Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Fusobacterium varium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1831 KiB  
Article
Effect of Multi-Species Probiotic Supplementation on Fecal Microbiota in Pre-Weaned Holstein Dairy Calves in California
by Yoonsuk Lee, Heidi A. Rossow, Deniece R. Williams, Sejin Cheong, Hedmon Okella, Logan Widmer and Emmanuel Okello
Microorganisms 2025, 13(8), 1810; https://doi.org/10.3390/microorganisms13081810 - 2 Aug 2025
Viewed by 136
Abstract
The gross benefit of feeding multi-species probiotics has been reported, but the effect on the gut microbiota in pre-weaned dairy calves has not been elucidated. To address this gap, a randomized controlled trial was conducted in California, USA, to investigate the effect of [...] Read more.
The gross benefit of feeding multi-species probiotics has been reported, but the effect on the gut microbiota in pre-weaned dairy calves has not been elucidated. To address this gap, a randomized controlled trial was conducted in California, USA, to investigate the effect of feeding probiotics on the fecal microbiota of pre-weaned dairy calves. A total of 30 neonatal calves were randomly assigned to either the probiotic (PRO) or control (CON) treatment. Fecal samples were collected at four age timepoints: days 7, 14, 21, and 42. Fecal bacterial population was analyzed using 16S rRNA amplicon sequencing. Differential abundance analysis was conducted to investigate the difference between the PRO and CON treatments, and diarrheic and non-diarrheic calves in each PRO and CON group. The PRO group had decreased Clostridium perfringens and Fusobacterium varium compared to the CON at 7 days of age. At 7 days of age, diarrheic calves in CON had more abundant F. varium compared to non-diarrheic calves, but there was no difference between diarrheic and non-diarrheic calves in the PRO group. In conclusion, probiotics administration decreased the population of pathogenic bacteria in feces from pre-weaned dairy calves on Day 7 of age. However, the treatment did not have an impact on bacterial diversity. These results suggest that the administration of probiotics has the potential to control gastrointestinal pathogens. Full article
(This article belongs to the Special Issue Gut Microbiota of Food Animal)
Show Figures

Figure 1

11 pages, 1174 KiB  
Article
Adhesion of Bacteroides vulgatus and Fusobacterium varium to the Colonic Mucosa of Healthy Beagles
by Mohsen Hanifeh, Mirja Huhtinen, Yannes S. Sclivagnotis, Ulrike Lyhs, Thomas Grönthal and Thomas Spillmann
Vet. Sci. 2024, 11(7), 319; https://doi.org/10.3390/vetsci11070319 - 16 Jul 2024
Viewed by 1733
Abstract
The relative abundances of Bacteroidetes and Fusobacteria phyla have been reported to be decreased in dogs with chronic enteropathies. In colitis, obligate anaerobes (e.g., Bacteroides and Fusobacterium) are likely to vanish in response to the heightened oxidative stress in the colon’s inflammatory [...] Read more.
The relative abundances of Bacteroidetes and Fusobacteria phyla have been reported to be decreased in dogs with chronic enteropathies. In colitis, obligate anaerobes (e.g., Bacteroides and Fusobacterium) are likely to vanish in response to the heightened oxidative stress in the colon’s inflammatory environment. The ability to adhere to the colonic mucosa is viewed as an essential step for obligate anaerobic bacteria to colonize and subsequently interact with the host’s epithelium and immune system. The reintroduction of a balanced community of obligate anaerobic bacteria using probiotics can restore the microbial function in the intestine. We found no studies on dogs regarding the adhesion properties of Bacteriodes vulgatus and Fusobacterium varium on paraffin-embedded canine colonic mucosa. Thus, the objective of this study is to investigate the adhesion capacities of these two bacterial species to paraffin-embedded colonic mucosa from healthy dogs. Additionally, we investigated their hydrophobicity properties to determine whether differences in adhesion capability can be explained by this factor. The results of our study showed that B. vulgatus adhered significantly lower than F. varium to the canine colonic mucosa (p = 0.002); however, B. vulgatus showed higher hydrophobicity (46.1%) than F. varium (12.6%). In conclusion, both bacteria have potential as probiotics, but further studies will be required to determine the efficacy and safety of the strains to be used, which strains to use, and the reasons other than hydrophobicity for attachment. Full article
Show Figures

Figure 1

12 pages, 1922 KiB  
Article
Exploring the Relationship between Gut Microbiome Composition and Blood Indole-3-acetic Acid in Hemodialysis Patients
by Ping-Hsun Wu, Yu-Fang Tseng, Wangta Liu, Yun-Shiuan Chuang, Chi-Jung Tai, Chun-Wei Tung, Kean-Yee Lai, Mei-Chuan Kuo, Yi-Wen Chiu, Shang-Jyh Hwang, Wei-Chun Hung and Yi-Ting Lin
Biomedicines 2024, 12(1), 148; https://doi.org/10.3390/biomedicines12010148 - 10 Jan 2024
Cited by 5 | Viewed by 2827
Abstract
Indole-3-acetic acid (IAA), a protein-bound uremic toxin resulting from gut microbiota-driven tryptophan metabolism, increases in hemodialysis (HD) patients. IAA may induce endothelial dysfunction, inflammation, and oxidative stress, elevating cardiovascular and cognitive risk in HD patients. However, research on the microbiome–IAA association is limited. [...] Read more.
Indole-3-acetic acid (IAA), a protein-bound uremic toxin resulting from gut microbiota-driven tryptophan metabolism, increases in hemodialysis (HD) patients. IAA may induce endothelial dysfunction, inflammation, and oxidative stress, elevating cardiovascular and cognitive risk in HD patients. However, research on the microbiome–IAA association is limited. This study aimed to explore the gut microbiome’s relationship with plasma IAA levels in 72 chronic HD patients aged over 18 (August 2016–January 2017). IAA levels were measured using tandem mass spectrometry, and gut microbiome analysis utilized 16s rRNA next-generation sequencing. Linear discriminative analysis effect size and random forest analysis distinguished microbial species linked to IAA levels. Patients with higher IAA levels had reduced microbial diversity. Six microbial species significantly associated with IAA levels were identified; Bacteroides clarus, Bacteroides coprocola, Bacteroides massiliensi, and Alisteps shahii were enriched in low-IAA individuals, while Bacteroides thetaiotaomicron and Fusobacterium varium were enriched in high-IAA individuals. This study sheds light on specific gut microbiota species influencing IAA levels, enhancing our understanding of the intricate interactions between the gut microbiota and IAA metabolism. Full article
(This article belongs to the Section Microbiology in Human Health and Disease)
Show Figures

Figure 1

14 pages, 3827 KiB  
Article
Classification of Changes in the Fecal Microbiota Associated with Colonic Adenomatous Polyps Using a Long-Read Sequencing Platform
by Po-Li Wei, Ching-Sheng Hung, Yi-Wei Kao, Ying-Chin Lin, Cheng-Yang Lee, Tzu-Hao Chang, Ben-Chang Shia and Jung-Chun Lin
Genes 2020, 11(11), 1374; https://doi.org/10.3390/genes11111374 - 20 Nov 2020
Cited by 16 | Viewed by 4271
Abstract
The microbiota is the community of microorganisms that colonizes the oral cavity, respiratory tract, and gut of multicellular organisms. The microbiota exerts manifold physiological and pathological impacts on the organism it inhabits. A growing body of attention is being paid to host–microbiota interplay, [...] Read more.
The microbiota is the community of microorganisms that colonizes the oral cavity, respiratory tract, and gut of multicellular organisms. The microbiota exerts manifold physiological and pathological impacts on the organism it inhabits. A growing body of attention is being paid to host–microbiota interplay, which is highly relevant to the development of carcinogenesis. Adenomatous polyps are considered a common hallmark of colorectal cancer, the second leading cause of carcinogenesis-mediated death worldwide. In this study, we examined the relevance between targeted operational taxonomic units and colonic polyps using short- and long-read sequencing platforms. The gut microbiota was assessed in 132 clinical subjects, including 53 healthy participants, 36 patients with occult blood in the gut, and 43 cases with adenomatous polyps. An elevation in the relative abundance of Klebsiella pneumonia, Fusobacterium varium, and Fusobacterium mortiferum was identified in patients with adenomatous polyps compared with the other groups using long-read sequencing workflow. In contrast, the relatively high abundances of Blautia luti, Bacteroides plebeius, and Prevotella copri were characterized in the healthy groups. The diversities in gut microbiota communities were similar in all recruited samples. These results indicated that alterations in gut microbiota were characteristic of participants with adenomatous polyps, which might be relevant to the further development of CRC. These findings provide a potential contribution to the early prediction and interception of CRC occurrence. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Graphical abstract

Back to TopTop