Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (473)

Search Parameters:
Keywords = HEV vehicle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3489 KiB  
Article
Techno-Economic Analysis of Hydrogen Hybrid Vehicles
by Dapai Shi, Jiaheng Wang, Kangjie Liu, Chengwei Sun, Zhenghong Wang and Xiaoqing Liu
World Electr. Veh. J. 2025, 16(8), 418; https://doi.org/10.3390/wevj16080418 - 24 Jul 2025
Viewed by 241
Abstract
Driven by carbon neutrality and peak carbon policies, hydrogen energy, due to its zero-emission and renewable properties, is increasingly being used in hydrogen fuel cell vehicles (H-FCVs). However, the high cost and limited durability of H-FCVs hinder large-scale deployment. Hydrogen internal combustion engine [...] Read more.
Driven by carbon neutrality and peak carbon policies, hydrogen energy, due to its zero-emission and renewable properties, is increasingly being used in hydrogen fuel cell vehicles (H-FCVs). However, the high cost and limited durability of H-FCVs hinder large-scale deployment. Hydrogen internal combustion engine hybrid electric vehicles (H-HEVs) are emerging as a viable alternative. Research on the techno-economics of H-HEVs remains limited, particularly in systematic comparisons with H-FCVs. This paper provides a comprehensive comparison of H-FCVs and H-HEVs in terms of total cost of ownership (TCO) and hydrogen consumption while proposing a multi-objective powertrain parameter optimization model. First, a quantitative model evaluates TCO from vehicle purchase to disposal. Second, a global dynamic programming method optimizes hydrogen consumption by incorporating cumulative energy costs into the TCO model. Finally, a genetic algorithm co-optimizes key design parameters to minimize TCO. Results show that with a battery capacity of 20.5 Ah and an H-FC peak power of 55 kW, H-FCV can achieve optimal fuel economy and hydrogen consumption. However, even with advanced technology, their TCO remains higher than that of H-HEVs. H-FCVs can only become cost-competitive if the unit power price of the fuel cell system is less than 4.6 times that of the hydrogen engine system, assuming negligible fuel cell degradation. In the short term, H-HEVs should be prioritized. Their adoption can also support the long-term development of H-FCVs through a complementary relationship. Full article
Show Figures

Figure 1

20 pages, 2341 KiB  
Article
Magnetic Field Measurement of Various Types of Vehicles, Including Electric Vehicles
by Hiromichi Fukui, Norihiro Minami, Masatoshi Tanezaki, Shinichi Muroya and Chiyoji Ohkubo
Electronics 2025, 14(15), 2936; https://doi.org/10.3390/electronics14152936 - 23 Jul 2025
Viewed by 602
Abstract
Since around the year 2000, following the introduction of electric vehicles (EVs) to the market, some people have expressed concerns about the level of magnetic flux density (MFD) inside vehicles. In 2013, we reported the results of MFD measurements for electric vehicles (EVs), [...] Read more.
Since around the year 2000, following the introduction of electric vehicles (EVs) to the market, some people have expressed concerns about the level of magnetic flux density (MFD) inside vehicles. In 2013, we reported the results of MFD measurements for electric vehicles (EVs), hybrid electric vehicles (HEVs), and internal combustion engine vehicles (ICEVs). However, those 2013 measurements were conducted using a chassis dynamometer, and no measurements were taken during actual driving. In recent years, with the rapid global spread of EVs and plug-in hybrid electric vehicles (PHEVs), the international standard IEC 62764-1:2022, which defines methods for measuring magnetic fields (MF) in vehicles, has been issued. In response, and for the first time, we conducted new MF measurements on current Japanese vehicle models in accordance with the international standard IEC 62764-1:2022, identifying the MFD levels and their sources at various positions within EVs, PHEVs, and ICEVs. The measured MFD values in all vehicle types were below the reference levels recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) for public exposure. Furthermore, we performed comparative measurements with the MF data obtained in 2013 and confirmed that the MF levels remained similar. These findings are expected to provide valuable insights for risk communication with the public regarding electromagnetic fields, particularly for those concerned about MF exposure inside electrified vehicles. Full article
(This article belongs to the Special Issue Innovations in Electromagnetic Field Measurements and Applications)
Show Figures

Figure 1

16 pages, 2376 KiB  
Review
A Concise Review of Power Batteries and Battery Management Systems for Electric and Hybrid Vehicles
by Qi Zhang, Yunlong Shang, Yan Li and Rui Zhu
Energies 2025, 18(14), 3750; https://doi.org/10.3390/en18143750 - 15 Jul 2025
Viewed by 411
Abstract
The core powertrain components of electric vehicles (EVs) and hybrid electric vehicles (HEVs) are the power batteries and battery management system (BMS), jointly determining the performance, safety, and economy of the vehicle. This review offers a comprehensive overview of the evolution and current [...] Read more.
The core powertrain components of electric vehicles (EVs) and hybrid electric vehicles (HEVs) are the power batteries and battery management system (BMS), jointly determining the performance, safety, and economy of the vehicle. This review offers a comprehensive overview of the evolution and current advancements in power battery and BMS technology for electric vehicles (EVs). It emphasizes product upgrades and replacements while also analyzing future research hotspots and development trends driven by the increasing demand for EVs and hybrid electric vehicles (HEVs). This review aims to give recommendations and support for the future development of power batteries and BMSs that are widely used in EVs, HEVs, and energy storage systems, which will lead to industry and research progress. Full article
Show Figures

Figure 1

42 pages, 5715 KiB  
Article
Development and Fuel Economy Optimization of Series–Parallel Hybrid Powertrain for Van-Style VW Crafter Vehicle
by Ahmed Nabil Farouk Abdelbaky, Aminu Babangida, Abdullahi Bala Kunya and Péter Tamás Szemes
Energies 2025, 18(14), 3688; https://doi.org/10.3390/en18143688 - 12 Jul 2025
Viewed by 493
Abstract
The presence of toxic gas emissions from conventional vehicles is worrisome globally. Over the past few years, there has been a broad adoption of electric vehicles (EVs) to reduce energy usage and mitigate environmental emissions. The EVs are characterized by limited range, cost, [...] Read more.
The presence of toxic gas emissions from conventional vehicles is worrisome globally. Over the past few years, there has been a broad adoption of electric vehicles (EVs) to reduce energy usage and mitigate environmental emissions. The EVs are characterized by limited range, cost, and short range. This prompts the need for hybrid electric vehicles (HEVs). This study describes the conversion of a 2022 Volkswagen Crafter (VW) 35 TDI 340 delivery van from a conventional diesel powertrain into a hybrid electric vehicle (HEV) augmented with synchronous electrical machines (motor and generator) and a BMW i3 60 Ah battery pack. A downsized 1.5 L diesel engine and an electric motor–generator unit are integrated via a planetary power split device supported by a high-voltage lithium-ion battery. A MATLAB (R2024b) Simulink model of the hybrid system is developed, and its speed tracking PID controller is optimized using genetic algorithm (GA) and particle swarm optimization (PSO) methods. The simulation results show significant efficiency gains: for example, average fuel consumption falls from 9.952 to 7.014 L/100 km (a 29.5% saving) and CO2 emissions drop from 260.8 to 186.0 g/km (a 74.8 g reduction), while the vehicle range on a 75 L tank grows by ~40.7% (from 785.7 to 1105.5 km). The optimized series–parallel powertrain design significantly improves urban driving economy and reduces emissions without compromising performance. Full article
Show Figures

Figure 1

24 pages, 17098 KiB  
Article
A Combined Energy Management Strategy for Heavy-Duty Trucks Based on Global Traffic Information Optimization
by Haishan Wu, Liang Li and Xiangyu Wang
Sustainability 2025, 17(14), 6361; https://doi.org/10.3390/su17146361 - 11 Jul 2025
Viewed by 238
Abstract
As public concern over environmental pollution and the urgent need for sustainable development grow, the popularity of new-energy vehicles has increased. Hybrid electric vehicles (HEVs) represent a significant segment of this movement, undergoing robust development and playing an important role in the global [...] Read more.
As public concern over environmental pollution and the urgent need for sustainable development grow, the popularity of new-energy vehicles has increased. Hybrid electric vehicles (HEVs) represent a significant segment of this movement, undergoing robust development and playing an important role in the global transition towards sustainable mobility. Among the various factors affecting the fuel economy of HEVs, energy management strategies (EMSs) are particularly critical. With continuous advancements in vehicle communication technology, vehicles are now equipped to gather real-time traffic information. In response to this evolution, this paper proposes an optimization method for the adaptive equivalent consumption minimization strategy (A-ECMS) equivalent factor that incorporates traffic information and efficient optimization algorithms. Building on this foundation, the proposed method integrates the charge depleting–charge sustaining (CD-CS) strategy to create a combined EMS that leverages traffic information. This approach employs the CD-CS strategy to facilitate vehicle operation in the absence of comprehensive global traffic information. However, when adequate global information is available, it utilizes both the CD-CS strategy and the A-ECMS for vehicle control. Simulation results indicate that this combined strategy demonstrates effective performance, achieving fuel consumption reductions of 5.85% compared with the CD-CS strategy under the China heavy-duty truck cycle, 4.69% under the real vehicle data cycle, and 3.99% under the custom driving cycle. Full article
(This article belongs to the Special Issue Powertrain Design and Control in Sustainable Electric Vehicles)
Show Figures

Figure 1

42 pages, 8877 KiB  
Review
Artificial-Intelligence-Based Energy Management Strategies for Hybrid Electric Vehicles: A Comprehensive Review
by Bin Huang, Wenbin Yu, Minrui Ma, Xiaoxu Wei and Guangya Wang
Energies 2025, 18(14), 3600; https://doi.org/10.3390/en18143600 - 8 Jul 2025
Viewed by 685
Abstract
The worldwide drive towards low-carbon transportation has made Hybrid Electric Vehicles (HEVs) a crucial component of sustainable mobility, particularly in areas with limited charging infrastructure. The core of HEV efficiency lies in the Energy Management Strategy (EMS), which regulates the energy distribution between [...] Read more.
The worldwide drive towards low-carbon transportation has made Hybrid Electric Vehicles (HEVs) a crucial component of sustainable mobility, particularly in areas with limited charging infrastructure. The core of HEV efficiency lies in the Energy Management Strategy (EMS), which regulates the energy distribution between the internal combustion engine and the electric motor. While rule-based and optimization methods have formed the foundation of EMS, their performance constraints under dynamic conditions have prompted researchers to explore artificial intelligence (AI)-based solutions. This paper systematically reviews four main AI-based EMS approaches—the knowledge-driven, data-driven, reinforcement learning, and hybrid methods—highlighting their theoretical foundations, core technologies, and key applications. The integration of AI has led to notable benefits, such as improved fuel efficiency, enhanced emission control, and greater system adaptability. However, several challenges remain, including generalization to diverse driving conditions, constraints in real-time implementation, and concerns related to data-driven interpretability. The review identifies emerging trends in hybrid methods, which combine AI and conventional optimization approaches to create more adaptive and effective HEV energy management systems. The paper concludes with a discussion of future research directions, focusing on safety, system resilience, and the role of AI in autonomous decision-making. Full article
(This article belongs to the Special Issue Optimized Energy Management Technology for Electric Vehicle)
Show Figures

Figure 1

17 pages, 2486 KiB  
Article
Development of an Energy Consumption Minimization Strategy for a Series Hybrid Vehicle
by Mehmet Göl, Ahmet Fevzi Baba and Ahu Ece Hartavi
World Electr. Veh. J. 2025, 16(7), 383; https://doi.org/10.3390/wevj16070383 - 7 Jul 2025
Viewed by 281
Abstract
Due to the limitations of current battery technologies—such as lower energy density and high cost compared to fossil fuels—electric vehicles (EVs) face constraints in applications requiring extended range or heavy payloads, such as refuse trucks. As a midterm solution, hybrid electric vehicles (HEVs) [...] Read more.
Due to the limitations of current battery technologies—such as lower energy density and high cost compared to fossil fuels—electric vehicles (EVs) face constraints in applications requiring extended range or heavy payloads, such as refuse trucks. As a midterm solution, hybrid electric vehicles (HEVs) combine internal combustion engines (ICEs) and electric powertrains to enable flexible energy usage, particularly in urban duty cycles characterized by frequent stopping and idling. This study introduces a model-based energy management strategy using the Equivalent Consumption Minimization Strategy (ECMS), tailored for a retrofitted series hybrid refuse truck. A conventional ISUZU NPR 10 truck was instrumented to collect real-world driving and operational data, which guided the development of a vehicle-specific ECMS controller. The proposed strategy was evaluated over five driving cycles—including both standardized and measured urban scenarios—under varying load conditions: Tare Mass (TM) and Gross Vehicle Mass (GVM). Compared with a rule-based control approach, ECMS demonstrated up to 14% improvement in driving range and significant reductions in exhaust gas emissions (CO, NOx, and CO2). The inclusion of auxiliary load modeling further enhances the realism of the simulation results. These findings validate ECMS as a viable strategy for optimizing fuel economy and reducing emissions in hybrid refuse truck applications. Full article
Show Figures

Figure 1

18 pages, 1520 KiB  
Article
Transitioning to Cleaner Transport: Evaluating the Environmental and Economic Performance of ICE, HEVs, and PHEVs in Bangladesh
by MD Shiyan Sadik, Md Ishmam Labib and Asma Safia Disha
World Electr. Veh. J. 2025, 16(7), 380; https://doi.org/10.3390/wevj16070380 - 6 Jul 2025
Viewed by 537
Abstract
The transportation sector in South Asia largely depends on internal combustion engine (ICE) vehicles, which are responsible for a large share of greenhouse gas (GHG) emissions, air pollution, and the increase in fuel prices. Although hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles [...] Read more.
The transportation sector in South Asia largely depends on internal combustion engine (ICE) vehicles, which are responsible for a large share of greenhouse gas (GHG) emissions, air pollution, and the increase in fuel prices. Although hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and fully electric vehicles (EVs) constitute promising alternatives, the rate of their implementation is low due to factors such as the high initial investment, the absence of the required infrastructure, and the reliance on fossil fuel-based electricity. This study is the first of its kind to examine Bangladesh’s drivetrain options in a comprehensive way, with in-depth real-world emission testing and economic analysis as the main tools of investigation into the environmental and economic feasibility of different technologies used in the vehicles available in Bangladesh, including lifecycle costs and infrastructure constraints. The study findings have shown that hybrid and plug-in hybrid vehicles are the best options, since they have moderate emissions and cost efficiency, respectively. Fully electric vehicles, however, face two main challenges: the overall lack of charging infrastructure and the overall high purchase prices. Among the evaluated technologies, PHEVs exhibited the lowest environmental and economic burden. The Toyota Prius PHEV emitted 98% less NOx compared to the diesel-powered Pajero Sport and maintained the lowest per-kilometer cost at BDT 6.39. In contrast, diesel SUVs emitted 178 ppm NOx and cost 22.62 BDT/km, reinforcing the transitional advantage of plug-in hybrid technology in Bangladesh’s context. Full article
Show Figures

Figure 1

42 pages, 8136 KiB  
Review
From Empirical Measurements to AI Fusion—A Holistic Review of SOH Estimation Techniques for Lithium-Ion Batteries in Electric and Hybrid Vehicles
by Runzhe Shan, Yaxuan Wang, Shilong Guo, Yue Cui, Lei Zhao, Junfu Li and Zhenbo Wang
Energies 2025, 18(13), 3542; https://doi.org/10.3390/en18133542 - 4 Jul 2025
Viewed by 430
Abstract
Accurate assessment of lithium-ion battery state of health (SOH) represents a cross-disciplinary challenge that is critical for the reliability, safety, and total cost of ownership of electric vehicles (EVs) and hybrid electric vehicles (HEVs). This review systematically examines the evolutionary trajectory of SOH [...] Read more.
Accurate assessment of lithium-ion battery state of health (SOH) represents a cross-disciplinary challenge that is critical for the reliability, safety, and total cost of ownership of electric vehicles (EVs) and hybrid electric vehicles (HEVs). This review systematically examines the evolutionary trajectory of SOH estimation methods, ranging from conventional experimental measurement approaches to cutting-edge data-driven techniques. We analyze how these techniques address critical challenges in battery aging and performance evaluation, while discussing their respective advantages across different application scenarios. The paper highlights emerging trends in artificial intelligence-integrated advanced technologies for SOH estimation, along with practical implementation considerations. Special emphasis is placed on key challenges of SOH estimation in EVs/HEVs applications with proposed alternative solutions. By synthesizing current research directions and identifying critical knowledge gaps, this work provides valuable insights for fundamental research and industrial applications in battery health management. Full article
Show Figures

Figure 1

16 pages, 3289 KiB  
Article
Assessing HMM and SVM for Condition-Based Monitoring and Fault Detection in HEV Electrical Machines
by Riham Ginzarly, Nazih Moubayed, Ghaleb Hoblos, Hassan Kanj, Mouhammad Alakkoumi and Alaa Mawas
Energies 2025, 18(13), 3513; https://doi.org/10.3390/en18133513 - 3 Jul 2025
Viewed by 338
Abstract
The rise of hybrid electric vehicles (HEVs) marks a shift away from traditional engines driven by environmental and economic concerns. With the rapid growth of HEVs worldwide, their reliability becomes of utmost concern; thus, guaranteeing the proper operation of HEVs is a crucial [...] Read more.
The rise of hybrid electric vehicles (HEVs) marks a shift away from traditional engines driven by environmental and economic concerns. With the rapid growth of HEVs worldwide, their reliability becomes of utmost concern; thus, guaranteeing the proper operation of HEVs is a crucial quest. Condition-based monitoring (CBM), which intends to observe different kinds of parameters in the system to detect defects and reduce any unwanted breakdowns and equipment failure, plays an efficient role in enhancing HEVs’ reliability and ensuring their healthy operation. The permanent magnet machine (PMM) is the most used electric machine in the electric propulsion system of HEVs, as well as the most expensive. Hence, the condition monitoring of this machine is of great importance. The magnet crack is one of the most severe faults that may arise in this machine. Artificial intelligence (AI) is showing high capability in the field of CBM, fault detection, and fault identification and prevention. Hence, the aim of this paper is to present two data-based fault detection approaches, which are the support vector machine (SVM) and the Hidden Markov Model (HMM). Their capability to detect primitive faults like tiny cracks in the machine’s magnet will be shown. Applying and evaluating various CBM methods is essential to identifying the most effective approach to maximizing reliability, minimizing downtime, and optimizing maintenance strategies. A strategy to specify the remaining useful life (RUL) of the defected element is proposed. Full article
(This article belongs to the Special Issue Condition Monitoring of Electrical Machines Based on Models)
Show Figures

Figure 1

40 pages, 3827 KiB  
Review
A Review of Hybrid Vehicles Classification and Their Energy Management Strategies: An Exploration of the Advantages of Genetic Algorithms
by Yuede Pan, Kaifeng Zhong, Yubao Xie, Mingzhang Pan, Wei Guan, Li Li, Changye Liu, Xingjia Man, Zhiqing Zhang and Mantian Li
Algorithms 2025, 18(6), 354; https://doi.org/10.3390/a18060354 - 6 Jun 2025
Cited by 1 | Viewed by 2392
Abstract
This paper presents a comprehensive analysis of hybrid electric vehicle (HEV) classification and energy management strategies (EMS), with a particular emphasis on the application and potential of genetic algorithms (GAs) in optimizing energy management strategies for hybrid electric vehicles. Initially, the paper categorizes [...] Read more.
This paper presents a comprehensive analysis of hybrid electric vehicle (HEV) classification and energy management strategies (EMS), with a particular emphasis on the application and potential of genetic algorithms (GAs) in optimizing energy management strategies for hybrid electric vehicles. Initially, the paper categorizes hybrid electric vehicles based on mixing rates and power source configurations, elucidating the operational principles and the range of applicability for different hybrid electric vehicle types. Following this, the two primary categories of energy management strategies—rule-based and optimization-based—are introduced, emphasizing their significance in enhancing energy efficiency and performance, while also acknowledging their inherent limitations. Furthermore, the advantages of utilizing genetic algorithms in optimizing energy management systems for hybrid vehicles are underscored. As a global optimization technique, genetic algorithms are capable of effectively addressing complex multi-objective problems by circumventing local optima and identifying the global optimal solution. The adaptability and versatility of genetic algorithms allow them to conduct real-time optimization across diverse driving conditions. Genetic algorithms play a pivotal role in hybrid vehicle energy management and exhibit a promising future. When combined with other optimization techniques, genetic algorithms can augment the optimization potential for tackling complex tasks. Nonetheless, the advancement of this technique is confronted with challenges such as cost, battery longevity, and charging infrastructure, which significantly influence its widespread adoption and application. Full article
(This article belongs to the Section Parallel and Distributed Algorithms)
Show Figures

Figure 1

24 pages, 6216 KiB  
Article
Hybrid Vehicle Battery Health State Estimation Based on Intelligent Regenerative Braking Control
by Chellappan Kavitha, Gupta Gautam, Ravi Sudeep, Chidambaram Kannan and Bragadeshwaran Ashok
World Electr. Veh. J. 2025, 16(5), 280; https://doi.org/10.3390/wevj16050280 - 19 May 2025
Viewed by 480
Abstract
In response to the evolving transportation landscape, the safety and durability of hybrid electric vehicles (HEVs) necessitate the development of high-performance, reliable health management systems for batteries. The state of health (SOH) provides vital insights about the performance and longevity of batteries, thus [...] Read more.
In response to the evolving transportation landscape, the safety and durability of hybrid electric vehicles (HEVs) necessitate the development of high-performance, reliable health management systems for batteries. The state of health (SOH) provides vital insights about the performance and longevity of batteries, thus enhancing opportunities for efficient energy management in hybrid systems. Despite various research efforts for battery SOH estimation, many of them fall short of the demands for real-time automotive applications. Real-time SOH estimation is crucial for accurate battery fault diagnosis and maintaining precise estimation of the state of charge (SOC) and state of power (SOP), which are essential for the optimal functioning of hybrid systems. In this study, a fuzzy logic estimation method is deployed to determine the tire road friction coefficient (TRFC) and various control strategies are adopted to establish regenerative cut-off points. A MATLAB-based SOH estimation model was developed using a Kalman SOH estimator, which helps to observe the effects of different control strategies on the battery’s SOH. This approach enhances the accuracy and reliability of SOH estimation in real-time applications and improves the effectiveness of battery fault diagnosis. From the results, ANFIS outperformed standard methods, showing approximately 4–6% higher SOH retention across various driving cycles. Full article
Show Figures

Figure 1

28 pages, 8860 KiB  
Article
Active Torsional Vibration Suppression Strategy for Power-Split-HEV Driveline System Based on Dual-Loop Control
by Wei Zhang, Xiaocong Liang, Zhengda Han, Lei Bu, Jingang Liu, Bing Fu and Mozhang Jiang
Machines 2025, 13(5), 418; https://doi.org/10.3390/machines13050418 - 15 May 2025
Viewed by 548
Abstract
Power-split hybrid electric vehicles (power-split-HEVs) exhibit significant engine torque fluctuations due to their mechanical coupling with the driveline, leading to pronounced torsional vibration issues in the drive shaft. This study investigates an active torsional vibration suppression strategy based on drive motor control. First, [...] Read more.
Power-split hybrid electric vehicles (power-split-HEVs) exhibit significant engine torque fluctuations due to their mechanical coupling with the driveline, leading to pronounced torsional vibration issues in the drive shaft. This study investigates an active torsional vibration suppression strategy based on drive motor control. First, a dynamic model of the power-split-HEV driveline is established, and its intrinsic characteristics are analyzed. Subsequently, an engine excitation torque model is developed to identify the dominant response orders, while a vehicle dynamics model is constructed to elucidate the torsional vibration mechanisms in both hybrid and pure electric driving modes. Next, a torsional vibration feedback control framework is proposed, utilizing the electric motor as a secondary-channel torque disturbance compensator. Furthermore, a novel frequency-decoupled dual-loop control framework is proposed, with rigorous derivation of the sufficient conditions for decoupling. Based on this framework, two distinct vibration suppression algorithms are developed for the secondary-loop controller, each tailored for specific operational modes. Finally, the proposed algorithms are validated through simulation and hardware-in-the-loop (HIL) testing. The results demonstrate a torque fluctuation suppression ratio of up to 72.2%, confirming that the active suppression algorithm effectively mitigates driveline torsional vibration induced by engine harmonic torque disturbances. Full article
(This article belongs to the Special Issue Advances in Dynamic Analysis of Multibody Mechanical Systems)
Show Figures

Figure 1

31 pages, 3667 KiB  
Article
Analysis of the Life Cycle and Circular Economy Strategies for Batteries Adopted by the Main Electric Vehicle Manufacturers
by Rodrigo Sampaio Cintra, Lucas Veiga Avila, Marceli Adriane Schvartz, Walter Leal Filho, Rosley Anholon, Gustavo Hermínio Salati Marcondes de Moraes, Julio Cezar Mairesse Siluk, Gustavo da Silva Lisboa and Nisrin Naiel Dib Khaled
Sustainability 2025, 17(8), 3428; https://doi.org/10.3390/su17083428 - 11 Apr 2025
Viewed by 1490
Abstract
In response to escalating environmental concerns and the imperative for a transition to a more sustainable economy, the European Union enacted a new regulation on the electric battery market in July 2023. This regulation integrates the principles of the circular economy, as outlined [...] Read more.
In response to escalating environmental concerns and the imperative for a transition to a more sustainable economy, the European Union enacted a new regulation on the electric battery market in July 2023. This regulation integrates the principles of the circular economy, as outlined in the European Green Deal, addressing all phases of the battery life cycle, including the mining of raw materials, product design, production processes, reuse, and recycling. In light of this development, the principal manufacturers of electric vehicles (EVs) and hybrid electric vehicles (HEVs) have undertaken various circular economy (CE) and life cycle (LC) strategies. Their objective is to align their operations with these new regulatory requirements and enhance their sustainability credentials. The global automotive industry, encompassing thousands of entities with an annual turnover exceeding USD 3 trillion, is a significant economic sector. Within this industry, it is estimated that more than 50 manufacturers are involved in the production of EVs, ranging from established automakers to emerging startups. This study applies content analysis to obtain qualitative and quantitative information from data disclosed by companies and organizations, with a specific focus on entities that currently feature EVs or HEVs. The methodology involves examining publicly available reports and corporate disclosures to assess industry trends and regulatory compliance. For this purpose, the analysis selected the 10 largest EV manufacturers in the world, based on sales reports provided by the manufacturers themselves and their respective market shares, as reported by automotive news portals and blogs. The evaluation of their actions was derived from the annual sustainability reports of these companies, with the aim of identifying the practices already implemented and their anticipated contributions to extending battery life and minimizing environmental impact. Full article
Show Figures

Figure 1

30 pages, 7670 KiB  
Article
Comparative Analysis of Energy Consumption and Performance Metrics in Fuel Cell, Battery, and Hybrid Electric Vehicles Under Varying Wind and Road Conditions
by Ahmed Hebala, Mona I. Abdelkader and Rania A. Ibrahim
Technologies 2025, 13(4), 150; https://doi.org/10.3390/technologies13040150 - 9 Apr 2025
Viewed by 1916
Abstract
As global initiatives to reduce greenhouse gas emissions and combat climate change expand, electric vehicles (EVs) powered by fuel cells and lithium-ion batteries are gaining global recognition as solutions for sustainable transportation due to their high energy conversion efficiency. Considering the driving range [...] Read more.
As global initiatives to reduce greenhouse gas emissions and combat climate change expand, electric vehicles (EVs) powered by fuel cells and lithium-ion batteries are gaining global recognition as solutions for sustainable transportation due to their high energy conversion efficiency. Considering the driving range limitations of battery electric vehicles (BEVs) and the low efficiency of internal combustion engines (ICEs), fuel cell hybrid vehicles offer a compelling alternative for long-distance, low-emission driving with less refuelling time. To facilitate their wider scale adoption, it is essential to understand their energy performance through models that consider external weather effects, driving styles, road gradients, and their simultaneous interaction. This paper presents a microlevel, multicriteria assessment framework to investigate the performance of BEVs, fuel cell electric vehicles (FCEVs), and hybrid electric vehicles (HEVs), with a focus on energy consumption, drive systems, and emissions. Simulation models were developed using MATLAB 2021a Simulink environment, thus enabling the integration of standardized driving cycles with real-world wind and terrain variations. The results are presented for various trip scenarios, employing quantitative and qualitative analysis methods to identify the most efficient vehicle configuration, also validated through the simulation of three commercial EVs. Predictive modelling approaches are utilized to estimate a vehicle’s performance under unexplored conditions. Results indicate that trip conditions have a significant impact on the performance of all three vehicles, with HEVs emerging as the most efficient and balanced option, followed by FCEVs, making them strong candidates compared with BEVs for broader adoption in the transition toward sustainable transportation. Full article
(This article belongs to the Special Issue Next-Generation Distribution System Planning, Operation, and Control)
Show Figures

Figure 1

Back to TopTop