Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = Gla-rich protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 523 KiB  
Article
Gla-Rich Protein Is Associated with Vascular Calcification, Inflammation, and Mineral Markers in Peritoneal Dialysis Patients
by Catarina Marreiros, Carla Viegas, Anabela Malho Guedes, Ana Paula Silva, Ana Catarina Águas, Marília Faísca, Leon Schurgers and Dina Costa Simes
J. Clin. Med. 2024, 13(23), 7429; https://doi.org/10.3390/jcm13237429 - 6 Dec 2024
Viewed by 1629
Abstract
Background/Objectives: Vascular calcification (VC) is a crucial risk factor for cardiovascular diseases (CVD), particularly in chronic kidney disease (CKD) populations. However, the specific relationship between VC and end-stage renal disease (ESRD) patients undergoing peritoneal dialysis (PD) remains to be fully understood. The [...] Read more.
Background/Objectives: Vascular calcification (VC) is a crucial risk factor for cardiovascular diseases (CVD), particularly in chronic kidney disease (CKD) populations. However, the specific relationship between VC and end-stage renal disease (ESRD) patients undergoing peritoneal dialysis (PD) remains to be fully understood. The identification of new biomarkers to improve VC diagnosis and monitoring would significantly impact cardiovascular risk management in these high-risk patients. Gla-rich protein (GRP) is a VC inhibitor and an anti-inflammatory agent and thus is a potential VC marker in CKD. Here we explored the potential role of GRP as a marker for CVD and investigated the impact of VC in 101 PD patients. Methods: Circulating total Gla-rich protein (tGRP) was quantified in serum and in 24 h dialysate samples. VC score (VCS) was determined using the Adragão method. Results: Serum tGRP was negatively associated with VCS, serum calcium (Ca), phosphate (P), and high-sensitivity C-reactive protein (hsCRP), while it was positively associated with magnesium (Mg). A total of 35.6% of PD patients presented with extensive calcifications (VCS ≥ 3), and the lowest tGRP serum levels were present in this group (419.4 ± 198.5 pg/mL). tGRP in the 24 h dialysate was also negatively associated with VCS and with serum Ca and P. Moreover, serum Ca, P, and VCS were identified as independent determinants of serum tGRP levels. Conclusions: The association of serum tGRP with VC, mineral, and inflammation markers reinforces its potential use as a novel VC biomarker in CKD patients undergoing PD. Full article
(This article belongs to the Section Vascular Medicine)
Show Figures

Figure 1

22 pages, 6103 KiB  
Article
Gla Rich Protein (GRP) Mediates Vascular Smooth Muscle Cell (VSMC) Osteogenic Differentiation, Extracellular Vesicle (EV) Calcification Propensity, and Immunomodulatory Properties
by Carla Viegas, Joana Carreira, Teresa M. Maia, Anjos L. Macedo, António P. Matos, José Neves and Dina Simes
Int. J. Mol. Sci. 2024, 25(22), 12406; https://doi.org/10.3390/ijms252212406 - 19 Nov 2024
Cited by 1 | Viewed by 1473
Abstract
Vascular calcification (VC) is a complex process involving vascular smooth muscle cell (VSMC) osteogenic differentiation, inflammation, and extracellular vesicle (EV) calcification and communication networks. Gla rich protein (GRP) is a calcification inhibitor involved in most of these processes. However, the molecular mechanism of [...] Read more.
Vascular calcification (VC) is a complex process involving vascular smooth muscle cell (VSMC) osteogenic differentiation, inflammation, and extracellular vesicle (EV) calcification and communication networks. Gla rich protein (GRP) is a calcification inhibitor involved in most of these processes. However, the molecular mechanism of GRP in VC and the specific characteristics, cargo, and functionality of calcifying EVs require further elucidation. Here, we use a combination of human ex vivo aortic fragments and primary vascular smooth muscle cell (VSMC) models to obtain new information on GRP function in VC and EVs released by VSMCs. We demonstrate that GRP inhibits VSMC osteogenic differentiation through downregulation of bone-related proteins and upregulation of mineralization inhibitors, with decreased mineral crystallinity in EVs deposited into the tissue extracellular matrix (ECM). EVs isolated by ultracentrifugation at 30K and 100K from the cell media (CM) and deposited in the ECM from control (CTR) and mineralizing (MM) VSMCs were biochemically, physically, and proteomically characterized. Four different EV populations were identified with shared markers commonly present in all EVs but with unique protein cargo and specific molecular profiles. Comparative proteomics identified several regulated proteins specifically loaded into MM EV populations associated with multiple processes involved in VC. Functional analysis demonstrated that 30K and 100K ECM-MM EVs with higher calcium and lower GRP levels induced macrophage inflammation. Our findings reinforce the functional relevance of GRP in multiple VC processes and suggest that ECM EVs released under calcification stress function as a new signaling axis on the calcification–inflammation cycle. Full article
Show Figures

Figure 1

14 pages, 1004 KiB  
Article
The Roles of Vitamin D Levels, Gla-Rich Protein (GRP) and Matrix Gla Protein (MGP), and Inflammatory Markers in Predicting Mortality in Intensive Care Patients: A New Biomarker Link?
by Fatih Seğmen, Semih Aydemir, Onur Küçük and Recep Dokuyucu
Metabolites 2024, 14(11), 620; https://doi.org/10.3390/metabo14110620 - 13 Nov 2024
Cited by 4 | Viewed by 1542
Abstract
Objectives: Identifying reliable biomarkers to predict mortality in critically ill patients is crucial for optimizing management in intensive care units (ICUs). Inflammatory and metabolic markers are increasingly recognized for their prognostic value. This study aims to evaluate the association of various inflammatory and [...] Read more.
Objectives: Identifying reliable biomarkers to predict mortality in critically ill patients is crucial for optimizing management in intensive care units (ICUs). Inflammatory and metabolic markers are increasingly recognized for their prognostic value. This study aims to evaluate the association of various inflammatory and metabolic markers with ICU mortality. Methods: This prospective observational study was conducted from January 2023 to January 2024 in the City Hospital’s ICU. A total of 160 critically ill patients were enrolled. Laboratory parameters, including white blood cell (WBC) count, red cell distribution width (RDW), platelet count, neutrophil count, mean platelet volume (MPV), monocyte count, lymphocyte count, procalcitonin (PCT), C-reactive protein (CRP), calcium (Ca++), and vitamin D levels, were analyzed. Additionally, ratios such as the platelet-to-lymphocyte ratio (PLR), neutrophil-to-lymphocyte ratio (NLR), systemic inflammatory index (SII), and pan-immune-inflammation value (PIV) were calculated. Plasma levels of Gla-rich protein (GRP) and dephosphorylated uncarboxylated matrix Gla protein (dp-ucMGP) were measured using ELISA. Results: The mean age of the patients included in the study was 60.5 ± 15.8 years. Cardiovascular disease was present in 72 patients (45%), respiratory system disease in 58 (36%), and chronic kidney disease (CKD) in 38 (24%). Additionally, 61 patients (38%) had diabetes, and 68 (42%) had hypertension. Inflammatory markers, including PLR, NLR, and PIV, were all significantly higher in non-survivors, while calcium and vitamin D levels were lower (p < 0.05). Higher WBC, RDW, neutrophil count, PLR, NLR, PIV, CRP, procalcitonin, GRP, and dp-ucMGP levels were positively correlated with longer hospital stays and increased mortality. In contrast, platelet and lymphocyte counts were negatively correlated with both outcomes (p < 0.05). Vitamin D levels showed an inverse relationship with both hospital stay and mortality, indicating that lower levels were associated with worse outcomes (p < 0.05). In multiple logistic regression analysis, elevated WBC count (OR = 1.20, p = 0.02), RDW (OR = 1.35, p = 0.01), neutrophil count (OR = 1.25, p = 0.01), MPV (OR = 1.20, p = 0.02), PLR (OR = 1.30, p = 0.01), NLR (OR = 1.40, p = 0.001), PIV (OR = 1.50, p = 0.001), CRP (OR = 1.32, p = 0.01), procalcitonin (OR = 1.45, p = 0.001), GRP (OR = 1.40, p = 0.001), and dp-ucMGP (OR = 1.30, p = 0.001) levels were significantly associated with increased mortality. Conclusions: Inflammatory and metabolic markers, particularly NLR, PLR, PIV, GRP, and dp-ucMGP, are strong predictors of mortality in ICU patients. These markers provide valuable insights for risk stratification and early identification of high-risk patients, potentially guiding more targeted interventions to improve outcomes. Full article
(This article belongs to the Special Issue The Interplay Between Inflammation and Metabolism in Disease)
Show Figures

Figure 1

9 pages, 590 KiB  
Article
Two Members of Vitamin-K-Dependent Proteins, Gla-Rich Protein (GRP) and Matrix Gla Protein (MGP), as Possible New Players in the Molecular Mechanism of Osteoarthritis
by Burhan Kurtulus, Numan Atilgan, Mehmet Yilmaz and Recep Dokuyucu
J. Clin. Med. 2024, 13(17), 5159; https://doi.org/10.3390/jcm13175159 - 30 Aug 2024
Cited by 2 | Viewed by 1606
Abstract
Objectives: The pathophysiology of osteoarthritis is mainly unknown. Matrix Gla protein (MGP) and Gla-rich protein (GRP) are both vitamin-K-dependent mineralization inhibitors. In this study, we aimed to compare the levels of MGP and GRP in the synovial fluid of osteoarthritic (OA) and non-osteoarthritic [...] Read more.
Objectives: The pathophysiology of osteoarthritis is mainly unknown. Matrix Gla protein (MGP) and Gla-rich protein (GRP) are both vitamin-K-dependent mineralization inhibitors. In this study, we aimed to compare the levels of MGP and GRP in the synovial fluid of osteoarthritic (OA) and non-osteoarthritic (non-OA) knee joints. Materials and Methods: Two groups were formed, with one consisting of patients with OA and the other non-OA, serving as a control group. The non-OA group included individuals who had arthroscopic surgery for non-cartilage-related issues. In the OA group, all participants had undergone total knee arthroplasty because of grade 4 primary degenerative osteoarthritis. During the operation, at least 1 mL of knee synovial fluid was collected. The GRP and MGP levels in the synovial fluid were measured using an ELISA kit. Results: The mean age in the OA group (62.03 ± 11.53 years) was significantly higher than that in the non-OA group (47.70 ± 14.49 years; p = 0.0001). GRP levels were significantly higher in the OA group (419.61 ± 70.14 ng/mL) compared to the non-OA group (382.18 ± 62.34 ng/mL; p = 0.037). MGP levels were significantly higher in the OA group (67.76 ± 11.36 ng/mL) compared to the non-OA group (53.49 ± 18.28 ng/mL; p = 0.001). Calcium levels (Ca++) were also significantly higher in the OA group (12.89 ± 3.43 mg/dL) compared to the non-OA group (9.51 ± 2.15 mg/dL; p = 0.0001). There was a significantly positive correlation between MGP levels and age (p = 0.011, R = +0.335). Linear regression analysis was performed to determine the effect of age on MGP levels (p = 0.011, R-Square = 0.112). The dependent variable in this analysis was MGP (ng/mL), and age was the predictor. Conclusions: In conclusion, both GRP and MGP are potentially usable biomarkers in osteoarthritis. However, GRP seems to be more valuable because it is not associated with age. In the future, both proteins could provide important contributions to the diagnosis and treatment of osteoarthritis. Full article
Show Figures

Figure 1

24 pages, 1717 KiB  
Review
Extrahepatic Vitamin K-Dependent Gla-Proteins–Potential Cardiometabolic Biomarkers
by Bistra Galunska, Yoto Yotov, Miglena Nikolova and Atanas Angelov
Int. J. Mol. Sci. 2024, 25(6), 3517; https://doi.org/10.3390/ijms25063517 - 20 Mar 2024
Cited by 3 | Viewed by 2925
Abstract
One mechanism to regulate pathological vascular calcification (VC) is its active inhibition. Loss or inactivation of endogenic inhibitors is a major inductor of VC. Such inhibitors are proteins rich in gamma-glutamyl residues (Gla-proteins), whose function strongly depends on vitamin K. The current narrative [...] Read more.
One mechanism to regulate pathological vascular calcification (VC) is its active inhibition. Loss or inactivation of endogenic inhibitors is a major inductor of VC. Such inhibitors are proteins rich in gamma-glutamyl residues (Gla-proteins), whose function strongly depends on vitamin K. The current narrative review is focused on discussing the role of extrahepatic vitamin K-dependent Gla-proteins (osteocalcin, OC; matrix Gla-protein, MGP; Gla-rich protein, GRP) in cardio-vascular pathology. Gla-proteins possess several functionally active forms whose role in the pathogenesis of VC is still unclear. It is assumed that low circulating non-phosphorylated MGP is an indicator of active calcification and could be a novel biomarker of prevalent VC. High circulating completely inactive MGP is proposed as a novel risk factor for cardio-vascular events, disease progression, mortality, and vitamin K deficiency. The ratio between uncarboxylated (ucOC) and carboxylated (cOC) OC is considered as an indicator of vitamin K status indirectly reflecting arterial calcium. Despite the evidence that OC is an important energy metabolic regulator, its role on global cardio-vascular risk remains unclear. GRP acts as a molecular mediator between inflammation and calcification and may emerge as a novel biomarker playing a key role in these processes. Gla-proteins benefit clinical practice as inhibitors of VC, modifiable by dietary factors. Full article
Show Figures

Figure 1

14 pages, 1723 KiB  
Review
Vitamin K and Calcium Chelation in Vascular Health
by Jan O. Aaseth, Urban Alehagen, Trine Baur Opstad and Jan Alexander
Biomedicines 2023, 11(12), 3154; https://doi.org/10.3390/biomedicines11123154 - 27 Nov 2023
Cited by 4 | Viewed by 5465
Abstract
The observation that the extent of artery calcification correlates with the degree of atherosclerosis was the background for the alternative treatment of cardiovascular disease with chelator ethylenediamine tetraacetate (EDTA). Recent studies have indicated that such chelation treatment has only marginal impact on the [...] Read more.
The observation that the extent of artery calcification correlates with the degree of atherosclerosis was the background for the alternative treatment of cardiovascular disease with chelator ethylenediamine tetraacetate (EDTA). Recent studies have indicated that such chelation treatment has only marginal impact on the course of vascular disease. In contrast, endogenous calcium chelation with removal of calcium from the cardiovascular system paralleled by improved bone mineralization exerted, i.e., by matrix Gla protein (MGP) and osteocalcin, appears to significantly delay the development of cardiovascular diseases. After post-translational vitamin-K-dependent carboxylation of glutamic acid residues, MGP and other vitamin-K-dependent proteins (VKDPs) can chelate calcium through vicinal carboxyl groups. Dietary vitamin K is mainly provided in the form of phylloquinone from green leafy vegetables and as menaquinones from fermented foods. Here, we provide a review of clinical studies, addressing the role of vitamin K in cardiovascular diseases, and an overview of vitamin K kinetics and biological actions, including vitamin-K-dependent carboxylation and calcium chelation, as compared with the action of the exogenous (therapeutic) chelator EDTA. Consumption of vitamin-K-rich foods and/or use of vitamin K supplements appear to be a better preventive strategy than EDTA chelation for maintaining vascular health. Full article
(This article belongs to the Special Issue Advances in Cardiovascular Diseases (CVD))
Show Figures

Figure 1

10 pages, 707 KiB  
Article
First Comparative Evaluation of Short-Chain Fatty Acids and Vitamin-K-Dependent Proteins Levels in Mother–Newborn Pairs at Birth
by Tamás Ilyés, Marius Pop, Mihai Surcel, Daria M. Pop, Răzvan Rusu, Ciprian N. Silaghi, Gabriela C. Zaharie and Alexandra M. Crăciun
Life 2023, 13(3), 847; https://doi.org/10.3390/life13030847 - 21 Mar 2023
Cited by 4 | Viewed by 2598
Abstract
Background: The interplay between vitamin K (vitK) (as carboxylation cofactor, partially produced by the gut microbiota) and short-chain fatty acids (SCFAs), the end-product of fiber fermentation in the gut, has never been assessed in mother–newborn pairs, although newborns are considered vitK deficient and [...] Read more.
Background: The interplay between vitamin K (vitK) (as carboxylation cofactor, partially produced by the gut microbiota) and short-chain fatty acids (SCFAs), the end-product of fiber fermentation in the gut, has never been assessed in mother–newborn pairs, although newborns are considered vitK deficient and with sterile gut. Methods: We collected venous blood from 45 healthy mothers with uncomplicated term pregnancies and umbilical cord blood from their newborns at birth. The concentrations of total SCFAs and hepatic/extra-hepatic vitK-dependent proteins (VKDPs), as proxies of vitK status were assayed: undercarboxylated and total matrix Gla protein (ucMGP and tMGP), undercarboxylated osteocalcin (ucOC), undercarboxylated Gla-rich protein (ucGRP), and protein induced by vitK absence II (PIVKA-II). Results: We found significantly higher ucOC (18.6-fold), ucMGP (9.2-fold), and PIVKA-II (5.6-fold) levels in newborns, while tMGP (5.1-fold) and SCFAs (2.4-fold) were higher in mothers, and ucGRP was insignificantly modified. In mother–newborn pairs, only ucGRP (r = 0.746, p < 0.01) and SCFAs (r = 0.428, p = 0.01) levels were correlated. Conclusions: We report for the first time the presence of SCFAs in humans at birth, probably transferred through the placenta to the fetus. The increased circulating undercarboxylated VKDPSs in newborns revealed a higher vitamin K deficiency at the extrahepatic level compared to liver VKDPs. Full article
(This article belongs to the Section Reproductive and Developmental Biology)
Show Figures

Figure 1

20 pages, 1550 KiB  
Review
Targeting a Silent Disease: Vascular Calcification in Chronic Kidney Disease
by Catarina Marreiros, Carla Viegas and Dina Simes
Int. J. Mol. Sci. 2022, 23(24), 16114; https://doi.org/10.3390/ijms232416114 - 17 Dec 2022
Cited by 28 | Viewed by 8759
Abstract
Chronic kidney disease (CKD) patients have a higher risk of developing early cardiovascular disease (CVD). Although vascular calcification (VC) is one of the strongest predictors of CVD risk, its diagnosis among the CKD population remains a serious clinical challenge. This is mainly due [...] Read more.
Chronic kidney disease (CKD) patients have a higher risk of developing early cardiovascular disease (CVD). Although vascular calcification (VC) is one of the strongest predictors of CVD risk, its diagnosis among the CKD population remains a serious clinical challenge. This is mainly due to the complexity of VC, which results from various interconnected pathological mechanisms occurring at early stages and at multiples sites, affecting the medial and intimal layers of the vascular tree. Here, we review the most used and recently developed imaging techniques, here referred to as imaging biomarkers, for VC detection and monitoring, while discussing their strengths and limitations considering the specificities of VC in a CKD context. Although imaging biomarkers have a crucial role in the diagnosis of VC, with important insights into CVD risk, circulating biomarkers represent an added value by reflecting the molecular dynamics and mechanisms involved in VC pathophysiological pathways, opening new avenues into the early detection and targeted interventions. We propose that a combined strategy using imaging and circulating biomarkers with a role in multiple VC molecular mechanisms, such as Fetuin-A, Matrix Gla protein, Gla-rich protein and calciprotein particles, should represent high prognostic value for management of CVD risk in the CKD population. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

14 pages, 2825 KiB  
Article
Deletion of the col-26 Transcription Factor Gene and a Point Mutation in the exo-1 F-Box Protein Gene Confer Sorbose Resistance in Neurospora crassa
by Kenshi Hirai, Takuya Idemoto, Shiho Kato, Akihiko Ichiishi, Fumiyasu Fukumori and Makoto Fujimura
J. Fungi 2022, 8(11), 1169; https://doi.org/10.3390/jof8111169 - 6 Nov 2022
Cited by 1 | Viewed by 2397
Abstract
L-Sorbose induces hyperbranching of hyphae, which results in colonial growth in Neurospora crassa. The sor-4 gene, which encodes a glucose sensor that acts in carbon catabolite repression (CCR), has been identified as a sorbose resistance gene. In this study, we found that [...] Read more.
L-Sorbose induces hyperbranching of hyphae, which results in colonial growth in Neurospora crassa. The sor-4 gene, which encodes a glucose sensor that acts in carbon catabolite repression (CCR), has been identified as a sorbose resistance gene. In this study, we found that the deletion mutant of col-26, which encodes an AmyR-like transcription factor that acts in CCR, displayed sorbose resistance. In contrast, the deletion mutants of other CCR genes, such as a hexokinase (hxk-2), an AMP-activated S/T protein kinase (prk-10), and a transcription factor (cre-1), showed no sorbose resistance. Double mutant analysis revealed that the deletion of hxk-2, prk-10, and cre-1 did not affect the sorbose resistance of the col-26 mutant. Genes for a glucoamylase (gla-1), an invertase (inv), and glucose transporters (glt-1 and hgt-1) were highly expressed in the cre-1 mutant, even in glucose-rich conditions, but this upregulation was suppressed in the Δcre-1; Δcol-26a double-deletion mutant. Furthermore, we found that a dgr-2(L1)a mutant with a single amino-acid substitution, S11L, in the F-box protein exo-1 displayed sorbose resistance, unlike the deletion mutants of exo-1, suggesting that the function of exo-1 is crucial for the resistance. Our data strongly suggest that CCR directly participates in sorbose resistance, and that col-26 and exo-1 play important roles in regulating the amylase and glucose transporter genes during CCR. Full article
Show Figures

Figure 1

21 pages, 6236 KiB  
Article
Dysregulation of Immune Response Mediators and Pain-Related Ion Channels Is Associated with Pain-like Behavior in the GLA KO Mouse Model of Fabry Disease
by Marlene Spitzel, Elise Wagner, Maximilian Breyer, Dorothea Henniger, Mehtap Bayin, Lukas Hofmann, Daniela Mauceri, Claudia Sommer and Nurcan Üçeyler
Cells 2022, 11(11), 1730; https://doi.org/10.3390/cells11111730 - 24 May 2022
Cited by 14 | Viewed by 3907
Abstract
Fabry disease (FD) is a rare life-threatening disorder caused by deficiency of the alpha-galactosidase A (GLA) enzyme with a characteristic pain phenotype. Impaired GLA production or function leads to the accumulation of the cell membrane compound globotriaosylceramide (Gb3) in the neurons of the [...] Read more.
Fabry disease (FD) is a rare life-threatening disorder caused by deficiency of the alpha-galactosidase A (GLA) enzyme with a characteristic pain phenotype. Impaired GLA production or function leads to the accumulation of the cell membrane compound globotriaosylceramide (Gb3) in the neurons of the dorsal root ganglia (DRG) of FD patients. Applying immunohistochemistry (IHC) and quantitative real-time polymerase chain reaction (qRT PCR) analysis on DRG tissue of the GLA knockout (KO) mouse model of FD, we address the question of how Gb3 accumulation may contribute to FD pain and focus on the immune system and pain-associated ion channel gene expression. We show a higher Gb3 load in the DRG of young (<6 months) (p < 0.01) and old (≥12 months) (p < 0.001) GLA KO mice compared to old wildtype (WT) littermates, and an overall suppressed immune response in the DRG of old GLA KO mice, represented by a reduced number of CD206+ macrophages (p < 0.01) and lower gene expression levels of the inflammation-associated targets interleukin(IL)1b (p < 0.05), IL10 (p < 0.001), glial fibrillary acidic protein (GFAP) (p < 0.05), and leucine rich alpha-2-glycoprotein 1 (LRG1) (p < 0.01) in the DRG of old GLA KO mice compared to old WT. Dysregulation of immune-related genes may be linked to lower gene expression levels of the pain-associated ion channels calcium-activated potassium channel 3.1 (KCa3.1) and transient receptor potential ankyrin 1 channel (TRPA1). Ion channel expression might further be disturbed by impaired sphingolipid recruitment mediated via the lipid raft marker flotillin-1 (FLOT1). This impairment is represented by an increased number of FLOT1+ DRG neurons with a membranous expression pattern in old GLA KO mice compared to young GLA KO, young WT, and old WT mice (p < 0.001 each). Further, we provide evidence for aberrant behavior of GLA KO mice, which might be linked to dysregulated ion channel gene expression levels and disturbed FLOT1 distribution patterns. Behavioral testing revealed mechanical hypersensitivity in young (p < 0.01) and old (p < 0.001) GLA KO mice compared to WT, heat hypersensitivity in young GLA KO mice (p < 0.001) compared to WT, age-dependent heat hyposensitivity in old GLA KO mice (p < 0.001) compared to young GLA KO mice, and cold hyposensitivity in young (p < 0.001) and old (p < 0.001) GLA KO mice compared to WT, which well reflects the clinical phenotype observed in FD patients. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms Underlying Pain Chronicity)
Show Figures

Figure 1

18 pages, 2609 KiB  
Article
Nanoencapsulation of Gla-Rich Protein (GRP) as a Novel Approach to Target Inflammation
by Carla S. B. Viegas, Nuna Araújo, Joana Carreira, Jorge F. Pontes, Anjos L. Macedo, Maurícia Vinhas, Ana S. Moreira, Tiago Q. Faria, Ana Grenha, António A. de Matos, Leon Schurgers, Cees Vermeer and Dina C. Simes
Int. J. Mol. Sci. 2022, 23(9), 4813; https://doi.org/10.3390/ijms23094813 - 27 Apr 2022
Cited by 7 | Viewed by 2569
Abstract
Chronic inflammation is a major driver of chronic inflammatory diseases (CIDs), with a tremendous impact worldwide. Besides its function as a pathological calcification inhibitor, vitamin K-dependent protein Gla-rich protein (GRP) was shown to act as an anti-inflammatory agent independently of its gamma-carboxylation status. [...] Read more.
Chronic inflammation is a major driver of chronic inflammatory diseases (CIDs), with a tremendous impact worldwide. Besides its function as a pathological calcification inhibitor, vitamin K-dependent protein Gla-rich protein (GRP) was shown to act as an anti-inflammatory agent independently of its gamma-carboxylation status. Although GRP’s therapeutic potential has been highlighted, its low solubility at physiological pH still constitutes a major challenge for its biomedical application. In this work, we produced fluorescein-labeled chitosan-tripolyphosphate nanoparticles containing non-carboxylated GRP (ucGRP) (FCNG) via ionotropic gelation, increasing its bioavailability, stability, and anti-inflammatory potential. The results indicate the nanosized nature of FCNG with PDI and a zeta potential suitable for biomedical applications. FCNG’s anti-inflammatory activity was studied in macrophage-differentiated THP1 cells, and in primary vascular smooth muscle cells and chondrocytes, inflamed with LPS, TNFα and IL-1β, respectively. In all these in vitro human cell systems, FCNG treatments resulted in increased intra and extracellular GRP levels, and decreased pro-inflammatory responses of target cells, by decreasing pro-inflammatory cytokines and inflammation mediators. These results suggest the retained anti-inflammatory bioactivity of ucGRP in FCNG, strengthening the potential use of ucGRP as an anti-inflammatory agent with a wide spectrum of application, and opening up perspectives for its therapeutic application in CIDs. Full article
Show Figures

Figure 1

14 pages, 1054 KiB  
Article
Gla-Rich Protein, Magnesium and Phosphate Associate with Mitral and Aortic Valves Calcification in Diabetic Patients with Moderate CKD
by Ana P. Silva, Carla S. B. Viegas, Patrícia Guilherme, Nelson Tavares, Carolina Dias, Fátima Rato, Nélio Santos, Marília Faísca, Edgar de Almeida, Pedro L. Neves and Dina C. Simes
Diagnostics 2022, 12(2), 496; https://doi.org/10.3390/diagnostics12020496 - 15 Feb 2022
Cited by 10 | Viewed by 3178
Abstract
Accelerated and premature cardiovascular calcification is a hallmark of chronic kidney disease (CKD) patients. Valvular calcification (VC) is a critical indicator of cardiovascular disease and all-cause mortality in this population, lacking validated biomarkers for early diagnosis. Gla-rich protein (GRP) is a cardiovascular calcification [...] Read more.
Accelerated and premature cardiovascular calcification is a hallmark of chronic kidney disease (CKD) patients. Valvular calcification (VC) is a critical indicator of cardiovascular disease and all-cause mortality in this population, lacking validated biomarkers for early diagnosis. Gla-rich protein (GRP) is a cardiovascular calcification inhibitor recently associated with vascular calcification, pulse pressure, mineral metabolism markers and kidney function. Here, we examined the association between GRP serum levels and mitral and aortic valves calcification in a cohort of 80 diabetic patients with CKD stages 2–4. Mitral and aortic valves calcification were detected in 36.2% and 34.4% of the patients and associated with lower GRP levels, even after adjustments for age and gender. In this pilot study, univariate, multivariate and Poisson regression analysis, show that low levels of GRP and magnesium (Mg), and high levels of phosphate (P) are associated with mitral and aortic valves calcification. Receiver operating characteristic (ROC) curves showed that the area under the curve (AUC) values of GRP for mitral (0.762) and aortic (0.802) valves calcification were higher than those of Mg and P. These results suggest that low levels of GRP and Mg, and high levels of P, are independent and cumulative risk factors for VC in this population; the GRP diagnostic value might be potentially useful in cardiovascular risk assessment. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

14 pages, 743 KiB  
Review
The Role of GRP and MGP in the Development of Non-Hemorrhagic VKCFD1 Phenotypes
by Suvoshree Ghosh, Johannes Oldenburg and Katrin J. Czogalla-Nitsche
Int. J. Mol. Sci. 2022, 23(2), 798; https://doi.org/10.3390/ijms23020798 - 12 Jan 2022
Cited by 4 | Viewed by 2825
Abstract
Vitamin K dependent coagulation factor deficiency type 1 (VKCFD1) is a rare hereditary bleeding disorder caused by mutations in γ-Glutamyl carboxylase (GGCX) gene. The GGCX enzyme catalyzes the γ-carboxylation of 15 different vitamin K dependent (VKD) proteins, which have function in [...] Read more.
Vitamin K dependent coagulation factor deficiency type 1 (VKCFD1) is a rare hereditary bleeding disorder caused by mutations in γ-Glutamyl carboxylase (GGCX) gene. The GGCX enzyme catalyzes the γ-carboxylation of 15 different vitamin K dependent (VKD) proteins, which have function in blood coagulation, calcification, and cell signaling. Therefore, in addition to bleedings, some VKCFD1 patients develop diverse non-hemorrhagic phenotypes such as skin hyper-laxity, skeletal dysmorphologies, and/or cardiac defects. Recent studies showed that GGCX mutations differentially effect γ-carboxylation of VKD proteins, where clotting factors are sufficiently γ-carboxylated, but not certain non-hemostatic VKD proteins. This could be one reason for the development of diverse phenotypes. The major manifestation of non-hemorrhagic phenotypes in VKCFD1 patients are mineralization defects. Therefore, the mechanism of regulation of calcification by specific VKD proteins as matrix Gla protein (MGP) and Gla-rich protein (GRP) in physiological and pathological conditions is of high interest. This will also help to understand the patho-mechanism of VKCFD1 phenotypes and to deduce new treatment strategies. In the present review article, we have summarized the recent findings on the function of GRP and MGP and how these proteins influence the development of non-hemorrhagic phenotypes in VKCFD1 patients. Full article
Show Figures

Figure 1

15 pages, 1769 KiB  
Review
Food Ingredients and Nutraceuticals from Microalgae: Main Product Classes and Biotechnological Production
by Regina Kratzer and Michael Murkovic
Foods 2021, 10(7), 1626; https://doi.org/10.3390/foods10071626 - 14 Jul 2021
Cited by 85 | Viewed by 7923
Abstract
Microalgal products are an emerging class of food, feed, and nutraceuticals. They include dewatered or dried biomass, isolated pigments, and extracted fat. The oil, protein, and antioxidant-rich microalgal biomass is used as a feed and food supplement formulated as pastes, powders, tablets, capsules, [...] Read more.
Microalgal products are an emerging class of food, feed, and nutraceuticals. They include dewatered or dried biomass, isolated pigments, and extracted fat. The oil, protein, and antioxidant-rich microalgal biomass is used as a feed and food supplement formulated as pastes, powders, tablets, capsules, or flakes designed for daily use. Pigments such as astaxanthin (red), lutein (yellow), chlorophyll (green), or phycocyanin (bright blue) are natural food dyes used as isolated pigments or pigment-rich biomass. Algal fat extracted from certain marine microalgae represents a vegetarian source of n-3-fatty acids (eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), γ-linolenic acid (GLA)). Gaining an overview of the production of microalgal products is a time-consuming task. Here, requirements and options of microalgae cultivation are summarized in a concise manner, including light and nutrient requirements, growth conditions, and cultivation systems. The rentability of microalgal products remains the major obstacle in industrial application. Key challenges are the high costs of commercial-scale cultivation, harvesting (and dewatering), and product quality assurance (toxin analysis). High-value food ingredients are commonly regarded as profitable despite significant capital expenditures and energy inputs. Improvements in capital and operational costs shall enable economic production of low-value food products going down to fishmeal replacement in the future economy. Full article
(This article belongs to the Special Issue Reviews on Food Physics and Food (Bio)Chemistry)
Show Figures

Graphical abstract

13 pages, 466 KiB  
Review
The Relationship between Vitamin K and Osteoarthritis: A Review of Current Evidence
by Kok-Yong Chin
Nutrients 2020, 12(5), 1208; https://doi.org/10.3390/nu12051208 - 25 Apr 2020
Cited by 22 | Viewed by 8912
Abstract
Vitamin K is a cofactor of γ-glutamyl carboxylase, which plays an important role in the activation of γ-carboxyglutamate (gla)-containing proteins that negatively regulate calcification. Thus, vitamin K status might be associated with osteoarthritis (OA), in which cartilage calcification plays a role in the [...] Read more.
Vitamin K is a cofactor of γ-glutamyl carboxylase, which plays an important role in the activation of γ-carboxyglutamate (gla)-containing proteins that negatively regulate calcification. Thus, vitamin K status might be associated with osteoarthritis (OA), in which cartilage calcification plays a role in the pathogenesis of the disease. This review collates the evidence on the relationship between vitamin K status (circulating or dietary intake level of vitamin K, or circulating uncarboxylated gla proteins) and OA from human observational studies and clinical trial, to examine its potential as an agent in preventing OA. The current literature generally agrees that a sufficient level of vitamin K is associated with a lower risk of OA and pathological joint features. However, evidence from clinical trials is limited. Mechanistic study shows that vitamin K activates matrix gla proteins that inhibit bone morphogenetic protein-mediated cartilage calcification. Gla-rich proteins also inhibit inflammatory cascade in monocytic cell lines, but this function might be independent of vitamin K-carboxylation. Although the current data are insufficient to establish the optimal dose of vitamin K to prevent OA, ensuring sufficient dietary intake seems to protect the elderly from OA. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

Back to TopTop