to SD. Optimized HME-based ASDs were formulated into tablets. The ITR–Eudragit® EPO formulation achieved 95.88% drug release within 2 h (Weibull model, R2 > 0.99), while Soluplus® and AQOAT® AS-HG systems achieved complete release, best described by the Peppas–Sahlin model. Molecular modeling confirmed favorable drug–polymer interactions, correlating with the formation of stable complex and enhanced release performance. Conclusions: HME-based continuous manufacturing provides a scalable and robust strategy for improving the oral delivery of poorly water-soluble drugs. Integrating predictive modeling with experimental screening enables the rational design of ASD formulations with optimized dissolution behavior, offering potential for improved therapeutic outcomes in BCS Class II drug delivery. Full article
(This article belongs to the Special Issue Advances in Hot Melt Extrusion Technology)
Show Figures

Figure 1

23 pages, 9524 KB  
Article
Fluorimetric Determination of Eosin Y in Water Samples and Drinks Using Deep Eutectic Solvent-Based Liquid-Phase Microextraction
by Sofia Kakalejčíková, Yaroslav Bazeľ, Mária Drábiková and Maksym Fizer
Molecules 2025, 30(16), 3334; https://doi.org/10.3390/molecules30163334 - 10 Aug 2025
Viewed by 892
Abstract
An environmentally friendly and highly sensitive analytical method for the determination of the dye Eosin Y (EY) was developed utilizing vortex-assisted liquid–liquid microextraction based on deep eutectic solvents (DESs), combined with fluorescence detection (LPME-FLD). The extraction efficiencies of conventional solvents and various DES [...] Read more.
An environmentally friendly and highly sensitive analytical method for the determination of the dye Eosin Y (EY) was developed utilizing vortex-assisted liquid–liquid microextraction based on deep eutectic solvents (DESs), combined with fluorescence detection (LPME-FLD). The extraction efficiencies of conventional solvents and various DES systems, composed of tetrabutylammonium bromide (TBAB) and alcohols (hexanol, octanol, and decanol) in different ratios, were systematically compared. DFT calculations provided insights into the most stable forms of EY in solvents of varying polarity. Theoretical Hansen solubility parameters and the COSMO-RS solvation model were applied to assess extraction efficiency. Hansen parameters were obtained via semiempirical PM7 calculations, while BP86/def2-TZVPD DFT computations were employed within the openCOSMO-RS framework. The developed method exhibited a linear calibration range between 0.1 and 130 µg·L−1, with a high correlation coefficient (R2 = 0.9982). The limit of detection (LOD) was established at 0.028 µg·L−1. Method precision and repeatability were confirmed over two days, with relative standard deviations (RSDs) ranging from 1.1% to 2.7% and with recoveries between 99.0% and 106.2%. The proposed analytical approach was successfully applied to the determination of EY in real water samples, demonstrating both its practical applicability and alignment with green chemistry principles. Full article
(This article belongs to the Special Issue Advances in Food Analytical Methods)
Show Figures

Graphical abstract

17 pages, 6752 KB  
Article
Controlled Synthesis and Crystallization-Driven Self-Assembly of Poly(ε-caprolactone)-b-polysarcosine Block Copolymers
by Zi-Xian Li, Chen Yang, Lei Guo, Jun Ling and Jun-Ting Xu
Molecules 2025, 30(15), 3108; https://doi.org/10.3390/molecules30153108 - 24 Jul 2025
Viewed by 741
Abstract
Poly(ε-caprolactone)-b-polysarcosine (PCL-b-PSar) block copolymers (BCPs) emerge as a promising alternative to conventional poly(ε-caprolactone)-b-poly(ethylene oxide) BCPs for biomedical applications, leveraging superior biocompatibility and biodegradability. In this study, we synthesized two series of PCL-b-PSar BCPs [...] Read more.
Poly(ε-caprolactone)-b-polysarcosine (PCL-b-PSar) block copolymers (BCPs) emerge as a promising alternative to conventional poly(ε-caprolactone)-b-poly(ethylene oxide) BCPs for biomedical applications, leveraging superior biocompatibility and biodegradability. In this study, we synthesized two series of PCL-b-PSar BCPs with controlled polymerization degrees (DP of PCL: 45/67; DP of PSar: 28–99) and low polydispersity indexes (Đ ≤ 1.1) and systematically investigated their crystallization-driven self-assembly (CDSA) in alcohol solvents (ethanol, n-butanol, and n-hexanol). It was found that the limited solubility of PSar in alcohols resulted in competition between micellization and crystallization during self-assembly of PCL-b-PSar, and thus coexistence of lamellae and spherical micelles. To overcome this morphological heterogeneity, we developed a modified self-seeding method by employing a two-step crystallization strategy (i.e., Tc1 = 33 °C and Tc2 = 8 °C), achieving conversion of micelles into crystals and yielding uniform self-assembled structures. PCL-b-PSar BCPs with short PSar blocks tended to form well-defined two-dimensional lamellar crystals, while those with long PSar blocks induced formation of hierarchical structures in the PCL45 series and polymer aggregation on crystal surfaces in the PCL67 series. Solvent quality notably influenced the self-assembly pathways of PCL45-b-PSar28. Lamellar crystals were formed in ethanol and n-butanol, but micrometer-scale dendritic aggregates were generated in n-hexanol, primarily due to a significant Hansen solubility parameter mismatch. This study elucidated the CDSA mechanism of PCL-b-PSar in alcohols, enabling precise structural control for biomedical applications. Full article
Show Figures

Graphical abstract

23 pages, 4426 KB  
Article
Laser Microinterferometry for API Solubility and Phase Equilibria: Darunavir as a Case Example
by Veronika Makarova, Mark Mandrik and Sergey Antonov
Pharmaceutics 2025, 17(7), 875; https://doi.org/10.3390/pharmaceutics17070875 - 3 Jul 2025
Viewed by 635
Abstract
Background: The solubility and phase behavior of APIs are crucial for the development of medicines and ensuring their stability. However, conventional experimental approaches often do not allow for the precise determination of phase transitions and solubility limits, especially for poorly soluble compounds. Purpose: [...] Read more.
Background: The solubility and phase behavior of APIs are crucial for the development of medicines and ensuring their stability. However, conventional experimental approaches often do not allow for the precise determination of phase transitions and solubility limits, especially for poorly soluble compounds. Purpose: The aim of this study was to demonstrate the possibility of using the laser microinterferometry method, traditionally used to define the phase equilibria of polymer systems, to determine the thermodynamic solubility of the APIs. Methods: Using laser microinterferometry, the thermodynamic solubility and phase behavior of amorphous darunavir were determined in various pharmaceutical solvents, including vaseline and olive oils, water, glycerol, alcohols (methanol, ethanol, isopropanol), glycols (propylene glycol, polyethylene glycol 400, polypropylene glycol 425, polyethylene glycol 4000), and ethoxylated polyethylene glycol ether obtained from castor oil in the temperature range of 25–130 °C. Dissolution kinetics was estimated at 25 °C. Hansen solubility parameter calculations were also performed for comparison. Results: Darunavir is practically insoluble in olive and vaseline oils. In water and glycerol, an amorphous equilibrium with an upper critical solution temperature was observed, and phase diagrams were constructed for the first time. In alcohols, glycols, and ethoxylated polyethylene glycol ether obtained from castor oil, darunavir showed high solubility, accompanied by the formation of crystalline solvates. Kinetic evaluation showed that the dissolution rate of darunavir in methanol is four times faster than in ethanol and thirty times faster than in isopropanol. Comparison of the obtained data with previously published and calculated values of solubility parameters demonstrates a good correlation. Conclusions: Laser microinterferometry has been demonstrated as a potential tool for determining the thermodynamic solubility of APIs. This method allows for directly observing the dissolution process, determining the solubility limits, and detecting phase transitions. These studies are necessary for selecting appropriate excipients, preventing the formation of undesirable solvates and predicting formulation stability, which are all critical factors in early-stage drug development and pharmaceutical formulation design. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

24 pages, 1874 KB  
Article
Application of Hansen Solubility Parameters in the Aqueous-Ethanol Extraction of Genistein-7-O-[α-rhamnopyranosyl-(1→6)]-β-glucopyranoside from Derris scandens and Its Molecular Orbital Study on Antioxidant Activity
by Thitiporn Tantinithiphong, Wanna Eiamart, Sarin Tadtong, Suwanna Vorarat and Weerasak Samee
Int. J. Mol. Sci. 2025, 26(12), 5740; https://doi.org/10.3390/ijms26125740 - 15 Jun 2025
Cited by 1 | Viewed by 1032
Abstract
This study explored the extraction of genistein-7-O-[α-rhamnopyranosyl-(1→6)]-β-glucopyranoside (GTG) from Derris scandens using an aqueous-ethanol solvent system, aiming to optimize yield and antioxidant activity. Hansen solubility parameters (HSP) were employed to determine the optimal solvent composition, with the highest GTG yield (6.83 ± 0.06 [...] Read more.
This study explored the extraction of genistein-7-O-[α-rhamnopyranosyl-(1→6)]-β-glucopyranoside (GTG) from Derris scandens using an aqueous-ethanol solvent system, aiming to optimize yield and antioxidant activity. Hansen solubility parameters (HSP) were employed to determine the optimal solvent composition, with the highest GTG yield (6.83 ± 0.06 mg/g dried weight) obtained from 50% ethanol—correlating well with HSP predictions. Ultrasonic extraction was most effective with solvents having a dielectric constant between 50 and 60. The antioxidant potential of isolated GTG was evaluated using the DPPH assay, which yielded an IC50 of 87.86 ± 1.85 μM, and the FRAP assay, with a value of 34.23 ± 2.75 mg FeSO4 equivalents. Molecular orbital analysis revealed HOMO and LUMO energy gaps (ΔE = 10.6715 eV) similar to known antioxidants such as gallic acid, ascorbic acid, Trolox, and quercetin. These findings demonstrate that HSP effectively guided solvent selection for ultrasound-assisted extraction of GTG. The antioxidant activity is attributed to GTG’s capacity to donate electrons and stabilize radicals via extended charge delocalization within the aglycone structure, confirming its potential as a natural antioxidant agent. Full article
Show Figures

Figure 1

16 pages, 3393 KB  
Article
γ-Valerolactone-Enabled Mild Methanolysis of Waste Polyethylene Terephthalate for Efficient Chemical Recycling
by Zhao Ding, Xing Cao, Xin-Yu Hao and Yan-Peng Ni
Polymers 2025, 17(11), 1458; https://doi.org/10.3390/polym17111458 - 24 May 2025
Cited by 1 | Viewed by 1454
Abstract
To tackle growing resource and environmental challenges, closed-loop chemical recycling of waste PET is gaining significant attention. Methanolysis demonstrates significant industrial potential due to the ease of separation and purification of its depolymerization product, dimethyl terephthalate (DMT). However, conventional methanolysis processes for PET [...] Read more.
To tackle growing resource and environmental challenges, closed-loop chemical recycling of waste PET is gaining significant attention. Methanolysis demonstrates significant industrial potential due to the ease of separation and purification of its depolymerization product, dimethyl terephthalate (DMT). However, conventional methanolysis processes for PET typically require harsh conditions (>200 °C and 2–4 MPa), highlighting the need for more efficient and milder methods. In this work, leveraging Hansen’s solubility parameter theory, a bio-based solvent gamma-valerolactone (GVL) was introduced to construct a binary mixed solvent system, enabling highly efficient depolymerization of PET. Through systematic optimization of reaction conditions, an in-depth analysis of the effects of various factors on depolymerization efficiency and kinetics was conducted. The incorporation of GVL markedly enhanced the compatibility between the solvent and PET, thereby significantly improving depolymerization efficiency while effectively lowering the reaction temperature and pressure. Complete depolymerization of PET can be achieved within 2 h at 150 °C under a pressure of 0.9 MPa, with a DMT yield of up to 97.8%. This GVL/methanol depolymerization system exhibits higher efficiency, milder reaction conditions, and substantial advantages in terms of environmental impact and energy consumption indicators. By using the renewable bio-based solvent GVL, this technology aligns with the core principles of green chemistry and provides an efficient, feasible, and innovative pathway for sustainable closed-loop PET recycling. Full article
(This article belongs to the Special Issue Strategies to Make Polymers Sustainable)
Show Figures

Figure 1

14 pages, 2913 KB  
Article
Selective Extraction of Aromatics from Slurry Oil with Subcritical Water
by Nuo-Xin Zhou, Zhu-Qi Liu, Meng-Han Zhu, Zi-Bin Huang, Jing-Yi Yang, Li-Tao Wang and Pei-Qing Yuan
Molecules 2025, 30(9), 2079; https://doi.org/10.3390/molecules30092079 - 7 May 2025
Viewed by 639
Abstract
The selective separation of aromatics from slurry oil (SLO)—a low-value byproduct of fluid catalytic cracking—remains a major industrial challenge. This study investigates the use of subcritical water (Sub-CW) as a green and tunable solvent to extract aromatics from SLO in a semi-batch system [...] Read more.
The selective separation of aromatics from slurry oil (SLO)—a low-value byproduct of fluid catalytic cracking—remains a major industrial challenge. This study investigates the use of subcritical water (Sub-CW) as a green and tunable solvent to extract aromatics from SLO in a semi-batch system operating at 250–325 °C. At 325 °C and a water-to-oil mass ratio of 6:1, the extract yield reaches 16 wt%, with aromatic hydrocarbons accounting for over 90 wt% of the extract, predominantly composed of 3- to 4-ring polycyclic aromatic hydrocarbons. Comprehensive characterization via simulated distillation, SARA analysis, FT-IR, and 1H-NMR confirms the selective enrichment of aromatics and effective separation from saturates and asphaltenes. To elucidate the molecular basis of this selectivity, principal component analysis of Hansen solubility parameters was performed. The results revealed a temperature-dependent solubility trend in Sub-CW, whereby the affinity for hydrocarbons follows the order aromatics > cycloalkanes > alkanes. This solubility preference, supported by both experimental data and theoretical analysis, offers new insight into subcritical solvent design and provides a basis for process intensification in SLO valorization. Full article
Show Figures

Figure 1

19 pages, 1197 KB  
Article
Application of Theoretical Solubility Calculations and Thermal and Spectroscopic Measurements to Guide the Processing of Triamcinolone Acetonide by Hot-Melt Extrusion
by Pedro A. Granados, Idejan P. Gross, Patrícia Medeiros-Souza, Livia L. Sá-Barreto, Guilherme M. Gelfuso, Tais Gratieri and Marcilio Cunha-Filho
Pharmaceutics 2025, 17(5), 586; https://doi.org/10.3390/pharmaceutics17050586 - 29 Apr 2025
Cited by 1 | Viewed by 956
Abstract
Background/Objectives: Triamcinolone acetonide (TA), a poorly water-soluble corticosteroid, presents formulation challenges due to limited membrane permeability. This study aimed to identify suitable drug–polymer–plasticizer systems for TA using combined theoretical and experimental methods. Methods: Using Hansen solubility parameters, seven hot-melt extrusion (HME)-grade [...] Read more.
Background/Objectives: Triamcinolone acetonide (TA), a poorly water-soluble corticosteroid, presents formulation challenges due to limited membrane permeability. This study aimed to identify suitable drug–polymer–plasticizer systems for TA using combined theoretical and experimental methods. Methods: Using Hansen solubility parameters, seven hot-melt extrusion (HME)-grade polymers and four plasticizers were initially screened for miscibility with TA. Based on Δδt values, four polymers—Eudragit® L100 (EUD), Parteck® MXP (PVA), Plasdone® S-630 (PVPVA), and Aquasolve™ AS-MG (HPMCAS)—along with triethyl citrate (TEC), were selected for experimental evaluation. Differential scanning calorimetry, thermogravimetric analysis, and Fourier transform infrared spectroscopy assessed thermal behavior, miscibility, and chemical compatibility. Results: Amorphous TA content was highest with EUD (81.1%), followed by PVA (67.5%), PVPVA (45.6%), and HPMCAS (8.5%). Thermal incompatibility and TEC evaporation were observed in PVA, PVPVA, and HPMCAS systems. FTIR suggested TEC should be avoided in melt-based formulations with PVA and PVPVA due to PVA degradation and partial TA oxidation. No significant interactions were detected in HPMCAS samples heated to 220 °C, aligning with theoretical predictions. In contrast, the EUD–TEC system showed limited chemical reactivity and maintained TA’s structural integrity. Infrared bands at 1758 and 1802 cm−1 indicated minor anhydride formation above 160 °C with partial TEC evaporation. Conclusions: EUD/TEC were identified as a promising combination for the HME processing of TA. This work supports the rational formulation of stable amorphous systems for thermolabile drugs with poor solubility. Full article
(This article belongs to the Special Issue Pharmaceutical Solids: Advanced Manufacturing and Characterization)
Show Figures

Figure 1

24 pages, 431 KB  
Article
Enhancing Predictive Accuracy Under Data Scarcity: Modeling Molecular Interactions to Describe Sealing Material Compatibility with Bio-Hybrid Fuels
by Lukas Boden, Faras Brumand-Poor, Linda Pleninger and Katharina Schmitz
Physchem 2025, 5(2), 15; https://doi.org/10.3390/physchem5020015 - 8 Apr 2025
Viewed by 1483
Abstract
Bio-hybrid fuels, chemically derived from sustainable raw materials and green energies, offer significant potential to reduce carbon dioxide emissions in the transport sector. However, when these fuels are used as drop-in replacements in internal combustion engines, material compatibility with common sealing materials is [...] Read more.
Bio-hybrid fuels, chemically derived from sustainable raw materials and green energies, offer significant potential to reduce carbon dioxide emissions in the transport sector. However, when these fuels are used as drop-in replacements in internal combustion engines, material compatibility with common sealing materials is not always given. Within the cluster of excellence, “The Fuel Science Center (FSC)” at RWTH Aachen, experimental immersion tests were conducted on a limited set of fuel and sealing material combinations. Given the extensive range of possible fuel and sealing combinations, a data-based machine learning prediction framework was developed and validated to pre-select promising fuel candidates. Due to the limited number of samples, preliminary results indicate a need to expand the database. Since experimental investigations are time-consuming and costly, this work explores faster physics-motivated data generation approaches by modeling molecular interactions between fuel and sealing materials. Two modeling scales are employed. One calculates the intermolecular distance using density functional theory. The other uses Hansen solubility parameters, representing an abstract modeling of intermolecular forces. Both approaches are compared, and their limitations are assessed. Including the generated data in the prediction framework improves its accuracy. Full article
(This article belongs to the Section Theoretical and Computational Chemistry)
Show Figures

Figure 1

33 pages, 6026 KB  
Article
Prediction of Green Solvent Applicability in Cultural Heritage Using Hansen Solubility Parameters, Cremonesi Method and Integrated Toxicity Index
by Andrea Macchia, Federica Valentini, Irene Angela Colasanti and Camilla Zaratti
Sustainability 2025, 17(7), 2944; https://doi.org/10.3390/su17072944 - 26 Mar 2025
Cited by 6 | Viewed by 2736
Abstract
The transition toward sustainable conservation practices requires a scientifically ground approach to substituting traditional solvent systems with green alternatives. This study aims to facilitate the adoption of green solvents by restoration professionals by systematically evaluating their chemical compatibility and toxicological safety. By integrating [...] Read more.
The transition toward sustainable conservation practices requires a scientifically ground approach to substituting traditional solvent systems with green alternatives. This study aims to facilitate the adoption of green solvents by restoration professionals by systematically evaluating their chemical compatibility and toxicological safety. By integrating Hansen solubility parameters (HSP), Relative Energy Difference (RED), and the Integrated Toxicity Index (ITI), we identified green solvents with high potential for replacing Cremonesi mixtures. The analysis revealed that ether-based solvents, such as 2,5-dimethyltetrahydrofuran and cyclopentyl methyl ether, exhibit high chemical affinity with Cremonesi mixtures, while esters and fatty acid methyl esters (FAMEs) offer a balanced combination of solubility and low toxicity. However, the study also underscores significant gaps in safety data (SDS) for many innovative solvents, highlighting the need for further toxicological evaluation before widespread implementation. Full article
Show Figures

Figure 1

14 pages, 1213 KB  
Article
Study on the Calculation Method of Hansen Solubility Parameters of Fuel Cell Ionomers
by Chao Meng, Shang Li, Qianyun Wu, Mengyu Li, Shenao Tian, Haolin Tang and Mu Pan
Polymers 2025, 17(7), 840; https://doi.org/10.3390/polym17070840 - 21 Mar 2025
Cited by 1 | Viewed by 3588
Abstract
Accurately determining the Hansen solubility parameters (HSPs) of fuel cell ionomers is crucial for optimizing the dispersion and dispersive state of the ionomer in fuel cell catalyst inks. This directly impacts the structure and coating process of the catalyst layer in proton exchange [...] Read more.
Accurately determining the Hansen solubility parameters (HSPs) of fuel cell ionomers is crucial for optimizing the dispersion and dispersive state of the ionomer in fuel cell catalyst inks. This directly impacts the structure and coating process of the catalyst layer in proton exchange membrane fuel cells (PEMFCs). The Hansen solubility parameters (HSPs) of the Nafion ionomer were calculated by the Hansen solubility parameter software (HSPiP), inverse gas chromatography (IGC), and group contribution methods. The applicability and accuracy of the different algorithms are discussed. It was found that the solubility parameters (SPs) measured by the HSPiP method were higher, while the SPs measured by the IGC and group contribution methods were lower. However, for the ionomer with both a hydrophobic backbone and hydrophilic side chain, the HSPiP method offered a more reasonable HSP determination method. The dual HSPs of Nafion calculated by the HSPiP method were found to be δd = 16.4 MPa1/2 (dispersion force), δp = 10.5 MPa1/2 (polar interaction), and δh = 8.9 MPa1/2 (hydrogen bonding) for the hydrophobic backbone and δd = 15.2 MPa1/2, δp = 11.7 MPa1/2, and δh = 15.9 MPa1/2 for the hydrophilic side chain. These results provide a thermodynamic basis for solvent design in fuel cell catalyst-layer fabrication. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

19 pages, 3794 KB  
Article
Generalized Solvent Effect on the Fluorescence Performance of Spiropyran for Advanced Quick Response Code Dynamic Anti-Counterfeiting Sensing
by Junji Xuan, Lingjie Chen and Jintao Tian
Int. J. Mol. Sci. 2025, 26(4), 1531; https://doi.org/10.3390/ijms26041531 - 12 Feb 2025
Cited by 3 | Viewed by 1293
Abstract
Spiropyran has an attractive and mysterious fluorescence switch and dual-color conversion characteristics, as it exhibits both aggregation-caused quenching (ACQ) in solvents and fluorescence enhancement in polymer matrices. The explanation for this phenomenon has always been of great controversy. Hence, the solvent effect on [...] Read more.
Spiropyran has an attractive and mysterious fluorescence switch and dual-color conversion characteristics, as it exhibits both aggregation-caused quenching (ACQ) in solvents and fluorescence enhancement in polymer matrices. The explanation for this phenomenon has always been of great controversy. Hence, the solvent effect on the emission of spiropyran (SP) was investigated in 16 solvents. By means of molecular orbital theory and the Jablonski diagram, several special parameters (e.g., Hansen solubility parameters and viscosity) were selected for this analysis, with excellent goodness of fit. Subsequently, the main factors that affected the blue shift, red shift, and luminescence efficiency of the emission of the ring-opened form merocyanine (MC) were found to be the hydrogen bonding and polarity, aggregation effect, and viscosity, respectively. A newly modified Jablonski diagram was proposed to clarify the emission behaviors of spiropyran influenced by solvent polarity and isomerization. Meanwhile, the solvent effect could also be extended to a solid polymer matrix (six kinds of polyethylene glycol (PEG) with different molecular weights), which is proposed to be defined as the generalized solvent effect. Accordingly, we have demonstrated that the unique fluorescence properties of spiropyran are dominated by the generalized solvent effect. The security information storage capacity of the simulated quick response (QR) code sensor combined with SP for anti-counterfeiting was significantly improved to six dimensions in taking advantage of the former theoretical analysis. Full article
(This article belongs to the Special Issue Recent Advances in Luminescence: From Mechanisms to Applications)
Show Figures

Graphical abstract

Back to TopTop