Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (668)

Search Parameters:
Keywords = G149V mutation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1726 KB  
Article
Heterologous SARS-CoV-2 Buccal Immunization with Oral Dissolving Films Generated a Strong Systemic and Mucosal Immunity in a Murine Model
by Tanisha Manoj Arte, Smital Patil, Emmanuel Adediran, Mahek Gulani, Amarae Ferguson, Sarthak Shah, Priyal Bagwe, Susu M. Zughaier and Martin J. D’Souza
Vaccines 2025, 13(11), 1105; https://doi.org/10.3390/vaccines13111105 - 29 Oct 2025
Viewed by 186
Abstract
Background: In response to the emergence of immune-evasive variants of SARS-CoV-2, this study explores a novel heterologous vaccination strategy using a microparticulate formulation approach that is delivered via oral dissolving film (ODF) formulations into the buccal cavity. Heterologous administration has the potential to [...] Read more.
Background: In response to the emergence of immune-evasive variants of SARS-CoV-2, this study explores a novel heterologous vaccination strategy using a microparticulate formulation approach that is delivered via oral dissolving film (ODF) formulations into the buccal cavity. Heterologous administration has the potential to generate cross-reactive antibodies, which can be especially beneficial against viruses with ever-mutating variants. Moreover, the microparticulate oral dissolving film-based vaccine approach is a non-invasive vaccine delivery platform. Methods: The vaccine design incorporated whole inactivated Delta and Omicron variants of the virus, administered at prime and booster doses, respectively, effectively encapsulated in a Poly(lactic-co-glycolic) acid (PLGA) polymer matrix, and adjuvanted with Alum to enhance immune activation. Following vaccination, serum, mucosal, and tissue samples were analyzed to evaluate humoral and cellular immune responses against the model antigen, as well as other variants such as Alpha and Beta variants, to understand the cross-reactive response. Result: In vitro evaluations confirmed the vaccine’s safety and its ability to stimulate immune responses. On administering microparticulate oral dissolving films to mice, whole inactivated delta and omicron variant-specific antibodies were observed in serum samples along with neutralizing titers in terminal week. The formulated vaccine showed significant secretory IgA antibody levels in mucosal samples. Moreover, CD4+ and CD8a cellular responses were observed in tissue samples of spleen and lymph nodes, along with antibodies (IgG, IgA, and IgM) detected in lung supernatant samples. Humoral and cellular cross-reactive antibodies were observed in the samples. Conclusions: This approach offers a promising platform for developing next-generation vaccines capable of inducing broad immunity. Full article
Show Figures

Figure 1

13 pages, 782 KB  
Article
Fluoroquinolone and Second-Line Injectable Resistance Among Rifampicin- and Isoniazid-Resistant Mycobacterium tuberculosis Clinical Isolates: A Molecular Study from a High-Burden Setting
by Rosângela Siqueira Oliveira, Angela Pires Brandao, Fabiane Maria de Almeida Ferreira, Sonia Maria da Costa, Vera Lucia Maria Silva, Lucilaine Ferrazoli, Erica Chimara and Juliana Maira Watanabe Pinhata
Microorganisms 2025, 13(11), 2470; https://doi.org/10.3390/microorganisms13112470 - 29 Oct 2025
Viewed by 123
Abstract
Drug-resistant tuberculosis (DR-TB) threatens global TB control. We investigated the prevalence and molecular characteristics of second-line drug resistance among rifampicin (RIF)- and/or isoniazid (INH)-resistant Mycobacterium tuberculosis complex (MTBC) isolates in São Paulo, Brazil, using the MTBDRsl v. 2.0 line-probe assay. MTBC isolates [...] Read more.
Drug-resistant tuberculosis (DR-TB) threatens global TB control. We investigated the prevalence and molecular characteristics of second-line drug resistance among rifampicin (RIF)- and/or isoniazid (INH)-resistant Mycobacterium tuberculosis complex (MTBC) isolates in São Paulo, Brazil, using the MTBDRsl v. 2.0 line-probe assay. MTBC isolates RIF- and/or INH-resistant by GenoType MTBDRplus or phenotypic testing (2019–2021) were subsequently tested by MTBDRsl for fluoroquinolone (FQ) and injectable drugs (capreomycin, amikacin, kanamycin) resistance. Isolates with inferred mutations underwent Sanger sequencing. Of 13,557 isolates, 728 (5.4%) were RIF- and/or INH-resistant (297 INH-R, 235 RIF-R, 196 MDR). Among them, 623 (85.6%) were tested by MTBDRsl; 582 (93.4%) showed no additional resistance, while 41 (6.6%) carried mutations. FQ resistance was detected in 38 isolates (92.7%), mostly in gyrA (n = 35). Three isolates with gyrB mutations were wild-type by sequencing. Two MDR isolates harbored the rrs a1401g mutation, and one also harbored gyrA D94G. Sequencing confirmed resistance in 38 of 41 isolates. Most MDR strains with second-line mutations (n = 32/33; 97%) were pre-XDR. Affected patients were predominantly male (68.4%), with pulmonary TB (92.1%), and unfavorable outcomes (39.5%). Second-line resistance prevalence was low overall, but FQ resistance was high among MDR isolates. Findings support integrating molecular and sequencing-based tools for accurate detection and management of DR-TB. Full article
Show Figures

Figure 1

12 pages, 898 KB  
Article
Population-Based Genetic Assessment of Thrombophilia Polymorphisms: Allelic Frequencies and Population Linkage Dynamics
by Panagiota Tsiatsiou, Sofia Balaska, Zafeirios Tsinaris, Maria Archonti, Antonia Lanta, Vasiliki Tsaireli, Anna Takardaki, Areti Kourti, Angeliki Kassomenaki, Georgios Meletis, Dimitrios A. Tsakiris and Lemonia Skoura
Medicina 2025, 61(11), 1935; https://doi.org/10.3390/medicina61111935 - 29 Oct 2025
Viewed by 147
Abstract
Background and Objectives: Thrombophilia is a prothrombotic disorder that increases the risk of blood clotting and can pose serious health problems. It is considered a condition of gene–gene or gene–environment interactions. Variation in the prevalence of thrombophilia mutations and their interaction among [...] Read more.
Background and Objectives: Thrombophilia is a prothrombotic disorder that increases the risk of blood clotting and can pose serious health problems. It is considered a condition of gene–gene or gene–environment interactions. Variation in the prevalence of thrombophilia mutations and their interaction among populations necessitates localized genetic assessments. However, population-based genetic data remains limited for developing effective preventive strategies. Materials and Methods: This cross-sectional observational study was conducted over five years (2020–2024) at a tertiary university hospital in Northern Greece. A total of 2961 individuals aged 18–85 years (mean: 50.5) were registered based on family or medical history of venous thromboembolism (VTE) or clinical symptoms of VTE. The final analysis included 2078 participants comprising 1143 males (55%) and 935 females (45%), who met all the inclusion criteria. Inclusion criteria were absence of acute illness or malignancy, informed consent, and an adequate DNA quantity for genotyping, whereas excluded criteria included incomplete laboratory data, active inflammatory or malignant disease, and cognitive or psychiatric conditions. Peripheral blood samples were collected in 2 mL K3-EDTA tubes, and genomic DNA was analyzed using real-time polymerase chain reaction (PCR) with melting curve analysis and hybridization probes (LightMix® in vitro diagnostics, TIB MolBiol, Berlin, Germany). Five thrombophilia-related polymorphisms, Factor V Leiden (F5 G1691A), prothrombin (F2 G20210A), methylenetetrahydrofolate reductase (MTHFR C677T and MTHFR A1298C), and Plasminogen Activator Inhibitor-1 (PAI-1) 4G/5G, were examined for allele and genotype frequencies, Hardy–Weinberg equilibrium testing, pairwise linkage disequilibrium (D′ and r2), and power analysis. For subjects tested for Factor V Leiden (n = 1476), the activated protein C resistance (APC) ratio was additionally evaluated using the ACL TOP 750 analyzer. Results: Allele frequencies were 7.3% for FV Leiden and 3.7% for FII. The PAI-1 allele was distributed at 44%, while the MTHFR (C677T and A1298C) alleles were each present at 33%. Significant linkage disequilibrium was identified between MTHFR (C677T and A1298C) and between MTHFR A1298C and PAI-1. No evolutionary pressure or demographic bias was found in the Hardy–Weinberg equilibrium. The APC ratio demonstrated a high sensitivity (99.2%) and specificity (96.6%), indicating that it may serve as a reliable screening method. Conclusions: Our findings highlight informative patterns in the genetic predisposition to thrombophilia, which may help develop rule-based strategies for implementing thromboprophylaxis guidelines and personalized medical interventions. Full article
(This article belongs to the Special Issue Genetics of Human Diseases: Fishing for Causality)
Show Figures

Figure 1

16 pages, 4407 KB  
Article
Optimized Aptamer-Conjugated Gold Nanoparticles for Specific Detection of GII.4 Human Norovirus in Feces
by Chao Cheng, Xiaomeng Zhang, Gaoyang Li, Minjia Sun, Wenjing Zheng, Jingjing Li, Jing Liu, Xuanyi Wang, Youhua Xie, Shouhong Xu and Junqi Zhang
Biosensors 2025, 15(11), 713; https://doi.org/10.3390/bios15110713 - 28 Oct 2025
Viewed by 225
Abstract
Human norovirus (HuNoV), particularly the GII.4 genotype, is a leading cause of acute gastroenteritis worldwide, posing a significant public health and economic burden due to its low infectious dose. To address the need for rapid and sensitive detection, we developed a colorimetric biosensor [...] Read more.
Human norovirus (HuNoV), particularly the GII.4 genotype, is a leading cause of acute gastroenteritis worldwide, posing a significant public health and economic burden due to its low infectious dose. To address the need for rapid and sensitive detection, we developed a colorimetric biosensor utilizing a structure-optimized aptamer and gold nanoparticles (AuNPs). Biotin-modified aptamers could protect AuNPs from aggregation in salt solution. Upon specific binding to GII.4 HuNoV virus-like particles (VLPs), this protective effect is disrupted, leading to AuNP aggregation and a measurable color shift quantified by the A620/A520 absorbance ratio. Under optimized conditions, the assay demonstrated a linear response (y = 0.004597x + 0.3277, R2 = 0.9922) to GII.4 HuNoV VLP concentrations ranging from 0.1 to 3.0 μg/mL, with the recovery rates between 91.74% and 106.43%. The biosensor exhibited high specificity for GII.4 HuNoV, showing minimal cross-reactivity with other common diarrheal pathogens, and achieved an exceptional detection limit of 27.2 copies/mL in a fecal matrix. Molecular docking and point mutation confirmed the critical roles of specific nucleotide bases (T20, C22, G31, and G44) in the aptamer and the Asn55 residue in the viral capsid for binding. This work establishes a sensitive, rapid, and cost-effective aptamer-based colorimetric platform suitable for the large-scale monitoring of GII.4 HuNoV. Full article
(This article belongs to the Special Issue Aptamer-Based Nanosensing Strategy and Applications)
Show Figures

Graphical abstract

18 pages, 2782 KB  
Article
STK38 Kinase Promotes Cell Migration Induced by Oncogenic Ras via MerTK Activation
by Satoshi Ohta, Kenji Tago, Katsumi Kasashima, Masayuki Ebina and Kaoru Tominaga
Int. J. Mol. Sci. 2025, 26(21), 10388; https://doi.org/10.3390/ijms262110388 - 25 Oct 2025
Viewed by 223
Abstract
Ras gene mutations are frequently observed in many types of cancers. However, there are currently no effective anticancer drugs against Ras-induced cancers. Therefore, identifying the downstream effectors of the Ras signaling pathway can facilitate the development of promising novel therapeutic approaches. We previously [...] Read more.
Ras gene mutations are frequently observed in many types of cancers. However, there are currently no effective anticancer drugs against Ras-induced cancers. Therefore, identifying the downstream effectors of the Ras signaling pathway can facilitate the development of promising novel therapeutic approaches. We previously showed that oncogenic Ras induces the expression of the receptor tyrosine kinase c-Mer proto-oncogene tyrosine kinase (MerTK) in an interleukin-1 family member NF-HEV/IL-33-dependent manner and that IL-33 and MerTK contribute to oncogenic Ras-induced cell migration. In the present study, we purified the MerTK complex from NIH-3T3 cells transformed by the expression of oncogenic Ras, H-Ras (G12V). Mass spectrometric analysis identified STK38 (also known as NDR1) as a candidate binding partner for MerTK. STK38 is a serine/threonine protein kinase that plays diverse roles in normal and cancerous cells. In addition to MerTK knockdown, STK38 knockdown effectively attenuated the H-Ras (G12V)-induced migration of NIH-3T3 cells. STK38 kinase activity is required for oncogenic Ras-induced cell migration and MerTK tyrosine phosphorylation. Furthermore, MerTK or STK38 knockdown attenuated the activation of Rac1 and Cdc42. Taken together, these results revealed a novel role for STK38 in oncogenic Ras-induced enhanced cell migration, which may be useful for developing novel therapeutic strategies targeting Ras-mutated cells. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

25 pages, 1563 KB  
Review
JAK2 46/1 (GGCC) Haplotype in Oncogenesis, as Risk Stratifier, and Indicator for Drug Resistance in Myeloproliferative Neoplasms
by Michela Perrone, Sara Sergio, Beatrice Pranzo, Amalia Tarantino, Giuseppina Loglisci, Rosella Matera, Davide Seripa, Michele Maffia and Nicola Di Renzo
Int. J. Mol. Sci. 2025, 26(21), 10337; https://doi.org/10.3390/ijms262110337 - 23 Oct 2025
Viewed by 208
Abstract
The JAK2 46/1 (“GGCC”) haplotype is an inherited genetic variation within the Jak2 gene locus that has become a focal point in research related to oncogenesis, particularly in myeloproliferative neoplasms (MPNs). We conducted a narrative review of landmark discoveries in hematological malignancies [...] Read more.
The JAK2 46/1 (“GGCC”) haplotype is an inherited genetic variation within the Jak2 gene locus that has become a focal point in research related to oncogenesis, particularly in myeloproliferative neoplasms (MPNs). We conducted a narrative review of landmark discoveries in hematological malignancies and Jak2, focusing on its role in oncogenesis, risk stratification, and drug resistance in MPNs. This haplotype spans several polymorphisms within the Jak2 gene. It has been found to increase susceptibility to a variety of hematologic cancers, especially when linked with the somatic JAK2 V617F mutation, which results in the alteration of the JAK/STAT pathway, which is particularly essential for hematopoiesis. The “GGCC” part is characterized by four SNPs, with the G allele of the rs10974944 SNP in this haplotype correlated with MPNs progressing to myelofibrosis. Moreover, the G allele seems to be crucial for the predisposition to onco-drug resistance onset. To conclude, identifying the 46/1 haplotype in patients may not only enhance risk stratification for JAK2-driven cancers but also guide more effective, personalized therapeutic strategies to overcome resistance. Thus, this review aims to describe current knowledge about the JAK2 46/1 haplotype as a marker for diagnosis and the prediction of disease outcome. Full article
(This article belongs to the Special Issue Advancements in Hematology: Molecular Biology and Targeted Therapies)
Show Figures

Figure 1

13 pages, 845 KB  
Article
Characterization of the SARS-CoV-2 Mutation Pattern Generated In Vitro by the Antiviral Action of Lycorine
by Silvina Soledad Maidana, Sonia Alejandra Romera, Ana Marandino, Rocío Lucia Tau, Juan Mauel Shammas, Yanina Panzera and Ruben Pérez
COVID 2025, 5(11), 181; https://doi.org/10.3390/covid5110181 - 23 Oct 2025
Viewed by 212
Abstract
SARS-CoV-2 persists worldwide, driving the demand for effective antivirals that inhibit replication and limit the emergence of resistant variants. Lycorine, a non-nucleoside inhibitor of SARS-CoV-2 RNA-dependent RNA polymerase, exhibits antiviral activity without direct mutagenic effects. Here, we examine the occurrence of single-nucleotide variants [...] Read more.
SARS-CoV-2 persists worldwide, driving the demand for effective antivirals that inhibit replication and limit the emergence of resistant variants. Lycorine, a non-nucleoside inhibitor of SARS-CoV-2 RNA-dependent RNA polymerase, exhibits antiviral activity without direct mutagenic effects. Here, we examine the occurrence of single-nucleotide variants (SNVs) and insertions/deletions (indels) in SARS-CoV-2 B.1.499 strain during serial passages in Vero cells, comparing lycorine-treated cultures (2.5 and 5 µg/mL) with untreated controls. Whole-genome sequencing was used to assess mutation patterns and frequencies. Lycorine-treated passages displayed greater variant diversity than controls, with fixed mutations mainly affecting non-structural proteins (Nsp3-F1375A, Nsp5-L50F, and Nsp14-G265D) and the envelope protein (E-S6L). A 15-nucleotide deletion in the spike gene (QTQTN motif) occurred in both groups but became fixed only in untreated passages, suggesting negative selection under lycorine pressure. Notably, the L50F mutation in Nsp5, previously linked to nirmatrelvir resistance, was found exclusively in lycorine-treated passages. Additionally, a 1-nucleotide deletion in the accessory gene ORF8, detected only under lycorine treatment, resulted in a frameshift mutation that added four amino acids, potentially altering the protein’s function. Overall, lycorine induces a distinct mutation profile, favoring replication-related variants while suppressing deleterious deletions. These findings suggest potential mechanisms of cross-resistance and highlight the importance of monitoring resistance during clinical use. Full article
Show Figures

Figure 1

21 pages, 2634 KB  
Article
Molecular Epidemiology of Hepatitis E Virus in Hungary (2018–2025): Emergence of Rare Subtypes and First Detection of HEV-4 in Central Europe
by Ágnes Dencs, Andrea Hettmann, Levente Zsichla, Viktor Müller, Anett Dömötör, Ágnes Barna-Lázár, Erzsébet Barcsay and Mária Takács
Viruses 2025, 17(10), 1389; https://doi.org/10.3390/v17101389 - 18 Oct 2025
Viewed by 449
Abstract
Hepatitis E virus (HEV) is an emerging cause of viral hepatitis in Europe, with increasing recognition in immunocompromised patients. While genotype 3 (HEV-3) is most prevalent in the region, molecular epidemiology data from Hungary have been limited. HEV strains from 118 RNA-positive patients [...] Read more.
Hepatitis E virus (HEV) is an emerging cause of viral hepatitis in Europe, with increasing recognition in immunocompromised patients. While genotype 3 (HEV-3) is most prevalent in the region, molecular epidemiology data from Hungary have been limited. HEV strains from 118 RNA-positive patients diagnosed between 2018 and 2025 were genotyped. Next-generation sequencing yielded near-complete HEV genomes for 76 samples. HEV-3 was dominant (98.3%). Subtype 3a was the most common (34.7%), followed by 3c, 3f, and 3e. Rare subtypes (3g, 3h, 3i, 3m, 3ra) and HEV-4b were detected for the first time in Hungary. Among immunocompromised patients, 41.6% developed chronic infection. Ribavirin resistance-associated mutations G1634R and V1479I were frequently detected. In silico analysis of potential multiple infections indicated the presence of at least two HEV strains of distinct origin in six patients. Our surveillance revealed extensive genetic diversity of HEV in Hungary. The detection of rare HEV-3 subtypes and the first documented occurrence of HEV-4b in the country highlight likely viral introductions linked to the increasing international trade. Ongoing surveillance is essential in protecting high-risk groups and limiting HEV transmission in a globalized food system. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Graphical abstract

16 pages, 300 KB  
Article
Chromosome 12 and Environmental Factors in Parkinson’s Disease: An All of Us Data Analysis
by Kenta Abe and Karen Niemchick
Genes 2025, 16(10), 1197; https://doi.org/10.3390/genes16101197 - 13 Oct 2025
Viewed by 659
Abstract
Background/Objectives: Parkinson’s disease (PD) is a neurodegenerative disease that develops with age and is related to a decline in motor function. Studies suggest that the causes may be based on genetic dysfunction including PARK gene mutations and environmental factors. Methods: To explore those [...] Read more.
Background/Objectives: Parkinson’s disease (PD) is a neurodegenerative disease that develops with age and is related to a decline in motor function. Studies suggest that the causes may be based on genetic dysfunction including PARK gene mutations and environmental factors. Methods: To explore those factors, we used multivariable logistic regression to obtain odds ratios (ORs) and adjusted ORs by using the All of Us Dataset which contains genomic, blood test, and other environmental data. Results: On Chromosome 12, there were 3709 candidate genetic polymorphisms (GPs) that are associated with PD. Of those GPs, fourteen GPs had high ORs which are similar to the OR of the PARK8 gene G2019S mutation. Of those 3709 GPs, a 2.00-fold change in OR was observed in five GPs located at bases 53,711,362 (OR = 4.86, 95% CI [1.46, 16.18]), 31,281,818 (OR = 4.37, 95% CI [1.02, 18.82]), 101,921,705 (OR = 5.38, 95% CI [1.23, 23.51]), 47,968,795 (OR = 7.82, 95% CI [1.81, 33.83]), and 112,791,809 (OR = 8.05, 95% CI [1.85, 35.05]) by calcium, Vitamin D, and alcohol intake and were statistically significant. Conclusions: The results suggest that the progression of some PD caused by certain GPs can be delayed or prevented by the environmental factors above. In February 2025, All of Us released the CT Dataset v.8 which has a 50% increase in the number of participants. Potentially, it may be possible to research more GPs and environmental factors. In future studies, we would like to explore other environmental factors and GPs on other chromosomes. It is believed that specific GPs may tailor current treatments and qualify patients for clinical trials. Additionally, genetic knowledge may help increase accuracy in clinical trials. Full article
Show Figures

Graphical abstract

11 pages, 230 KB  
Article
Factors Associated with the Detection of Actionable Genomic Alterations Using Liquid Biopsy in Biliary Tract Cancer
by Hiroshi Shimizu, Rei Suzuki, Hiroyuki Asama, Kentaro Sato, Kento Osawa, Rei Ohira, Keisuke Kudo, Mitsuru Sugimoto and Hiromasa Ohira
Cancers 2025, 17(18), 3071; https://doi.org/10.3390/cancers17183071 - 19 Sep 2025
Viewed by 525
Abstract
Background: Blood-based comprehensive genomic profiling (CGP), a form of liquid biopsy, is often used for biliary tract cancer (BTC) when tissue-based CGP (tissue CGP) is unavailable, despite lower detection rates. This study explored factors linked to detecting actionable genomic alterations to optimize [...] Read more.
Background: Blood-based comprehensive genomic profiling (CGP), a form of liquid biopsy, is often used for biliary tract cancer (BTC) when tissue-based CGP (tissue CGP) is unavailable, despite lower detection rates. This study explored factors linked to detecting actionable genomic alterations to optimize its use. Methods: We retrospectively analyzed BTC cases in Japan’s C-CAT (June 2019–January 2025), restricting panel comparisons to FoundationOne® CDx (F1; n = 5019) and FoundationOne® Liquid CDx (F1L; n = 1550). Missing covariates were handled by multiple imputations (m = 20). Between-panel balance used 1:1 propensity-score matching (caliper 0.2). Outcomes were modeled with logistic regression. Targets included MSI-H, TMB-H, FGFR2/RET/NTRK fusions, BRAF V600E, KRAS G12C, IDH1 mutations, and ERBB2 amplification. An exploratory analysis stratified results by the number of prespecified enrichment factors (0–4). Liquid biopsy was performed using plasma-based comprehensive genomic profiling assays (FoundationOne® Liquid). Results: Missingness was low; after matching (n = 1549 per group) covariates were well balanced (all|SMD|≤0.05). Detection of any actionable alteration was lower with F1L than F1 (16.8% vs. 24.8%; OR 0.61, 95% CI 0.49–0.75; p < 0.001). F1L also had lower TMB-H (OR 0.62, 0.43–0.90; p = 0.01) and ERBB2 amplification (OR 0.42, 0.31–0.57; p < 0.001), with no significant differences for MSI-H, IDH1, KRAS G12C, or BRAF V600E. Within F1L, non-perihilar location (OR 2.05), liver (1.90), lymph-node (1.41), and lung metastases (1.52) predicted detection of actionable genomic alterations. F1L detection increased from 5.8% (zero factors) to 32.8% (four factors), approximating tissue at three factors. Conclusions: The utility of liquid biopsy can be maximized by carefully selecting samples on the basis of conditions that increase the detection rate. Full article
(This article belongs to the Section Cancer Informatics and Big Data)
11 pages, 790 KB  
Article
Assessing the Impact of SARS-CoV-2 Spike Mutations on Antibody Binding: A Comparative Assessment of the Wuhan and JN.1 Variants’ Full-Length Spikes in a Multiplex Luminex Assay
by Gerald Waweru, Ruth Nyakundi, Bernadette Kutima, Sharon Owuor, Gloria Konyino, John Gitonga, Doreen Lugano, Angela Maina, Jennifer Musyoki, Lucy Ochola, Martin Omondi, Christopher K. Kariuki, Paul Ogongo, Christina Mwachari, Faiz Shee, Charles Agoti, Charles Sande, Sophie Uyoga, Eunice Kagucia, Ambrose Agweyu, Philip Bejon, J. Anthony G. Scott, George M. Warimwe, L. Isabella Ochola-Oyier and James Nyagwangeadd Show full author list remove Hide full author list
Viruses 2025, 17(9), 1248; https://doi.org/10.3390/v17091248 - 16 Sep 2025
Viewed by 880
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to evolve, with mutations leading to the emergence of new variants. JN.1, a subvariant of omicron BA.2.86, has demonstrated marked immune escape and is now included in updated vaccine formulations. While reduced sensitivity has been [...] Read more.
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to evolve, with mutations leading to the emergence of new variants. JN.1, a subvariant of omicron BA.2.86, has demonstrated marked immune escape and is now included in updated vaccine formulations. While reduced sensitivity has been reported for antibody assays using ancestral spike protein subunits to detect omicron-induced responses, the performance of full-length spike-based assays against omicron sublineages remains unclear. We aimed to compare the sensitivity of ELISA and Luminex assays using full-length spike proteins from the ancestral Wuhan strain and the JN.1 variant. Methods: Wuhan and JN.1 full-length spike protein constructs were designed and expressed in Expi293F mammalian cells. In-house ELISAs based on previously validated protocols were used to measure anti-spike IgG levels. Additionally, a Luminex-based assay for anti-spike antibody detection was developed and validated. Both assays were applied to the following sample groups: pre-pandemic samples (designated “gold standard negatives”); PCR confirmed 2020 positives (“gold standard wildtype positives”); PCR confirmed 2024 positives (“gold standard omicron positives”); 2022 vaccinated individuals with verbal confirmed infection (“gold standard hybrid positives”); and 2024 household samples (“unknowns”). Results: Wuhan spike protein showed a sensitivity of 100% (95% CI: 0.88–1.0) in detecting omicron-specific antibodies using gold standard omicron positives with JN.1 spike protein as a reference assay. Overall, across all samples, in ELISA, the Wuhan antigen had a sensitivity of 0.93 (95% CI: 0.89–0.95) and a specificity of 0.98 (95% CI: 0.94–0.99). The JN.1 antigen showed a sensitivity of 0.91 (95% CI: 0.87–0.94) and a specificity of 0.97 (95% CI: 0.93–0.99). In Luminex, sensitivity was 0.95 (95% CI: 0.91–0.97) for Wuhan and 0.94 (95% CI: 0.91–0.96) for JN.1. Specificity for both antigens in Luminex was 0.98 (95% CI: 0.94–0.99). Conclusions: Both ELISA and Luminex assays showed comparable sensitivity and specificity for both Wuhan and JN.1 antigens, indicating that mutations in the JN.1 variant do not significantly impact assay performance. This suggests preserved antigenic recognition across variants. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

16 pages, 4747 KB  
Article
Divergent Morphologies and Common Signaling Features of Active and Inactive Oncogenic RHOA Mutants in Yeast
by Chenwei Wang, Shinsuke Ohnuki, Anna Savchenko, Hiroyuki Aburatani, Satoshi Yoshida, Riko Hatakeyama and Yoshikazu Ohya
Cells 2025, 14(18), 1439; https://doi.org/10.3390/cells14181439 - 15 Sep 2025
Viewed by 494
Abstract
RHOA, a member of the Rho family of small GTPases, harbors recurrent mutations in diverse cancers, but how these mutations cause their cellular effects remains poorly understood. To investigate their cellular consequences, we expressed oncogenic RHOA variants (R5Q, G17V, C16R, and A161P) [...] Read more.
RHOA, a member of the Rho family of small GTPases, harbors recurrent mutations in diverse cancers, but how these mutations cause their cellular effects remains poorly understood. To investigate their cellular consequences, we expressed oncogenic RHOA variants (R5Q, G17V, C16R, and A161P) in Saccharomyces cerevisiae, substituting for the essential yeast homologue RHO1. While the E40Q variant failed to complement RHO1 deletion, other mutants supported viability and enabled phenotypic characterization. All four variants conferred myriocin resistance, suggesting activation of the membrane stress response pathway, but induced no major changes in growth or caspofungin sensitivity. Using high-dimensional image analysis, we quantified 501 morphological parameters and applied principal component analysis and linear discriminant analysis to determine distinct phenotypic profiles. Gain-of-function (C16R and A161P) and loss-of-function (R5Q and G17V) mutants formed separate morphological clusters, indicating functional divergence. Our yeast model enabled systematic dissection of the functions of RHOA mutants and highlighted the utility of morphology-based approaches to characterize context-dependent mechanisms of oncogenesis. Full article
Show Figures

Graphical abstract

13 pages, 819 KB  
Systematic Review
Congenital Thrombophilia in Chronic Thromboembolic Pulmonary Hypertension (CTEPH): A Systematic Review of Prevalence, Clinical Phenotype, and Surgical Outcomes
by Ema Borsi, Cristina Potre, Ioana Ionita, Miruna Samfireag, Cristina Secosan and Ovidiu Potre
Biomedicines 2025, 13(9), 2215; https://doi.org/10.3390/biomedicines13092215 - 10 Sep 2025
Viewed by 554
Abstract
Background and Objectives: Congenital thrombophilias are biologically plausible contributors to chronic thromboembolic pulmonary hypertension (CTEPH), yet their frequency and clinical impact remain uncertain. We undertook a systematic review to (i) estimate the pooled prevalence of specific hereditary defects among adults with CTEPH, (ii) [...] Read more.
Background and Objectives: Congenital thrombophilias are biologically plausible contributors to chronic thromboembolic pulmonary hypertension (CTEPH), yet their frequency and clinical impact remain uncertain. We undertook a systematic review to (i) estimate the pooled prevalence of specific hereditary defects among adults with CTEPH, (ii) characterise associated demographic and haemodynamic phenotypes, and (iii) summarise peri-operative and survival outcomes after pulmonary endarterectomy (PEA) or balloon pulmonary angioplasty (BPA) in genetically defined subgroups. Methods: A protocol compliant with PRISMA-2020 was registered prospectively on the Open Science Framework (OSF). PubMed/MEDLINE, Scopus, and Web of Science were searched from inception to 1 June 2025 using validated, PRESS-reviewed strings combining CTEPH and thrombophilia terms. Observational cohorts, case–control studies and trials reporting laboratory-confirmed congenital thrombophilias in adults with right-heart-catheter-defined CTEPH were eligible. Results: Eight studies encompassing 677 unique CTEPH patients met the inclusion criteria. Among the 400 individuals screened for deficiencies of the natural anticoagulant pathways, 56 possessed a defect: protein S deficiency 5.3% (21/400; 95% CI 3.3–8.0), protein C deficiency 4.3% (17/400; 2.5–6.8), and antithrombin deficiency 1.5% (6/400; 0.6–3.3). In 520 genotyped patients, factor V Leiden and prothrombin G20210A were infrequent (1.3% and 1.0%, respectively) and confined to European/North American cohorts. Baseline haemodynamics were uniformly severe (mean mPAP 46.7 mm Hg; pulmonary vascular resistance ≈ 9 WU). Definitive reperfusion therapy was common (PEA 63%; BPA 18%), reducing mPAP to 20.5 mm Hg and yielding a weighted one-year survival of 96.2%. No study demonstrated a thrombophilia-specific effect on surgical candidacy or early survival. Conclusions: Approximately one in seven patients with CTEPH harbours a congenital thrombophilia, most often protein S or protein C deficiency, whereas classic venous-thrombo-embolism mutations are rare and ethnically restricted. Current evidence indicates that genetic status does not materially influence haemodynamic severity, uptake of PEA/BPA, or short-term survival, supporting guideline recommendations for universal referral to specialist reperfusion centres. Future multicentre registries integrating systematic genotyping and long-term outcome capture are needed to clarify genotype-specific prognostic and therapeutic implications. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

14 pages, 3199 KB  
Article
Efficacy of Conventional and Novel Tyrosine Kinase Inhibitors for Uncommon EGFR Mutations—An In Vitro Study
by Hana Oiki, Kenichi Suda, Akira Hamada, Toshio Fujino, Keiko Obata, Yoshihisa Kobayashi, Kazuko Sakai, Shota Fukuda, Shuta Ohara, Masaoki Ito, Junichi Soh, Kazuto Nishio, Tetsuya Mitsudomi and Yasuhiro Tsutani
Cells 2025, 14(17), 1386; https://doi.org/10.3390/cells14171386 - 4 Sep 2025
Viewed by 1220
Abstract
Afatinib and osimertinib are current treatment options for non-small cell lung cancer (NSCLC) patients with uncommon epidermal growth factor receptor (EGFR) mutations, although their efficacy is limited. To explore potentially effective drugs for these patients, we evaluated the efficacy of conventional [...] Read more.
Afatinib and osimertinib are current treatment options for non-small cell lung cancer (NSCLC) patients with uncommon epidermal growth factor receptor (EGFR) mutations, although their efficacy is limited. To explore potentially effective drugs for these patients, we evaluated the efficacy of conventional EGFR tyrosine kinase inhibitors (TKIs) and novel third-generation (3G) TKIs using in vitro models. Ba/F3 cells transformed with each of the five most frequent uncommon EGFR mutations, Del18 (delE709_T710insD), E709K, G719A, S768I, and L861Q, were used. The growth inhibitory effects of five novel 3G-TKIs, almonertinib, lazertinib, furmonertinib, rezivertinib, and befotertinib, in addition to currently available TKIs, were evaluated. We also explored for secondary resistant mutations to afatinib or osimertinib and TKIs that can overcome these resistances. Afatinib was active against all uncommon EGFR mutations tested. The 3G-TKIs were all active against the L861Q mutation and were inactive against the S768I mutation. Furmonertinib and befotertinib showed efficacy against exon 18 mutations (Del18, E709K, and G719A). In the acquired resistance models to afatinib or osimertinib, we found T790M or a novel T725M secondary mutation, respectively, both of which could be overcome by lazertinib. However, some afatinib-resistant cells acquired V769L/M secondary mutations that were refractory to all EGFR-TKIs tested. In conclusion, afatinib exhibited broad activity and some 3G-TKIs showed promising efficacy in the front-line setting. Lazertinib is a potential second-line option after acquisition of resistance to afatinib or osimertinib. Full article
(This article belongs to the Section Cellular Pathology)
Show Figures

Graphical abstract

26 pages, 1728 KB  
Review
Histopathological, Immunohistochemical, Molecular and Genetic Biomarkers in Differentiated Thyroid Cancer
by Mousa A. Al-Abbadi, Dunia Aburizeg, Husam Abuawad, Hala Alzaghloul, Omar Sqour, Bilal Azab, Tala Qudisat, Ali M. Alabbadi, Ayman Mismar and Malik Eid Juweid
Cancers 2025, 17(17), 2869; https://doi.org/10.3390/cancers17172869 - 31 Aug 2025
Viewed by 1388
Abstract
Differentiated thyroid cancer (DTC) is the most prevalent endocrine malignancy in the world. Accurate diagnosis and prognostication are essential for optimizing its treatment and improving patient outcomes. This narrative review explores the diagnostic and prognostic histopathological, immunohistochemical, molecular, and genetic biomarkers in DTC, [...] Read more.
Differentiated thyroid cancer (DTC) is the most prevalent endocrine malignancy in the world. Accurate diagnosis and prognostication are essential for optimizing its treatment and improving patient outcomes. This narrative review explores the diagnostic and prognostic histopathological, immunohistochemical, molecular, and genetic biomarkers in DTC, emphasizing their role in risk stratification and personalized management. Histopathological biomarkers, including tumor size, extrathyroidal extension, lymphovascular invasion, and aggressive subtypes (e.g., tall cell, hobnail, and insular variants), correlate with poor prognosis. Additionally, genetic alterations such as BRAF:p.V600E, RAS mutations, TERT promoter mutations, and RET/PTC rearrangements provide molecular insights into tumor progression and therapeutic response. Some of these molecular/genetic mutations have surrogate proteins that are feasible for immunohistochemical analysis, providing faster and cost-effective alternatives. Advances in next-generation sequencing have further refined risk stratification, facilitating precision medicine approaches. Future research should focus on validating novel biomarkers and developing targeted therapies to improve patient outcomes. Full article
(This article belongs to the Collection Biomarkers of Thyroid Cancer)
Show Figures

Figure 1

Back to TopTop