Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = HVTL

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5352 KB  
Article
Continuous Monitoring of Transmission Lines Sag through Angular Measurements Performed with Wireless Sensors
by Federico Zanelli, Marco Mauri, Francesco Castelli-Dezza and Francesco Ripamonti
Appl. Sci. 2023, 13(5), 3175; https://doi.org/10.3390/app13053175 - 1 Mar 2023
Cited by 9 | Viewed by 2891
Abstract
High voltage transmission lines are crucial infrastructure that are demanded to supply an increasing request of electric energy. In the design and operations stages, sag represents a key parameter which must respect specific constraints. Therefore, sag continuous monitoring is becoming essential to guarantee [...] Read more.
High voltage transmission lines are crucial infrastructure that are demanded to supply an increasing request of electric energy. In the design and operations stages, sag represents a key parameter which must respect specific constraints. Therefore, sag continuous monitoring is becoming essential to guarantee the correct functioning of the line and to optimize the current flow. Different solutions have been proposed in literature, but they are still lacking efficiency and reliability to be used during operations. In this work, a simple and efficient method, based on conductor parabolic approximation, is developed and used to compute the sag through the measurement of the conductor slope in proximity of the span extremities. The angular measurements are obtained using wireless sensors equipped with MEMS accelerometers developed by authors and employed for HVTL conductor vibration monitoring. The proposed method and its implementation in the monitoring system was tested in a laboratory environment on a real conductor. The values of sag at different tensile loads have been obtained and compared to the measured ones, with satisfactory results according to the accelerometer resolution. The solution developed therefore represents a complete and innovative tool to be adopted in the field to monitor, in real time, both the sag and the level of vibration due to the wind action, allowing to increase the performance reliability of HVTL. Full article
Show Figures

Figure 1

26 pages, 11697 KB  
Article
Analysis of Wind-Induced Vibrations on HVTL Conductors Using Wireless Sensors
by Federico Zanelli, Marco Mauri, Francesco Castelli-Dezza, Davide Tarsitano, Alessandra Manenti and Giorgio Diana
Sensors 2022, 22(21), 8165; https://doi.org/10.3390/s22218165 - 25 Oct 2022
Cited by 19 | Viewed by 6036
Abstract
In a world accelerating the energy transition towards renewable sources, high voltage transmission lines represent strategic infrastructure for power delivery. Being slender and low-damped structures, HVTL conductors are affected by wind-induced vibrations that can lead to severe fatigue issues in conductors and other [...] Read more.
In a world accelerating the energy transition towards renewable sources, high voltage transmission lines represent strategic infrastructure for power delivery. Being slender and low-damped structures, HVTL conductors are affected by wind-induced vibrations that can lead to severe fatigue issues in conductors and other components. Vibration monitoring could represent a key activity to assess the safety level of the line and perform condition-based maintenance activities. This work proposes an innovative approach based on the knowledge of the physical phenomena and smart technological devices. A wireless monitoring system based on MEMS accelerometers and energy harvesting techniques has been designed to measure the fymax parameter in the field, which represents a fatigue indicator useful to identify the different wind-induced phenomena and assess the conductors’ strain level. A field test on a Canadian transmission line was used in the check of the efficiency of the system and collection of significant data. Vibrations due to vortex shedding were identified with a maximum value of fymax = 50 m/s, while subspan oscillation and galloping were not observed. We show the novel method can detect the different wind-induced phenomena and pave the way to the development of suitable software able to compute a conductor’s residual fatigue life. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

26 pages, 6959 KB  
Article
Methodological Approach to Incorporate the Involve of Stakeholders in the Geodesign Workflow of Transmission Line Projects
by Francisco-Javier Moreno-Marimbaldo and Miguel-Ángel Manso-Callejo
ISPRS Int. J. Geo-Inf. 2020, 9(3), 178; https://doi.org/10.3390/ijgi9030178 - 20 Mar 2020
Cited by 3 | Viewed by 6688
Abstract
Any artificial infrastructure built in a territory causes changes in its environment, especially when it is a question of large or extensive infrastructures such as high-voltage transmission lines (HVTLs). Such changes are perceived unevenly by the different groups affected or involved. However, all [...] Read more.
Any artificial infrastructure built in a territory causes changes in its environment, especially when it is a question of large or extensive infrastructures such as high-voltage transmission lines (HVTLs). Such changes are perceived unevenly by the different groups affected or involved. However, all of them can obstruct the development of a project of this type of infrastructure. For this reason, it is increasingly necessary to manage the stakeholders in the different phases of the development of an HVTL project. This article presents the methodological proposal designed to add the management of stakeholders’ opinions by integrating it into the geodesign-based workflow for the development of HVTL projects, giving geographic meaning to each of their opinions, allowing their analysis together with the rest of the geospatial information of the project, reusing the “feedback-iteration-consensus” mechanisms, discovering interactions and synergies or incompatibilities, improving the understanding and finally facilitating the consensus of all parties. In this way, it is possible to manage the development of the projects with a single workflow, in which the results are obtained (development stages) and the decisions that are adopted are used both for the technical part and for the management of the project’s stakeholders. Full article
Show Figures

Figure 1

11 pages, 1757 KB  
Article
Vitellogenesis in Blue Gourami is Accompanied by Brain Transcriptome Changes
by Gad Degani, Amir Alon, Akram Hajouj and Ari Meerson
Fishes 2019, 4(4), 54; https://doi.org/10.3390/fishes4040054 - 29 Oct 2019
Cited by 3 | Viewed by 4180
Abstract
The blue gourami (Trichogaster trichopterus) is a model for hormonal control of reproduction in Anabantidae fish, but also relevant to other vertebrates. We analyzed the female blue gourami brain transcriptome in two developmental stages: pre-vitellogenesis (PVTL) before yolk accumulation in the [...] Read more.
The blue gourami (Trichogaster trichopterus) is a model for hormonal control of reproduction in Anabantidae fish, but also relevant to other vertebrates. We analyzed the female blue gourami brain transcriptome in two developmental stages: pre-vitellogenesis (PVTL) before yolk accumulation in the oocytes, and high vitellogenesis (HVTL) at the end of yolk accumulation in the oocytes. RNA sequencing of whole-brain transcriptome identified 34,368 unique transcripts, 23,710 of which could be annotated by homology with other species. We focused on the transcripts showing significant differences between the stages. Seventeen and fourteen annotated genes were found to be upregulated in PVTL and HVTL, respectively. Five nuclear transcripts, three of which contain the homeobox domain (ARX, DLX5, CERS6), were upregulated in PVTL. Additionally, several receptors previously known to be involved in reproduction were identified, and three of these, G-protein coupled receptor 54, Membrane progesterone receptor epsilon, and Gonadotropin-releasing hormone II receptor (GPCR, mPR, and GnRHR) were measured by quantitative RT-PCR in brain, pituitary, and ovary samples from PVTL and HVTL stage females. Of these, GPCR was highly expressed in the brain and pituitary as compared to the ovary in both PVTL and HVTL. GnRHR was highly expressed in the ovary compared to the brain and pituitary, and its levels in the brain were significantly higher in PVTL than HVTL. Brain mPR mRNA levels were likewise higher in PVTL than HVTL. In conclusion, this study details changes in the female blue gourami brain transcriptome through yolk accumulation in the oocytes and identifies key genes that may mediate this process. Full article
Show Figures

Graphical abstract

30 pages, 9023 KB  
Article
A Methodological Approach to Using Geodesign in Transmission Line Projects
by Francisco Javier Moreno Marimbaldo, Miguel-Ángel Manso-Callejo and Ramon Alcarria
Sustainability 2018, 10(8), 2757; https://doi.org/10.3390/su10082757 - 4 Aug 2018
Cited by 8 | Viewed by 4177
Abstract
Numerous constraints affect the design of long linear infrastructures such as high-voltage transmission lines (HVTL): terrain slope, distances to urban centers or protected areas, stakeholders, administration, etc. These constraints must be studied as a whole to make the most appropriate decisions. In HVTL [...] Read more.
Numerous constraints affect the design of long linear infrastructures such as high-voltage transmission lines (HVTL): terrain slope, distances to urban centers or protected areas, stakeholders, administration, etc. These constraints must be studied as a whole to make the most appropriate decisions. In HVTL project development, a large volume of geodata is generated and analyzed in the project lifecycle. Each geodata scale is associated with a phase of the project and scale transitions correspond to changes in involved technical teams. Geodesign provides design frameworks and supporting technologies, so that professionals can share data and find designs suitable to the sustainability characteristics of each territory. This article proposes a geodesign workflow for developing HVTL projects, supported by methodologies and by automated model executions that guarantee the traceability of its development through the lifecycle stages. The aim is to minimize environmental, social, and local impacts, while providing stakeholders with tools for planning and decision-making. The workflow helps to integrate the geodesign’s principles, harmonizing corporate procedures throughout the project phases, taking into consideration constraints notified by stakeholders, through a design process guided by feedback-iteration- consensus mechanisms. As a result, it produces a transparent, visible, and improved participative workflow for developing new electric infrastructures. Full article
Show Figures

Graphical abstract

Back to TopTop