Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = HIV-1 fusion peptide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6477 KiB  
Article
A New Chimeric Antibody against the HIV-1 Fusion Inhibitory Peptide MT-C34 with a High Affinity and Fc-Mediated Cellular Cytotoxicity
by Svetlana V. Kalinichenko, Lama Ramadan, Natalia A. Kruglova, Konstantin I. Balagurov, Marina I. Lukashina, Dmitriy V. Mazurov and Mikhail V. Shepelev
Biology 2024, 13(9), 675; https://doi.org/10.3390/biology13090675 - 29 Aug 2024
Cited by 2 | Viewed by 1677
Abstract
Peptides from heptad repeat (HR1 and HR2) regions of gp41 are effective inhibitors of HIV-1 entry that block the fusion of viral and cellular membranes, but the generation of antibodies highly specific for these peptides is challenging. We have previously described a mouse [...] Read more.
Peptides from heptad repeat (HR1 and HR2) regions of gp41 are effective inhibitors of HIV-1 entry that block the fusion of viral and cellular membranes, but the generation of antibodies highly specific for these peptides is challenging. We have previously described a mouse hybridoma that recognizes MT-C34-related peptides derived from HR2. It was used for the selection of HIV-1-resistant CD4 lymphocytes engineered to express the MT-C34 peptide via a CRISPR/Cas9-mediated knock-in into the CXCR4 locus. In this study, we cloned variable domains of this antibody and generated a recombinant chimeric antibody (chAb) by combining it with the constant regions of the humanized antibody Trastuzumab. The new chAb displayed a high specificity and two-fold higher level of affinity than the parental mouse monoclonal antibody. In addition, chAb mediated up to 27–43% of the antibody-dependent cellular cytotoxicity towards cells expressing MT-C34 on their surface. The anti-MT-C34 chAb can be easily generated using plasmids available for the research community and can serve as a valuable tool for the detection, purification, and even subsequent elimination of HIV-1-resistant CD4 cells or CAR cells engineered to fight HIV-1 infection. Full article
(This article belongs to the Special Issue B and T Cells in HIV and Other Viral Infections)
Show Figures

Graphical abstract

21 pages, 2769 KiB  
Article
IOS-1002, a Stabilized HLA-B57 Open Format, Exerts Potent Anti-Tumor Activity
by Anahita Rafiei, Marco Gualandi, Chia-Lung Yang, Richard Woods, Anil Kumar, Kathrin Brunner, John Sigrist, Hilmar Ebersbach, Steve Coats, Christoph Renner and Osiris Marroquin Belaunzaran
Cancers 2024, 16(16), 2902; https://doi.org/10.3390/cancers16162902 - 21 Aug 2024
Cited by 1 | Viewed by 2433
Abstract
HLA-B27 and HLA-B57 are associated with autoimmunity and long-term viral control and protection against HIV and HCV infection; however, their role in cancer immunity remains unknown. HLA class I molecules interact with innate checkpoint receptors of the LILRA, LILRB and KIR families present [...] Read more.
HLA-B27 and HLA-B57 are associated with autoimmunity and long-term viral control and protection against HIV and HCV infection; however, their role in cancer immunity remains unknown. HLA class I molecules interact with innate checkpoint receptors of the LILRA, LILRB and KIR families present in diverse sets of immune cells. Here, we demonstrate that an open format (peptide free conformation) and expression- and stability-optimized HLA-B57-B2m-IgG4_Fc fusion protein (IOS-1002) binds to human leukocyte immunoglobulin-like receptor B1 and B2 (LILRB1 and LILRB2) and to killer immunoglobulin-like receptor 3DL1 (KIR3DL1). In addition, we show that the IgG4 Fc backbone is required for engagement to Fcγ receptors and potent activation of macrophage phagocytosis. IOS-1002 blocks the immunosuppressive ITIM and SHP1/2 phosphatase signaling cascade, reduces the expression of immunosuppressive M2-like polarization markers of macrophages and differentiation of monocytes to myeloid-derived suppressor cells, enhances tumor cell phagocytosis in vitro and potentiates activation of T and NK cells. Lastly, IOS-1002 demonstrates efficacy in an ex vivo patient-derived tumor sample tumoroid model. IOS-1002 is a first-in-class multi-target and multi-functional human-derived HLA molecule that activates anti-tumor immunity and is currently under clinical evaluation. Full article
Show Figures

Figure 1

17 pages, 5905 KiB  
Article
Molecular Dynamics Investigation of Lipid-Specific Interactions with a Fusion Peptide
by William T. Heller
Biomolecules 2024, 14(3), 285; https://doi.org/10.3390/biom14030285 - 27 Feb 2024
Viewed by 1749
Abstract
The HIV-1 fusion peptide, which is a short hydrophobic peptide from the gp41 coat glycoprotein that participates in the infection of a cell, interacts with model lipid bilayer membranes in a concentration-dependent manner. The interaction of the peptide with the bilayer also strongly [...] Read more.
The HIV-1 fusion peptide, which is a short hydrophobic peptide from the gp41 coat glycoprotein that participates in the infection of a cell, interacts with model lipid bilayer membranes in a concentration-dependent manner. The interaction of the peptide with the bilayer also strongly depends on the lipid composition. Here, molecular dynamics simulations were performed to investigate lipid-specific interactions that arise shortly after the binding of a less-fusogenic variant of the HIV-1 fusion peptide to a lipid bilayer composed of a mixture of dimyristoyl phosphatidylcholine and dimyristoyl phosphatidylglycerol. The impact of peptide concentration was also studied. An improved understanding was gained of the lipid-specific interactions experienced by the FP. New insight was also gained into how the peptide concentration changes these interactions. Full article
(This article belongs to the Section Molecular Biophysics: Structure, Dynamics, and Function)
Show Figures

Figure 1

12 pages, 2547 KiB  
Review
Engineered Chimera Protein Constructs to Facilitate the Production of Heterologous Transmembrane Proteins in E. coli
by Adeyemi Ogunbowale and Elka R. Georgieva
Int. J. Mol. Sci. 2024, 25(4), 2354; https://doi.org/10.3390/ijms25042354 - 16 Feb 2024
Cited by 2 | Viewed by 2204
Abstract
To delve into the structure–function relationship of transmembrane proteins (TMPs), robust protocols are needed to produce them in a pure, stable, and functional state. Among all hosts that express heterologous TMPs, E. coli has the lowest cost and fastest turnover. However, many of [...] Read more.
To delve into the structure–function relationship of transmembrane proteins (TMPs), robust protocols are needed to produce them in a pure, stable, and functional state. Among all hosts that express heterologous TMPs, E. coli has the lowest cost and fastest turnover. However, many of the TMPs expressed in E. coli are misfolded. Several strategies have been developed to either direct the foreign TMPs to E. coli’s membrane or retain them in a cytosolic soluble form to overcome this deficiency. Here, we summarize protein engineering methods to produce chimera constructs of the desired TMPs fused to either a signal peptide or precursor maltose binding protein (pMBP) to direct the entire construct to the periplasm, therefore depositing the fused TMP in the plasma membrane. We further describe strategies to produce TMPs in soluble form by utilizing N-terminally fused MBP without a signal peptide. Depending on its N- or C-terminus location, a fusion to apolipoprotein AI can either direct the TMP to the membrane or shield the hydrophobic regions of the TMP, maintaining the soluble form. Strategies to produce G-protein-coupled receptors, TMPs of Mycobacterium tuberculosis, HIV-1 Vpu, and other TMPs are discussed. This knowledge could increase the scope of TMPs’ expression in E. coli. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

11 pages, 1512 KiB  
Article
A dePEGylated Lipopeptide-Based Pan-Coronavirus Fusion Inhibitor Exhibits Potent and Broad-Spectrum Anti-HIV-1 Activity without Eliciting Anti-PEG Antibodies
by Ling Xu, Chao Wang, Wei Xu, Lixiao Xing, Jie Zhou, Jing Pu, Mingming Fu, Lu Lu, Shibo Jiang and Qian Wang
Int. J. Mol. Sci. 2023, 24(11), 9779; https://doi.org/10.3390/ijms24119779 - 5 Jun 2023
Cited by 2 | Viewed by 2171
Abstract
We previously identified a lipopeptide, EK1C4, by linking cholesterol to EK1, a pan-CoV fusion inhibitory peptide via a polyethylene glycol (PEG) linker, which showed potent pan-CoV fusion inhibitory activity. However, PEG can elicit antibodies to PEG in vivo, which will attenuate its antiviral [...] Read more.
We previously identified a lipopeptide, EK1C4, by linking cholesterol to EK1, a pan-CoV fusion inhibitory peptide via a polyethylene glycol (PEG) linker, which showed potent pan-CoV fusion inhibitory activity. However, PEG can elicit antibodies to PEG in vivo, which will attenuate its antiviral activity. Therefore, we designed and synthesized a dePEGylated lipopeptide, EKL1C, by replacing the PEG linker in EK1C4 with a short peptide. Similar to EK1C4, EKL1C displayed potent inhibitory activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronaviruses. In this study, we found that EKL1C also exhibited broad-spectrum fusion inhibitory activity against human immunodeficiency virus type 1 (HIV-1) infection by interacting with the N-terminal heptad repeat 1 (HR1) of viral gp41 to block six-helix bundle (6-HB) formation. These results suggest that HR1 is a common target for the development of broad-spectrum viral fusion inhibitors and EKL1C has potential clinical application as a candidate therapeutic or preventive agent against infection by coronavirus, HIV-1, and possibly other class I enveloped viruses. Full article
(This article belongs to the Collection Feature Papers in Molecular Immunology)
Show Figures

Figure 1

15 pages, 2475 KiB  
Article
An Artificial Peptide-Based Bifunctional HIV-1 Entry Inhibitor That Interferes with Viral Glycoprotein-41 Six-Helix Bundle Formation and Antagonizes CCR5 on the Host Cell Membrane
by Chao Wang, Qing Li, Lujia Sun, Xinling Wang, Huan Wang, Wenpeng Zhang, Jiahui Li, Yang Liu, Lu Lu and Shibo Jiang
Viruses 2023, 15(5), 1038; https://doi.org/10.3390/v15051038 - 23 Apr 2023
Cited by 1 | Viewed by 2824
Abstract
Human immunodeficiency virus type 1 (HIV-1) is characterized by high variability and drug resistance. This has necessitated the development of antivirals with a new chemotype and therapy. We previously identified an artificial peptide with non-native protein sequence, AP3, with the potential to inhibit [...] Read more.
Human immunodeficiency virus type 1 (HIV-1) is characterized by high variability and drug resistance. This has necessitated the development of antivirals with a new chemotype and therapy. We previously identified an artificial peptide with non-native protein sequence, AP3, with the potential to inhibit HIV-1 fusion through targeting hydrophobic grooves on the N-terminal heptad repeat trimer of viral glycoprotein gp41. Here, a small-molecule HIV-1 inhibitor targeting chemokine coreceptor CCR5 on the host cell was integrated into the AP3 peptide, producing a novel dual-target inhibitor with improved activity against multiple HIV-1 strains including those resistant to the currently used anti-HIV-1 drug enfuvirtide. Its superior antiviral potency in comparison with the respective pharmacophoric moieties is in consonance with the dual binding of viral gp41 and host factor CCR5. Therefore, our work provides a potent artificial peptide-based bifunctional HIV-1 entry inhibitor and highlights the multitarget-directed ligands approach in the development of novel therapeutic anti-HIV-1 agents. Full article
(This article belongs to the Special Issue HIV-1 Entry Inhibitors)
Show Figures

Figure 1

12 pages, 1460 KiB  
Article
Identification of Anti-gp41 Monoclonal Antibodies That Effectively Target Cytotoxic Immunoconjugates to Cells Infected with Human Immunodeficiency Virus, Type 1
by Grant Klug, Frances M. Cole, Mark D. Hicar, Connie Watt, Tami Peters and Seth H. Pincus
Vaccines 2023, 11(4), 829; https://doi.org/10.3390/vaccines11040829 - 12 Apr 2023
Cited by 2 | Viewed by 2516
Abstract
We are developing cytotoxic immunoconjugates (CICs) targeting the envelope protein (Env) of the Human Immunodeficiency Virus, type 1 (HIV) to purge the persistent reservoirs of viral infection. We have previously studied the ability of multiple monoclonal antibodies (mAbs) to deliver CICs to an [...] Read more.
We are developing cytotoxic immunoconjugates (CICs) targeting the envelope protein (Env) of the Human Immunodeficiency Virus, type 1 (HIV) to purge the persistent reservoirs of viral infection. We have previously studied the ability of multiple monoclonal antibodies (mAbs) to deliver CICs to an HIV-infected cell. We have found that CICs targeted to the membrane-spanning gp41 domain of Env are most efficacious, in part because their killing is enhanced in the presence of soluble CD4. The ability of a mAb to deliver a CIC does not correlate with its ability to neutralize nor mediate Ab-dependent cellular cytotoxicity. In the current study, we seek to define the most effective anti-gp41 mAbs for delivering CICs to HIV-infected cells. To do this, we have evaluated a panel of human anti-gp41 mAbs for their ability to bind and kill two different Env-expressing cell lines: persistently infected H9/NL4-3 and constitutively transfected HEK293/92UG. We measured the binding and cytotoxicity of each mAb in the presence and absence of soluble CD4. We found that mAbs to the immunodominant helix-loop-helix region (ID-loop) of gp41 are most effective, whereas neutralizing mAbs to the fusion peptide, gp120/gp41 interface, and the membrane proximal external region (MPER) are relatively ineffective at delivering CICs. There was only a weak correlation between antigen exposure and killing activity. The results show that the ability to deliver an effective IC and neutralization are distinct functions of mAbs. Full article
Show Figures

Graphical abstract

18 pages, 5761 KiB  
Article
Investigation of the Impact of Lipid Acyl Chain Saturation on Fusion Peptide Interactions with Lipid Bilayers
by William T. Heller and Piotr A. Zolnierczuk
Biophysica 2023, 3(1), 121-138; https://doi.org/10.3390/biophysica3010009 - 28 Feb 2023
Cited by 2 | Viewed by 2897
Abstract
The interaction of many peptides with lipid bilayer membranes strongly depends on the lipid composition. Here, a study of the impact of unsaturated lipid acyl chains on the interaction of a derivative of the HIV-1 fusion peptide with lipid bilayer vesicles is presented. [...] Read more.
The interaction of many peptides with lipid bilayer membranes strongly depends on the lipid composition. Here, a study of the impact of unsaturated lipid acyl chains on the interaction of a derivative of the HIV-1 fusion peptide with lipid bilayer vesicles is presented. Lipid bilayer vesicles composed of mixtures of lipids with two saturated acyl chains and lipids and one saturated and one unsaturated acyl chain, but identical head groups, were studied. The dependence of the peptide conformation on the unsaturated lipid content was probed by circular dichroism spectroscopy, while the impact of the peptide on the bilayer structure was determined by small-angle neutron scattering. The impact of the peptide on the lipid bilayer vesicle dynamics was investigated using neutron spin echo spectroscopy. Molecular dynamics simulations were used to characterize the behavior of the systems studied to determine if there were clear differences in their physical properties. The results reveal that the peptide–bilayer interaction is not a simple function of the unsaturated lipid acyl chain content of the bilayer. Instead, the peptide behavior is more consistent with that seen for the bilayer containing only unsaturated lipids, which is supported by lipid-specific interactions revealed by the simulations. Full article
(This article belongs to the Special Issue Molecular Structure and Simulation in Biological System)
Show Figures

Graphical abstract

26 pages, 3417 KiB  
Article
Chimeric Human Papillomavirus-16 Virus-like Particles Presenting P18I10 and T20 Peptides from HIV-1 Envelope Induce HPV16 and HIV-1-Specific Humoral and T Cell-Mediated Immunity in BALB/c Mice
by Chun-Wei Chen, Narcís Saubi, Athina Kilpeläinen and Joan Joseph-Munné
Vaccines 2023, 11(1), 15; https://doi.org/10.3390/vaccines11010015 - 21 Dec 2022
Cited by 8 | Viewed by 3049
Abstract
In this study, the HIV-1 P18I10 CTL peptide derived from the V3 loop of HIV-1 gp120 and the T20 anti-fusion peptide of HIV-1 gp41 were inserted into the HPV16 L1 capsid protein to construct chimeric HPV:HIV (L1:P18I10 and L1:T20) VLPs by using the [...] Read more.
In this study, the HIV-1 P18I10 CTL peptide derived from the V3 loop of HIV-1 gp120 and the T20 anti-fusion peptide of HIV-1 gp41 were inserted into the HPV16 L1 capsid protein to construct chimeric HPV:HIV (L1:P18I10 and L1:T20) VLPs by using the mammalian cell expression system. The HPV:HIV VLPs were purified by chromatography. We demonstrated that the insertion of P18I10 or T20 peptides into the DE loop of HPV16 L1 capsid proteins did not affect in vitro stability, self-assembly and morphology of chimeric HPV:HIV VLPs. Importantly, it did not interfere either with the HIV-1 antibody reactivity targeting sequential and conformational P18I10 and T20 peptides presented on chimeric HPV:HIV VLPs or with the induction of HPV16 L1-specific antibodies in vivo. We observed that chimeric L1:P18I10/L1:T20 VLPs vaccines could induce HPV16- but weak HIV-1-specific antibody responses and elicited HPV16- and HIV-1-specific T-cell responses in BALB/c mice. Moreover, could be a potential booster to increase HIV-specific cellular responses in the heterologous immunization after priming with rBCG.HIVA vaccine. This research work would contribute a step towards the development of the novel chimeric HPV:HIV VLP-based vaccine platform for controlling HPV16 and HIV-1 infection, which is urgently needed in developing and industrialized countries. Full article
(This article belongs to the Special Issue Virus-Like Particle (VLP) Vaccines)
Show Figures

Graphical abstract

14 pages, 2389 KiB  
Article
Assessment of Crosslinkers between Peptide Antigen and Carrier Protein for Fusion Peptide-Directed Vaccines against HIV-1
by Li Ou, Krishana Gulla, Andrea Biju, Daniel W. Biner, Tatsiana Bylund, Anita Changela, Steven J. Chen, Cheng-Yan Zheng, Nicole Cibelli, Angela R. Corrigan, Hongying Duan, Christopher A. Gonelli, Wing-Pui Kong, Cheng Cheng, Sijy O’Dell, Edward K. Sarfo, Andrew Shaddeau, Shuishu Wang, Alison Vinitsky, Yanhong Yang, Baoshan Zhang, Yaqiu Zhang, Richard A. Koup, Nicole A. Doria-Rose, Jason G. Gall, John R. Mascola and Peter D. Kwongadd Show full author list remove Hide full author list
Vaccines 2022, 10(11), 1916; https://doi.org/10.3390/vaccines10111916 - 12 Nov 2022
Cited by 1 | Viewed by 3690
Abstract
Conjugate-vaccine immunogens require three components: a carrier protein, an antigen, and a crosslinker, capable of coupling antigen to carrier protein, while preserving both T-cell responses from carrier protein and B-cell responses from antigen. We previously showed that the N-terminal eight residues of the [...] Read more.
Conjugate-vaccine immunogens require three components: a carrier protein, an antigen, and a crosslinker, capable of coupling antigen to carrier protein, while preserving both T-cell responses from carrier protein and B-cell responses from antigen. We previously showed that the N-terminal eight residues of the HIV-1 fusion peptide (FP8) as an antigen could prime for broad cross-clade neutralizing responses, that recombinant heavy chain of tetanus toxin (rTTHC) as a carrier protein provided optimal responses, and that choice of crosslinker could impact both antigenicity and immunogenicity. Here, we delve more deeply into the impact of varying the linker between FP8 and rTTHC. In specific, we assessed the physical properties, the antigenicity, and the immunogenicity of conjugates for crosslinkers ranging in spacer-arm length from 1.5 to 95.2 Å, with varying hydrophobicity and crosslinking-functional groups. Conjugates coupled with different degrees of multimerization and peptide-to-rTTHC stoichiometry, but all were well recognized by HIV-fusion-peptide-directed antibodies VRC34.01, VRC34.05, PGT151, and ACS202 except for the conjugate with the longest linker (24-PEGylated SMCC; SM(PEG)24), which had lower affinity for ACS202, as did the conjugate with the shortest linker (succinimidyl iodoacetate; SIA), which also had the lowest peptide-to-rTTHC stoichiometry. Murine immunizations testing seven FP8-rTTHC conjugates elicited fusion-peptide-directed antibody responses, with SIA- and SM(PEG)24-linked conjugates eliciting lower responses than the other five conjugates. After boosting with prefusion-closed envelope trimers from strains BG505 clade A and consensus clade C, trimer-directed antibody-binding responses were lower for the SIA-linked conjugate; elicited neutralizing responses were similar, however, though statistically lower for the SM(PEG)24-linked conjugate, when tested against a strain especially sensitive to fusion-peptide-directed responses. Overall, correlation analyses revealed the immunogenicity of FP8-rTTHC conjugates to be negatively impacted by hydrophilicity and extremes of length or low peptide-carrier stoichiometry, but robust to other linker parameters, with several commonly used crosslinkers yielding statistically indistinguishable serological results. Full article
Show Figures

Figure 1

23 pages, 5640 KiB  
Article
Targeting the SARS-CoV-2 HR1 with Small Molecules as Inhibitors of the Fusion Process
by Davide Gentile, Alessandro Coco, Vincenzo Patamia, Chiara Zagni, Giuseppe Floresta and Antonio Rescifina
Int. J. Mol. Sci. 2022, 23(17), 10067; https://doi.org/10.3390/ijms231710067 - 3 Sep 2022
Cited by 17 | Viewed by 2791
Abstract
The rapid and global propagation of the novel human coronavirus that causes severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has produced an immediate urgency to discover promising targets for the treatment of this virus. In this paper, we studied the spike protein S2 [...] Read more.
The rapid and global propagation of the novel human coronavirus that causes severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has produced an immediate urgency to discover promising targets for the treatment of this virus. In this paper, we studied the spike protein S2 domain of SARS-CoV-2 as it is the most conserved component and controls the crucial fusion process of SARS-CoV-2 as a target for different databases of small organic compounds. Our in silico methodology, based on pharmacophore modeling, docking simulation and molecular dynamics simulations, was first validated with ADS-J1, a potent small-molecule HIV fusion inhibitor that has already proved effective in binding the HR1 domain and inhibiting the fusion core of SARS-CoV-1. It then focused on finding novel small molecules and new peptides as fusion inhibitors. Our methodology identified several small molecules and peptides as potential inhibitors of the fusion process. Among these, NF 023 hydrate (MolPort-006-822-583) is one of the best-scored compounds. Other compounds of interest are ZINC00097961973, Salvianolic acid, Thalassiolin A and marine_160925_88_2. Two interesting active peptides were also identified: AP00094 (Temporin A) and AVP1227 (GBVA5). The inhibition of the spike protein of SARS-CoV-2 is a valid target to inhibit the virus entry in human cells. The discussed compounds reported in this paper led to encouraging results for future in vitro tests against SARS-CoV-2. Full article
(This article belongs to the Special Issue Computer-Aided Drug Discovery and Treatment)
Show Figures

Figure 1

19 pages, 3992 KiB  
Article
Design and Functional Characterization of HIV-1 Envelope Protein-Coupled T Helper Liposomes
by Dominik Damm, Ehsan Suleiman, Hannah Theobald, Jannik T. Wagner, Mirjam Batzoni, Bianca Ahlfeld (née Kohlhauser), Bernd Walkenfort, Jens-Christian Albrecht, Jidnyasa Ingale, Lifei Yang, Mike Hasenberg, Richard T. Wyatt, Karola Vorauer-Uhl, Klaus Überla and Vladimir Temchura
Pharmaceutics 2022, 14(7), 1385; https://doi.org/10.3390/pharmaceutics14071385 - 30 Jun 2022
Cited by 3 | Viewed by 2918
Abstract
Functionalization of experimental HIV-1 virus-like particle vaccines with heterologous T helper epitopes (T helper VLPs) can modulate the humoral immune response via intrastructural help (ISH). Current advances in the conjugation of native-like HIV-1 envelope trimers (Env) onto liposomes and encapsulation of peptide epitopes [...] Read more.
Functionalization of experimental HIV-1 virus-like particle vaccines with heterologous T helper epitopes (T helper VLPs) can modulate the humoral immune response via intrastructural help (ISH). Current advances in the conjugation of native-like HIV-1 envelope trimers (Env) onto liposomes and encapsulation of peptide epitopes into these nanoparticles renders this GMP-scalable liposomal platform a feasible alternative to VLP-based vaccines. In this study, we designed and analyzed customizable Env-conjugated T helper liposomes. First, we passively encapsulated T helper peptides into a well-characterized liposome formulation displaying a dense array of Env trimers on the surface. We confirmed the closed pre-fusion state of the coupled Env trimers by immunogold staining with conformation-specific antibodies. These peptide-loaded Env-liposome conjugates efficiently activated Env-specific B cells, which further induced proliferation of CD4+ T cells by presentation of liposome-derived peptides on MHC-II molecules. The peptide encapsulation process was then quantitatively improved by an electrostatically driven approach using an overall anionic lipid formulation. We demonstrated that peptides delivered by liposomes were presented by DCs in secondary lymphoid organs after intramuscular immunization of mice. UFO (uncleaved prefusion optimized) Env trimers were covalently coupled to peptide-loaded anionic liposomes by His-tag/NTA(Ni) interactions and EDC/Sulfo-NHS crosslinking. EM imaging revealed a moderately dense array of well-folded Env trimers on the liposomal surface. The conformation was verified by liposomal surface FACS. Furthermore, anionic Env-coupled T helper liposomes effectively induced Env-specific B cell activation and proliferation in a comparable range to T helper VLPs. Taken together, we demonstrated that T helper VLPs can be substituted with customizable and GMP-scalable liposomal nanoparticles as a perspective for future preclinical and clinical HIV vaccine applications. The functional nanoparticle characterization assays shown in this study can be applied to other systems of synthetic nanoparticles delivering antigens derived from various pathogens. Full article
(This article belongs to the Special Issue Nanovaccine Fight against Infectious Diseases)
Show Figures

Figure 1

7 pages, 2034 KiB  
Article
The Glu143 Residue Might Play a Significant Role in T20 Peptide Binding to HIV-1 Receptor gp41: An In Silico Study
by Ahmed L. Alaofi
Molecules 2022, 27(12), 3936; https://doi.org/10.3390/molecules27123936 - 20 Jun 2022
Cited by 4 | Viewed by 1971
Abstract
Despite the enormous efforts made to develop other fusion inhibitors for HIV, the enfuvirtide (known as T20) peptide is the only approved HIV-1 inhibitory drug so far. Investigating the role of potential residues of the T20 peptide’s conformational dynamics could help us to [...] Read more.
Despite the enormous efforts made to develop other fusion inhibitors for HIV, the enfuvirtide (known as T20) peptide is the only approved HIV-1 inhibitory drug so far. Investigating the role of potential residues of the T20 peptide’s conformational dynamics could help us to understand the role of potential residues of the T20 peptide. We investigated T20 peptide conformation and binding interactions with the HIV-1 receptor (i.e., gp41) using MD simulations and docking techniques, respectively. Although the mutation of E143 into alanine decreased the flexibility of the E143A mutant, the conformational compactness of the mutant was increased. This suggests a potential role of E143 in the T20 peptide’s conformation. Interestingly, the free energy landscape showed a significant change in the wild-type T20 minimum, as the E143A mutant produced two observed minima. Finally, the docking results of T20 to the gp41 receptor showed a different binding interaction in comparison to the E143A mutant. This suggests that E143 residue can influence the binding interaction with the gp41 receptor. Overall, the E143 residue showed a significant role in conformation and binding to the HIV-1 receptor. These findings can be helpful in optimizing and developing HIV-1 inhibitor peptides. Full article
(This article belongs to the Special Issue Molecular Modeling: Advancements and Applications)
Show Figures

Figure 1

18 pages, 2108 KiB  
Article
In Vitro Selection and Characterization of HIV-1 Variants with Increased Resistance to LP-40, Enfuvirtide-Based Lipopeptide Inhibitor
by Yue Hu, Wenjiang Yu, Xiuzhu Geng, Yuanmei Zhu, Huihui Chong and Yuxian He
Int. J. Mol. Sci. 2022, 23(12), 6638; https://doi.org/10.3390/ijms23126638 - 14 Jun 2022
Cited by 3 | Viewed by 2020
Abstract
In our previous work, we replaced the TRM (tryptophan-rich motif) of T20 (Enfuvirtide) with fatty acid (C16) to obtain the novel lipopeptide LP-40, and LP-40 displayed enhanced antiviral activity. In this study, we investigated whether the C16 modification could enhance the high-resistance barrier [...] Read more.
In our previous work, we replaced the TRM (tryptophan-rich motif) of T20 (Enfuvirtide) with fatty acid (C16) to obtain the novel lipopeptide LP-40, and LP-40 displayed enhanced antiviral activity. In this study, we investigated whether the C16 modification could enhance the high-resistance barrier of the inhibitor LP-40. To address this question, we performed an in vitro simultaneous screening of HIV-1NL4-3 resistance to T20 and LP-40. The mechanism of drug resistance for HIV-1 Env was further studied using the expression and processing of the Env glycoprotein, the effect of the Env mutation on the entry and fusion ability of the virus, and an analysis of changes to the gp41 core structure. The results indicate that the LP-40 activity is enhanced and that it has a high resistance barrier. In a detailed analysis of the resistance sites, we found that mutations in L33S conferred a stronger resistance, except for the well-recognized mutations in amino acids 36–45 of gp41 NHR, which reduced the inhibitory activity of the CHR-derived peptides. The compensatory mutation of eight amino acids in the CHR region (NDQEEDYN) plays an important role in drug resistance. LP-40 and T20 have similar resistance mutation sites, and we speculate that the same resistance profile may arise if LP-40 is used in a clinical setting. Full article
(This article belongs to the Special Issue Cell Fusion in the Living Matter)
Show Figures

Figure 1

16 pages, 3711 KiB  
Article
A Protein-Based, Long-Acting HIV-1 Fusion Inhibitor with an Improved Pharmacokinetic Profile
by Wei Xu, Zhe Cong, Qianyu Duan, Qian Wang, Shan Su, Rui Wang, Lu Lu, Jing Xue and Shibo Jiang
Pharmaceuticals 2022, 15(4), 424; https://doi.org/10.3390/ph15040424 - 30 Mar 2022
Cited by 6 | Viewed by 3494
Abstract
Recently, a series of highly effective peptide- or protein-based HIV fusion inhibitors have been identified. However, due to their short half-life, their clinical application is limited. Therefore, the development of long-acting HIV fusion inhibitors is urgently needed. Here, we designed and constructed a [...] Read more.
Recently, a series of highly effective peptide- or protein-based HIV fusion inhibitors have been identified. However, due to their short half-life, their clinical application is limited. Therefore, the development of long-acting HIV fusion inhibitors is urgently needed. Here, we designed and constructed a protein-based, long-acting HIV fusion inhibitor, termed FLT (FN3-L35-T1144), consisting of a monobody, FN3, which contains an albumin-binding domain (ABD), a 35-mer linker (L35), and a peptide-based HIV fusion inhibitor, T1144. We found that FLT bound, via its FN3 component, with human serum albumin (HSA) in a reversible manner, thus maintaining the high efficiency of T1144 against infection by both HIV-1 IIIB (X4) and Bal (R5) strains with IC50 of 11.6 nM and 15.3 nM, respectively, and remarkably prolonging the half-life of T1144 (~27 h in SD rats). This approach affords protein-based HIV fusion inhibitors with much longer half-life compared to enfuvirtide, a peptide-based HIV fusion inhibitor approved for use in clinics. Therefore, FLT is a promising candidate as a new protein-based anti-HIV drug with an improved pharmacokinetic profile. Full article
(This article belongs to the Special Issue Drug Candidates for the Treatment of HIV/AIDS)
Show Figures

Figure 1

Back to TopTop