Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = GLT1/EAAT2 transporter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2455 KB  
Article
Regulation Mechanisms of the Glutamate Transporter in the Response of Pacific Oyster upon High-Temperature Stress
by Xueshu Zhang, Xue Wen, Yiran Si, Deliang Li, Chuanyan Yang, Lingling Wang and Linsheng Song
Int. J. Mol. Sci. 2024, 25(21), 11342; https://doi.org/10.3390/ijms252111342 - 22 Oct 2024
Viewed by 1425
Abstract
Glutamate transporters (GLTs) are integral to the glutamatergic system, modulating glutamate homeostasis to enhance resilience and resistance against environmental stress. There are six GLTs identified in the Pacific oyster (Crassostrea gigas), which were categorized into two subfamilies: excitatory amino acid transporters [...] Read more.
Glutamate transporters (GLTs) are integral to the glutamatergic system, modulating glutamate homeostasis to enhance resilience and resistance against environmental stress. There are six GLTs identified in the Pacific oyster (Crassostrea gigas), which were categorized into two subfamilies: excitatory amino acid transporters (CgEAATs) and vesicular glutamate transporters (CgVGLUTs). The CgEAATs harbor a GltP domain, while CgVGLUTs feature an MFS domain, both with conserved sequence and structural characteristics. The expression of CgGLTs is elevated during the planktonic larval stage compared to the fertilized egg stage and is constitutively expressed in various tissues of adult oysters, suggesting its critical role in both larval development and the physiological processes of adult oysters. Transcriptomic analysis revealed diverse expression patterns of GLTs in oyster gills after 7 days of high-temperature stress, with CgEAAT3 showing a significant upregulation. A KEGG pathway enrichment analysis identified glutathione metabolism and ferroptosis as prominently enriched pathways. At 48 h after high-temperature stress, the expression levels of Glutathione Peroxidase 4 (CgGPX4) and CgEAAT3, along with elevated Fe content in the gills, significantly increased. Moreover, the RNAi-mediated the inhibition of CgEAAT3 expression under high-temperature stress, resulting in a significant reduction in CgGPX4 expression and a further increase in Fe accumulation in oyster gills. These results indicate that CgEAAT3 contributes to the regulation of ferroptosis and redox homeostasis by modulating CgGPX4 expression. This study provides new insights into the adaptive mechanisms of bivalves to environmental stress. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

15 pages, 1346 KB  
Article
Ceftriaxone Inhibits Conditioned Fear and Compulsive-like Repetitive Marble Digging without Central Nervous System Side Effects Typical of Diazepam—A Study on DBA2/J Mice and a High-5HT Subline of Wistar–Zagreb 5HT Rats
by Ljiljana Poljak, Branko Miše, Lipa Čičin-Šain and Ante Tvrdeić
Biomedicines 2024, 12(8), 1711; https://doi.org/10.3390/biomedicines12081711 - 1 Aug 2024
Cited by 1 | Viewed by 2123
Abstract
Background: Ceftriaxone upregulates GLT1 glutamate transporter in the brain and may have anti-CFC and anti-OCD effects. Methods: Twenty WZ-5HT rats were used to investigate the effects of ceftriaxone on obsessive–compulsive (OCD)-like behaviour in the marble-burying (MB) test, freezing behaviour in contextual fear conditioning [...] Read more.
Background: Ceftriaxone upregulates GLT1 glutamate transporter in the brain and may have anti-CFC and anti-OCD effects. Methods: Twenty WZ-5HT rats were used to investigate the effects of ceftriaxone on obsessive–compulsive (OCD)-like behaviour in the marble-burying (MB) test, freezing behaviour in contextual fear conditioning (CFC) and expression of GLT1 protein in the hippocampus or amygdala using immunoblots. Fifteen DBA/2J mice were used in the MB test. We also compared diazepam with ceftriaxone in open-field, beam-walking, and wire-hanging tests on 47 DBA/2J mice. Ceftriaxone (200 mg/kg) and saline were applied intraperitoneally, once daily for 7 (rats) or 5 (mice) consecutive days. A single dose of diazepam (1.5–3.0 mg/kg) or saline was injected 30 min before the behavioural tests. Results: Ceftriaxone significantly diminished OCD-like behaviour (↓ number of marbles buried) and freezing behaviour in CFC context session (↑ latencies, ↓ total duration, ↓ duration over four 2 min periods of the session) but increased GLT1 protein expression in the amygdala and hippocampus of rats. Diazepam induced sedation, ataxia and myorelaxation in mice. Ceftriaxone did not have these side effects. Conclusions: The results of this study confirm the anti-CFC and anti-OCD effects of ceftriaxone, which did not produce the unwanted effects typical of diazepam. Full article
(This article belongs to the Special Issue Molecular Research of Psychiatric Diseases)
Show Figures

Graphical abstract

12 pages, 341 KB  
Review
The Potential Role of Astrocytes in Parkinson’s Disease (PD)
by Hiluf Hindeya Gebreyesus and Teklu Gebrehiwot Gebremichael
Med. Sci. 2020, 8(1), 7; https://doi.org/10.3390/medsci8010007 - 27 Jan 2020
Cited by 27 | Viewed by 8390
Abstract
Astrocytes are multi-functional cells, now recognized as critical participants in many brain functions. They play a critical physiological role in the clearance of neurotransmitters, such as glutamate and gamma-aminobutyric acid (GABA), and in the regulation of K+ from the space of synaptic [...] Read more.
Astrocytes are multi-functional cells, now recognized as critical participants in many brain functions. They play a critical physiological role in the clearance of neurotransmitters, such as glutamate and gamma-aminobutyric acid (GABA), and in the regulation of K+ from the space of synaptic clefts. Astrocytes also express the excitatory amino acid transporters (EAATs) and aquaporin-4 (AQP4) water channel, which are involved in both physiological functions and neurodegenerative diseases (ND). Some of the ND are the Alzheimer’s (AD), Huntington’s (HD), Parkinson’s diseases (PD), Cerebral edema, amyotrophic lateral sclerosis (ALS), and epilepsy pathological conditions in specific regions of the CNS. Parkinson’s disease is the second most common age-related neurodegenerative disorder, characterized by degeneration of dopaminergic neurons of the substantia nigra pars compacta (SNpc). These project to the striatum, forming an important pathway within the basal ganglia. Mostly, PD has no clear etiology, and the mechanism of dopaminergic (DA) neuron loss is not well illustrated. The results of various studies suggest that astrocytes are involved in the pathophysiology of PD. Evidence has shown that the down-regulation of EAAT-2/GLT-1 and AQP4 expression is associated with PD pathogenesis. However, controversial results were reported in different experimental studies about the expression and function of EAAT-2/GLT-1 and AQP4, as well as their colocalization in different brain regions, and their involvement in PD development. Therefore, under neurological disorders, Parkinson’s disease is related to the genetic and phenotypic change of astrocytes’ biology. In this review, the authors summarized recent their research findings, which revealed the involvement of EAAT-2/GLT-1 and AQP4 expression, the physical interaction between EAAT-2/GLT-1 and AQP4 in astrocyte function, and their potential role in the development of PD in SNpc and Subthalamic nucleus (STN) of the basal ganglia nuclei. Full article
(This article belongs to the Collection Advances in the Pathogenesis of Neurodegenerative Diseases)
Back to TopTop