Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Glancing Incidence X-ray diffraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 8151 KB  
Article
Magnetron Sputter Deposition of Nanostructured AlN Thin Films
by Manohar Chirumamilla, Tobias Krekeler, Deyong Wang, Peter K. Kristensen, Martin Ritter, Vladimir N. Popok and Kjeld Pedersen
Appl. Nano 2023, 4(4), 280-292; https://doi.org/10.3390/applnano4040016 - 5 Oct 2023
Cited by 9 | Viewed by 3273
Abstract
Aluminum nitride (AlN) is a material of growing interest for power electronics, fabrication of sensors, micro-electromechanical systems, and piezoelectric generators. For the latter, the formation of nanowire arrays or nanostructured films is one of the emerging research directions. In the current work, nanostructured [...] Read more.
Aluminum nitride (AlN) is a material of growing interest for power electronics, fabrication of sensors, micro-electromechanical systems, and piezoelectric generators. For the latter, the formation of nanowire arrays or nanostructured films is one of the emerging research directions. In the current work, nanostructured AlN films manufactured with normal and glancing angle magnetron sputter depositions have been investigated with scanning and transmission electron microscopy, X-ray diffraction, atomic force microscopy, and optical spectroscopy. Growth of the nanostructures was realized utilizing metal seed particles (Ag, Au, and Al), allowing the control of the nucleation and following growth of AlN. It was demonstrated how variations of seed particle material and size can be used to tune the parameters of nanostructures and morphology of the AlN films. Using normal angle deposition allowed the growth of bud-shaped structures, which consisted of pillars/lamellae with wurtzite-like crystalline structures. Deposition at a glancing angle of 85° led to a film of individual nanostructures located near each other and tilted at an angle of 33° relative to the surface normal. Such films maintained a high degree of wurtzite-like crystallinity but had a more open structure and higher roughness than the nanostructured films grown at normal incidence deposition. The developed production strategies and recipes for controlling parameters of nanostructured films pave the way for the formation of matrices to be used in piezoelectric applications. Full article
(This article belongs to the Collection Feature Papers for Applied Nano)
Show Figures

Figure 1

11 pages, 3347 KB  
Article
Fabrication of CuO (p)–ZnO (n) Core–Shell Nanowires and Their H2-Sensing Properties
by Orhan Sisman, Dario Zappa, Valentin-Adrian Maraloiu and Elisabetta Comini
Materials 2023, 16(13), 4802; https://doi.org/10.3390/ma16134802 - 3 Jul 2023
Cited by 2 | Viewed by 2153
Abstract
Unlike the conventional one-dimensional (1D) core–shell nanowires (NWs) composed of p-type shells and n-type cores, in this work, an inverse design is proposed by depositing n-type ZnO (shell) layers on the surface of p-type CuO (core) NWs, to have [...] Read more.
Unlike the conventional one-dimensional (1D) core–shell nanowires (NWs) composed of p-type shells and n-type cores, in this work, an inverse design is proposed by depositing n-type ZnO (shell) layers on the surface of p-type CuO (core) NWs, to have a comprehensive understanding of their conductometric gas-sensing kinetics. The surface morphologies of bare and core–shell NWs were investigated by field emission scanning electron microscope (FE-SEM). The ZnO shell layer was presented by overlay images taken by electron dispersive X-ray spectroscopy (EDX) and high-resolution transmission electron microscopy (HRTEM). The pronounced crystalline plane peaks of ZnO were recorded in the compared glancing incident X-ray diffraction (GI-XRD) spectra of CuO and CuO–ZnO core–shell NWs. The ZnO shell layers broaden the absorption curve of CuO NWs in the UV-vis absorption spectra. As a result of the heterostructure formation, the intrinsic p-type sensing behavior of CuO NWs towards 250 and 500 ppm of hydrogen (H2) switched to n-type due to the deposition of ZnO shell layers, at 400 °C in dry airflow. Full article
(This article belongs to the Special Issue Advanced Materials for Gas Sensors: Performance and Application)
Show Figures

Figure 1

7 pages, 781 KB  
Article
Periodic Multilayer for X-ray Spectroscopy in the Li K Range
by Vladimir Polkonikov, Nikolai Chkhalo, Roman Pleshkov, Angelo Giglia, Nicolas Rividi, Emmanuelle Brackx, Karine Le Guen, Iyas Ismail and Philippe Jonnard
Appl. Sci. 2021, 11(14), 6385; https://doi.org/10.3390/app11146385 - 10 Jul 2021
Cited by 10 | Viewed by 2399
Abstract
X-ray spectroscopy of lithium is very difficult, even impossible, with wavelength dispersive spectrometers commonly deployed on scanning electron microscopes or electron microprobe analyzers. This is due to the absence of crystals and lack of efficient periodic multilayer for this spectral range, around 50 [...] Read more.
X-ray spectroscopy of lithium is very difficult, even impossible, with wavelength dispersive spectrometers commonly deployed on scanning electron microscopes or electron microprobe analyzers. This is due to the absence of crystals and lack of efficient periodic multilayer for this spectral range, around 50 eV. To address this issue, we propose using a Be/Si/Al multilayer having a period of about 29 nm. The multilayer was deposited by magnetron sputtering and its reflectivity measured as a function of the glancing angle in the spectral range of the Li K emission and as a function of the incident energy up to ~200 eV. This characterization demonstrates that the designed multilayer is suitable to efficiently perform spectroscopy in the range of the Li K emission in terms of reflectance (0.32 at 51.5 eV), bandwidth (around 3.5 eV) and rejection of high order diffracted radiation. Full article
(This article belongs to the Special Issue Investigation of Thin Films Using UV-X-Ray Reflectometry)
Show Figures

Figure 1

20 pages, 7968 KB  
Article
SnO2/TiO2 Thin Film n-n Heterostructures of Improved Sensitivity to NO2
by Piotr Nowak, Wojciech Maziarz, Artur Rydosz, Kazimierz Kowalski, Magdalena Ziąbka and Katarzyna Zakrzewska
Sensors 2020, 20(23), 6830; https://doi.org/10.3390/s20236830 - 29 Nov 2020
Cited by 22 | Viewed by 3997
Abstract
Thin-film n-n nanoheterostructures of SnO2/TiO2, highly sensitive to NO2, were obtained in a two-step process: (i) magnetron sputtering, MS followed by (ii) Langmuir-Blodgett, L–B, technique. Thick (200 nm) SnO2 base layers were deposited by MS and [...] Read more.
Thin-film n-n nanoheterostructures of SnO2/TiO2, highly sensitive to NO2, were obtained in a two-step process: (i) magnetron sputtering, MS followed by (ii) Langmuir-Blodgett, L–B, technique. Thick (200 nm) SnO2 base layers were deposited by MS and subsequently overcoated with a thin and discontinuous TiO2 film by means of L–B. Rutile nanopowder spread over the ethanol/chloroform/water formed a suspension, which was used as a source in L–B method. The morphology, crystallographic and electronic properties of the prepared sensors were studied by scanning electron microscopy, SEM, X-ray diffraction, XRD in glancing incidence geometry, GID, X-ray photoemission spectroscopy, XPS, and uv-vis-nir spectrophotometry, respectively. It was found that amorphous SnO2 films responded to relatively low concentrations of NO2 of about 200 ppb. A change of more than two orders of magnitude in the electrical resistivity upon exposure to NO2 was further enhanced in SnO2/TiO2 n-n nanoheterostructures. The best sensor responses RNO2/R0 were obtained at the lowest operating temperatures of about 120 °C, which is typical for nanomaterials. Response (recovery) times to 400 ppb NO2 were determined as a function of the operating temperature and indicated a significant decrease from 62 (42) s at 123 °C to 12 (19) s at 385 °C A much smaller sensitivity to H2 was observed, which might be advantageous for selective detection of nitrogen oxides. The influence of humidity on the NO2 response was demonstrated to be significantly below 150 °C and systematically decreased upon increase in the operating temperature up to 400 °C. Full article
Show Figures

Figure 1

20 pages, 7444 KB  
Article
Glancing Angle Deposition and Growth Mechanism of Inclined AlN Nanostructures Using Reactive Magnetron Sputtering
by Samiran Bairagi, Kenneth Järrendahl, Fredrik Eriksson, Lars Hultman, Jens Birch and Ching-Lien Hsiao
Coatings 2020, 10(8), 768; https://doi.org/10.3390/coatings10080768 - 7 Aug 2020
Cited by 30 | Viewed by 7852
Abstract
Glancing angle deposition (GLAD) of AlN nanostructures was performed at room temperature by reactive magnetron sputtering in a mixed gas atmosphere of Ar and N2. The growth behavior of nanostructures shows strong dependence on the total working pressure and angle of [...] Read more.
Glancing angle deposition (GLAD) of AlN nanostructures was performed at room temperature by reactive magnetron sputtering in a mixed gas atmosphere of Ar and N2. The growth behavior of nanostructures shows strong dependence on the total working pressure and angle of incoming flux. In GLAD configuration, the morphology changed from coalesced, vertical nanocolumns with faceted terminations to highly inclined, fan-like, layered nanostructures (up to 38°); while column lengths decreased from around 1743 to 1068 nm with decreasing pressure from 10 to 1.5 mTorr, respectively. This indicates a change in the dominant growth mechanism from ambient flux dependent deposition to directional ballistic shadowing deposition with decreasing working pressures, which is associated with the change of energy and incident angle of incoming reactive species. These results were corroborated using simulation of metal transport (SiMTra) simulations performed at similar working pressures using Ar and N separately, which showed the average particle energy and average angle of incidence decreased while the total average scattering angle of the metal flux arriving at substrate increased with increasing working pressures. Observing the crystalline orientation of GLAD deposited wurtzite AlN nanocolumns using X-ray diffraction (XRD), pole-figure measurements revealed c-axis <0001> growth towards the direction of incoming flux and a transition from fiber-like to biaxial texture took place with increasing working pressures. Under normal deposition conditions, AlN layer morphology changed from {0001} to {101¯1} with increasing working pressure because of kinetic energy-driven growth. Full article
(This article belongs to the Special Issue Physical Vapor Deposition)
Show Figures

Figure 1

12 pages, 3217 KB  
Article
Synthesis of Nanoporous TiO2 with the Use of Diluted Hydrogen Peroxide Solution and Its Application in Gas Sensing
by Orhan Sisman, Nicola Poli, Dario Zappa and Elisabetta Comini
Coatings 2019, 9(10), 681; https://doi.org/10.3390/coatings9100681 - 19 Oct 2019
Cited by 24 | Viewed by 4655
Abstract
The chemical routes of metal oxidation in presence of hydrogen peroxide solutions are tailor-made for the synthesis of biocompatible metal oxide surfaces with clean intermediate and end products, such as oxides, hydroxides, hydrogen and water. The hydrolysis of titanium in hydrogen peroxide solutions [...] Read more.
The chemical routes of metal oxidation in presence of hydrogen peroxide solutions are tailor-made for the synthesis of biocompatible metal oxide surfaces with clean intermediate and end products, such as oxides, hydroxides, hydrogen and water. The hydrolysis of titanium in hydrogen peroxide solutions is particularly interesting for medical applications, forming micro- and nanoscale titania surfaces. In this paper, the content of the hydrolysis solution is revised, allowing the fabrication of gas sensor devices based on nanoporous titania. Nanopore and microcrack formations were discussed in detail by monitoring the structural changes on the thin film surface with field-emission scanning electron microscopy (FE-SEM). A stable rutile crystalline phase was detected by glancing incidence X-ray diffraction (GI-XRD) measurement after repetitive hydrothermal processes. Electrical conductance measurements were carried out at high temperatures (400–600 °C) under humid airflow (40% RH@20 °C) with the injection of various concentrations of a wide set of test compounds (C2H3N, CO, H2, NO2, C2H6O), to observe the sensing capabilities of the material. Furthermore, the humidity effects on the sensing properties toward H2, CO, and C2H6O have been discussed. Full article
(This article belongs to the Special Issue Metal Oxide Films and Their Applications)
Show Figures

Figure 1

5 pages, 817 KB  
Proceeding Paper
V2O5 Thin Films as Nitrogen Dioxide Sensors
by Krystyna Schneider and Wojciech Maziarz
Proceedings 2018, 2(13), 759; https://doi.org/10.3390/proceedings2130759 - 3 Dec 2018
Cited by 5 | Viewed by 1847
Abstract
V2O5 thin films were deposited onto insulating support (either fused silica or alumina) by means of rf reactive sputtering from a metallic vanadium target. Argon-oxygen gas mixtures of different compositions controlled by the flow rates were used for sputtering. X-ray [...] Read more.
V2O5 thin films were deposited onto insulating support (either fused silica or alumina) by means of rf reactive sputtering from a metallic vanadium target. Argon-oxygen gas mixtures of different compositions controlled by the flow rates were used for sputtering. X-ray diffraction at glancing incidence (GIXD) and Scanning Electronic Microscopy (SEM) were used for structural and phase characterization. Optical transmittance and reflectance spectra were recorded with a Lambda 19 Perkin-Elmer double spectrophotometer. Thickness of the films was determined from the profilometry. It has been confirmed by GIXD that the deposited films are composed of V2O5 phase. The estimated optical band gap was ca. 2.5 eV. The gas sensing properties of V2O5 thin films were investigated at RT-690 K towards NO2 gas of 0–20 ppm. The results indicated that material exhibited good response and reversibility towards nitrogen dioxide. Full article
(This article belongs to the Proceedings of EUROSENSORS 2018)
Show Figures

Figure 1

11 pages, 5556 KB  
Article
V2O5 Thin Films as Nitrogen Dioxide Sensors
by Krystyna Schneider and Wojciech Maziarz
Sensors 2018, 18(12), 4177; https://doi.org/10.3390/s18124177 - 28 Nov 2018
Cited by 46 | Viewed by 6418
Abstract
Vanadium pentoxide thin films were deposited onto insulating support by means of rf reactive sputtering from a metallic vanadium target. Argon-oxygen gas mixtures of different compositions controlled by the flow rates were used for sputtering. X-ray diffraction at glancing incidence (GIXD) and Scanning [...] Read more.
Vanadium pentoxide thin films were deposited onto insulating support by means of rf reactive sputtering from a metallic vanadium target. Argon-oxygen gas mixtures of different compositions controlled by the flow rates were used for sputtering. X-ray diffraction at glancing incidence (GIXD) and Scanning Electronic Microscopy (SEM) were used for structural and phase characterization. Thickness of the films was determined by the profilometry. It has been confirmed by GIXD that the deposited films are composed of V2O5 phase. The gas sensing properties of V2O5 thin films were investigated at temperatures from range 410–617 K upon NO2 gas of 4–20 ppm. The investigated material exhibited good response and reversibility towards nitrogen dioxide. The effect of metal-insulator transition (MIT) on sensor performance has been observed and discussed for the first time. It was found that a considerable increase of the sensor sensitivity occured above 545 K, which is related to postulated metal-insulator transition. Full article
(This article belongs to the Special Issue Eurosensors 2018 Selected Papers)
Show Figures

Figure 1

16 pages, 4913 KB  
Article
Uncertainty of the X-ray Diffraction (XRD) sin2 ψ Technique in Measuring Residual Stresses of Physical Vapor Deposition (PVD) Hard Coatings
by Quanshun Luo and Shicai Yang
Coatings 2017, 7(8), 128; https://doi.org/10.3390/coatings7080128 - 20 Aug 2017
Cited by 38 | Viewed by 23800
Abstract
Residual stresses of physical vapor deposition (PVD) hard coatings can be measured using X-ray diffraction (XRD) methods under either conventional d-sin2 ψ mode or glancing incident (GIXRD) mode, in which substantial uncertainties exist depending on the applied diffraction parameters. This paper [...] Read more.
Residual stresses of physical vapor deposition (PVD) hard coatings can be measured using X-ray diffraction (XRD) methods under either conventional d-sin2 ψ mode or glancing incident (GIXRD) mode, in which substantial uncertainties exist depending on the applied diffraction parameters. This paper reports systematic research on the effect of the two analytical modes, as well as the anisotropic elastic modulus, on the measured residual stress values. A magnetron sputtered TiN grown on hardened tool steel was employed as the sample coating, to measure its residual stress using various diffraction peaks from {111} to {422} acquired at a range of incident glancing angles from 2° to 35°. The results were interpreted in terms of the effective X-ray penetration depth, which has been found to be determined predominantly by the incident glancing angle. In the d-sin2 ψ mode, the results present an approximate residual stress over a depth of effective X-ray penetration, and it is recommended to use a diffraction peak of high-index lattice plane from {311} to {422}. The GIXRD mode helps determine a depth profile of residual stress, since the measured residual stress depends strongly on the X-ray penetration. In addition, the anisotropy of elastic modulus shows limited influence on the calculated residual stress value. Full article
(This article belongs to the Special Issue Mechanical Behavior of Coatings and Engineered Surfaces)
Show Figures

Figure 1

17 pages, 9828 KB  
Article
From Intermolecular Interactions to Texture in Polycrystalline Surfaces of 1,ω-alkanediols (ω = 10–13)
by Gilgamesh Luis-Raya, Màrius Ramírez-Cardona, Gabriel Luna-Bárcenas, Martín A. Hernández-Landaverde, Adair Jiménez-Nieto, Jose Luis García-Rivas, Beatriz Liliana España-Sánchez and Isaac C. Sanchez
Molecules 2017, 22(6), 956; https://doi.org/10.3390/molecules22060956 - 8 Jun 2017
Cited by 4 | Viewed by 4075
Abstract
Differences on herringbone molecular arrangement in two forms of long-chain 1,ω-alkanediols (CnH2n+2O2 with n = 10, 11, 12, 13) are explained from the analysis of O-H···O hydrogen-bond sequences in infinite chains and the role of a [...] Read more.
Differences on herringbone molecular arrangement in two forms of long-chain 1,ω-alkanediols (CnH2n+2O2 with n = 10, 11, 12, 13) are explained from the analysis of O-H···O hydrogen-bond sequences in infinite chains and the role of a C-H···O intramolecular hydrogen-bond in stabilization of a gauche defect, as well as the inter-grooving effectiveness on molecular packing. GIXD (Glancing Incidence X-ray Diffraction) experiments were conducted on polycrystalline monophasic samples. Diffracted intensities were treated with the multi-axial March-Dollase method to correlate energetic and geometrical features of molecular interactions with the crystalline morphology and textural pattern of samples. The monoclinic (P21/c, Z = 2) crystals of the even-numbered members (n = 10, 12; DEDOL and DODOL, respectively) are diametrical prisms with combined form {104}/{-104}/{001} and present a two-fold platelet-like preferred orientation, whereas orthorhombic (P212121, Z = 4) odd-numbered members (n = 11, 13; UNDOL and TRDOL, respectively) present a dominant needle-like orientation on direction [101] (fiber texture). We show that crystalline structures of medium complexity and their microstructures can be determined from rapid GIXD experiments from standard radiation, combined with molecular replacement procedure using crystal structures of compounds with higher chain lengths as reference data. Full article
Show Figures

Graphical abstract

Back to TopTop