Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (190)

Search Parameters:
Keywords = Flexible supercapacitor electrode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 6545 KiB  
Review
MXene-Based Composites for Energy Harvesting and Energy Storage Devices
by Jorge Alexandre Alencar Fotius and Helinando Pequeno de Oliveira
Solids 2025, 6(3), 41; https://doi.org/10.3390/solids6030041 - 1 Aug 2025
Viewed by 303
Abstract
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in [...] Read more.
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in MXene-based composites, focusing on their integration into electrode architectures for the development of supercapacitors, batteries, and multifunctional devices, including triboelectric nanogenerators. It serves as a comprehensive overview of the multifunctional capabilities of MXene-based composites and their role in advancing efficient, flexible, and sustainable energy and sensing technologies, outlining how MXene-based systems are poised to redefine multifunctional energy platforms. Electrochemical performance optimization strategies are discussed by considering surface functionalization, interlayer engineering, scalable synthesis techniques, and integration with advanced electrolytes, with particular attention paid to the development of hybrid supercapacitors, triboelectric nanogenerators (TENGs), and wearable sensors. These applications are favored due to improved charge storage capability, mechanical properties, and the multifunctionality of MXenes. Despite these aspects, challenges related to long-term stability, sustainable large-scale production, and environmental degradation must still be addressed. Emerging approaches such as three-dimensional self-assembly and artificial intelligence-assisted design are identified as key challenges for overcoming these issues. Full article
Show Figures

Figure 1

21 pages, 5680 KiB  
Article
Polyvinylpyrrolidone-Functionalized NiCo2O4 Electrodes for Advanced Asymmetric Supercapacitor Application
by Rutuja U. Amate, Mrunal K. Bhosale, Pritam J. Morankar, Aviraj M. Teli and Chan-Wook Jeon
Polymers 2025, 17(13), 1802; https://doi.org/10.3390/polym17131802 - 28 Jun 2025
Viewed by 390
Abstract
Designing advanced electrode architectures with tailored morphology and redox synergy is essential for achieving high-performance supercapacitive energy storage. In this study, a PVP-assisted hydrothermal approach was employed to synthesize binder-free NiCo2O4 nanostructured electrodes directly on nickel foam substrates. By modulating [...] Read more.
Designing advanced electrode architectures with tailored morphology and redox synergy is essential for achieving high-performance supercapacitive energy storage. In this study, a PVP-assisted hydrothermal approach was employed to synthesize binder-free NiCo2O4 nanostructured electrodes directly on nickel foam substrates. By modulating the PVP concentration (0.5–2 wt%), hierarchical flower-like nanosheets were engineered, with the NiCo-P1 sample (1 wt% PVP) exhibiting an optimized structure, superior electroactive surface area, and enhanced ion accessibility. Comprehensive electrochemical analysis revealed that NiCo-P1 delivered an outstanding areal capacitance of 36.5 F/cm2 at 10 mA/cm2, along with excellent cycling stability over 15,000 cycles with 80.97% retention. Kinetic studies confirmed dominant diffusion-controlled redox behavior with high OH diffusion coefficients and minimal polarization. An asymmetric pouch-type supercapacitor device (NiCo-P1//AC) exhibited a wide operating window of 1.5 V, achieving a remarkable areal capacitance of 187 mF/cm2, energy density of 0.058 mWh/cm2, and capacitive retention of 78.78% after 5000 cycles. The superior performance is attributed to the synergistic integration of mixed-valence Ni and Co species, engineered nanosheet morphology, and low interfacial resistance. This work underscores the significance of surfactant-directed design in advancing cost-effective, high-performance electrodes for next-generation flexible energy storage technologies. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 4602 KiB  
Article
Construction of Symmetric Flexible Electrochromic and Rechargeable Supercapacitors Based on a 1,3,6,8-Pyrenetetrasulfonic Acid Tetrasodium Salt-Loaded Polyaniline Nanostructured Film
by Yi Wang, Ze Wang, Zilong Zhang, Yujie Yan, An Xie, Tong Feng and Chunyang Jia
Materials 2025, 18(12), 2836; https://doi.org/10.3390/ma18122836 - 16 Jun 2025
Cited by 1 | Viewed by 423
Abstract
Electrochromic supercapacitors (ECSCs), which visually indicate their operating status through color changes, have attracted considerable attention in the field of wearable electronics. The conductive polymer polyaniline (PANI) shows great potential for integrated intelligent devices by combining bi-functional electrochromic spectral modulation and energy storage [...] Read more.
Electrochromic supercapacitors (ECSCs), which visually indicate their operating status through color changes, have attracted considerable attention in the field of wearable electronics. The conductive polymer polyaniline (PANI) shows great potential for integrated intelligent devices by combining bi-functional electrochromic spectral modulation and energy storage capabilities. In this work, a microsphere-like structured PANI-based composite film was fabricated on a porous Au/nylon 66 electrode via a one-step electrochemical copolymerization process, using 1,3,6,8-pyrenetetrasulfonic acid tetrasodium salt (PTSA) as both the dopant and cross-linking agent for the PANI backbone, serving as the ECSC electrode. Compared to the pristine PANI electrode, the PANI-PTSA composite film exhibits lower intrinsic resistance and higher electrical conductivity, delivering a higher specific capacitance of 310.0 F g⁻1@1 A g⁻1 and an areal capacitance of 340.0 mF cm⁻2@1 mA cm⁻2, respectively. The dopant facilitates enhanced electrochemical performance by promoting charge transport within the PANI polymer network. Meanwhile, as a counter anion to the PANI backbone, PTSA regulates the growth of PANI chains and acts as a morphological controller. Furthermore, a symmetric ECSC based on the PANI-PTSA8:1 electrode was assembled, and its electrochemical properties were thoroughly investigated. The device demonstrated a high specific capacitance of 169.2 mF cm⁻2 at 1 mA cm⁻2, a notable energy density of 23.5 μWh cm⁻2 at a power density of 0.5 mW cm⁻2, and excellent cycling stability with 79% capacitance retention after 3000 cycles at a current density of 5 mA cm⁻2, alongside remarkable mechanical flexibility. Additionally, the working status of the ECSCs can be directly monitored through reversible color changes from yellow-green to deep blue during charge–discharge processes. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Graphical abstract

86 pages, 12164 KiB  
Review
Empowering the Future: Cutting-Edge Developments in Supercapacitor Technology for Enhanced Energy Storage
by Mohamed Salaheldeen, Thomas Nady A. Eskander, Maher Fathalla, Valentina Zhukova, Juan Mari Blanco, Julian Gonzalez, Arcady Zhukov and Ahmed M. Abu-Dief
Batteries 2025, 11(6), 232; https://doi.org/10.3390/batteries11060232 - 16 Jun 2025
Cited by 3 | Viewed by 1515
Abstract
The accelerating global demand for sustainable and efficient energy storage has driven substantial interest in supercapacitor technology due to its superior power density, fast charge–discharge capability, and long cycle life. However, the low energy density of supercapacitors remains a key bottleneck, limiting their [...] Read more.
The accelerating global demand for sustainable and efficient energy storage has driven substantial interest in supercapacitor technology due to its superior power density, fast charge–discharge capability, and long cycle life. However, the low energy density of supercapacitors remains a key bottleneck, limiting their broader application. This review provides a comprehensive and focused overview of the latest breakthroughs in supercapacitor research, emphasizing strategies to overcome this limitation through advanced material engineering and device design. We explore cutting-edge developments in electrode materials, including carbon-based nanostructures, metal oxides, redox-active polymers, and emerging frameworks such as metal–organic frameworks (MOFs) and covalent organic frameworks (COFs). These materials offer high surface area, tunable porosity, and enhanced conductivity, which collectively improve the electrochemical performance. Additionally, recent advances in electrolyte systems—ranging from aqueous to ionic liquids and organic electrolytes—are critically assessed for their role in expanding the operating voltage window and enhancing device stability. The review also highlights innovations in device architectures, such as hybrid, asymmetric, and flexible supercapacitor configurations, that contribute to the simultaneous improvement of energy and power densities. We identify persistent challenges in scaling up nanomaterial synthesis, maintaining long-term operational stability, and integrating materials into practical energy systems. By synthesizing these state-of-the-art advancements, this review outlines a roadmap for next-generation supercapacitors and presents novel perspectives on the synergistic integration of materials, electrolytes, and device engineering. These insights aim to guide future research toward realizing high-energy, high-efficiency, and scalable supercapacitor systems suitable for applications in electric vehicles, renewable energy storage, and next-generation portable electronics. Full article
(This article belongs to the Special Issue High-Performance Super-capacitors: Preparation and Application)
Show Figures

Graphical abstract

23 pages, 23602 KiB  
Article
Exploration of the Supercapacitive Performance of 3D Flower-like Architecture of Quaternary CuNiCoZnO Developed on Versatile Substrates
by Priya G. Gaikwad, Nidhi Tiwari, Rajanish K. Kamat, Sadaf Jamal Gilani, Sagar M. Mane, Jaewoong Lee and Shriniwas B. Kulkarni
Micromachines 2025, 16(6), 645; https://doi.org/10.3390/mi16060645 - 28 May 2025
Viewed by 452
Abstract
The demand for high-performance supercapacitors has driven extensive research into novel electrode materials with superior electrochemical properties. This study explores the supercapacitive behavior of quaternary CuNiCoZnO (CNCZO) films engineered into a three-dimensional (3D) flower-like morphology and developed on versatile substrates, including carbon cloth, [...] Read more.
The demand for high-performance supercapacitors has driven extensive research into novel electrode materials with superior electrochemical properties. This study explores the supercapacitive behavior of quaternary CuNiCoZnO (CNCZO) films engineered into a three-dimensional (3D) flower-like morphology and developed on versatile substrates, including carbon cloth, stainless steel mesh, and nickel foam. The unique structural design, comprising interconnected nanosheets, enhances the electroactive surface area, facilitates ion diffusion, and improves charge storage capability. The synergistic effect of the multi-metallic composition contributes to remarkable electrochemical characteristics, including high specific capacitance, excellent rate capability, and outstanding cycling stability. Furthermore, the influence of different substrates on the electrochemical performance is systematically investigated to optimize material–substrate interactions. Electrochemical evaluations reveal outstanding specific capacitance values of 2318.5 F/g, 1993.7 F/g, and 2741.3 F/g at 2 mA/cm2 for CNCZO electrodes on stainless steel mesh, carbon cloth, and nickel foam, respectively, with capacitance retention of 77.3%, 95.7%, and 86.1% over 5000 cycles. Furthermore, a symmetric device of CNCZO@Ni exhibits a peak specific capacitance of 67.7 F/g at a current density of 4 mA/cm2, a power density of 717.4 W/kg, and an energy density of 25.6 Wh/kg, maintaining 84.5% stability over 5000 cycles. The straightforward synthesis of CNCZO on multiple substrates presents a promising route for the development of flexible, high-performance energy storage devices. Full article
(This article belongs to the Special Issue Energy Conversion and Storage Devices: Materials and Applications)
Show Figures

Figure 1

23 pages, 2445 KiB  
Review
Nanofiber-Based Innovations in Energy Storage Systems
by Iva Rezić Meštrović and Maja Somogyi Škoc
Polymers 2025, 17(11), 1456; https://doi.org/10.3390/polym17111456 - 23 May 2025
Viewed by 819
Abstract
Nanofibers have emerged as transformative materials in the field of energy storage, offering unique physicochemical properties such as high surface area, porosity, and tunable morphology. Recent advancements have also introduced genetically modified fibers—engineered at the biological level to produce functionalized nanostructures with customizable [...] Read more.
Nanofibers have emerged as transformative materials in the field of energy storage, offering unique physicochemical properties such as high surface area, porosity, and tunable morphology. Recent advancements have also introduced genetically modified fibers—engineered at the biological level to produce functionalized nanostructures with customizable properties. These bioengineered nanofibers add a sustainable and potentially self-healing component to energy storage materials. This paper reviews key applications of conventional and genetically modified nanofibers in lithium-ion and sodium-ion batteries, supercapacitors, hybrid systems, and flexible energy storage with a focus on how genetic and molecular engineering of fibrous materials enables new capabilities in ion transport, electrode architecture, and device longevity. Together, these advances contribute to the development of next-generation energy storage systems with enhanced performance, biocompatibility, and sustainability. This review therefore critically examines the current state, advantages, and limitations of both synthetic and biopolymer-based materials in energy storage applications. It discusses recent technological innovations, such as polymer–nanoparticle composites, functionalized polymer matrices, and next-generation polymer electrolytes. Future research should prioritize enhancing conductivity, improving scalability, and reducing environmental impact, ensuring that polymer-based materials contribute to the development of more efficient and sustainable energy storage technologies. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

19 pages, 8736 KiB  
Article
Preparation of Asymmetric Micro-Supercapacitors Based on Laser-Induced Graphene with Regulated Hydrophobicity and Hydrophilicity
by Qing Liu, Wenpeng Wu, Pingping Luo, Hao Yu, Jiaqi Wang, Rui Chen and Yang Zhao
Nanomaterials 2025, 15(8), 584; https://doi.org/10.3390/nano15080584 - 11 Apr 2025
Viewed by 769
Abstract
Asymmetric micro-supercapacitors (AMSCs) with a small size and high energy density can be compatible with portable and wearable electronic devices and are capable of providing stable, long-term power supply, attracting great research interest in recent years. Here, we present a simple and rapid [...] Read more.
Asymmetric micro-supercapacitors (AMSCs) with a small size and high energy density can be compatible with portable and wearable electronic devices and are capable of providing stable, long-term power supply, attracting great research interest in recent years. Here, we present a simple and rapid preparation method for AMSCs’ fabrication. By regulating the hydrophilicity and hydrophobicity of coplanar laser-induced graphene (LIG) through the adjustment of the laser parameters, two electrode materials with distinct hydrophilic–hydrophobic properties were selectively deposited by sequentially dip-coating. The LIGs serve as current collectors, with activated carbon and poly (3,4-ethylenedioxythiophene): poly (styrene sulfonate) as active materials. After coating the electrolytes and folding the two electrodes, a high-performance AMSC was achieved. The device exhibits a high areal capacitance of 85.88 mF cm−2 at a current density of 0.4 mA cm−2, along with an impressive energy density of 11.93 µWh cm−2 and a good rate performance. Moreover, it is demonstrated to be highly stable in 500,000 cycles. Two AMSCs in series can supply power to an electronic clock and birthday card. The method of preparing asymmetric electrodes in the same plane greatly facilitates the large-area preparation of AMSCs and series–parallel connection, providing an excellent idea for developing high-performance miniature energy storage devices. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

14 pages, 4314 KiB  
Article
Rationally Designed PPy-Coated Fe2O3 Nanoneedles Anchored on N-C Nanoflakes as a High-Performance Anode for Aqueous Supercapacitors
by Zhiqiang Cui, Siqi Zhan, Yatu Luo, Yunfeng Hong, Zexian Liu, Guoqiang Tang, Dongming Cai and Rui Tong
Crystals 2025, 15(4), 346; https://doi.org/10.3390/cryst15040346 - 7 Apr 2025
Cited by 13 | Viewed by 584
Abstract
Flexible supercapacitors have emerged as pivotal energy storage components in wearable smart electronic systems, owing to their exceptional electrochemical performance. However, the widespread application of flexible supercapacitors in smart electronic devices is significantly hindered by the developmental bottleneck of high-performance anode materials. In [...] Read more.
Flexible supercapacitors have emerged as pivotal energy storage components in wearable smart electronic systems, owing to their exceptional electrochemical performance. However, the widespread application of flexible supercapacitors in smart electronic devices is significantly hindered by the developmental bottleneck of high-performance anode materials. In this study, a novel electrode composed of surface-modified Fe2O3 nanoneedles uniformly coated with a polypyrrole (PPy) film and anchored on Co-MOF-derived N-C nanoflake arrays (PPy/Fe2O3/N-C) is designed. This composite electrode, grown in situ on carbon cloth (CC), demonstrated outstanding specific capacity, rate performance, and mechanical flexibility, attributed to its unique hierarchical 3D arrayed structure and the protective PPy layer. The fabricated PPy/Fe2O3/N-C@CC (P-FONC) composite electrode exhibited an excellent specific capacitance of 356.6 mF cm−2 (143 F g−1) at a current density of 2 mA cm−2. The current density increased to 20 mA cm−2, and the composite electrode material preserved a specific capacitance of 278 mF cm−2 (112 F g−1). Furthermore, the assembled quasi-solid-state Mn/Fe asymmetric supercapacitor, configured with P-FONC as the negative electrode and MnO2/N-C@CC as the positive electrode, demonstrated robust chemical stability and notable mechanical flexibility. This study sheds fresh light on the creation of three-dimensional composite electrode materials for highly efficient, flexible energy storage systems. Full article
Show Figures

Figure 1

24 pages, 8116 KiB  
Article
Electrochemical Capacitance of CNF–Ti3C2Tx MXene-Based Composite Cryogels in Different Electrolyte Solutions for an Eco-Friendly Supercapacitor
by Vanja Kokol, Subramanian Lakshmanan and Vera Vivod
Gels 2025, 11(4), 265; https://doi.org/10.3390/gels11040265 - 3 Apr 2025
Viewed by 509
Abstract
Cellulose nanofibrils (CNFs) are promising materials for flexible and green supercapacitor electrodes, while Ti3C2Tx MXene exhibits high specific capacitance. However, the diffusion limitation of ions and chemical instability in the generally used highly basic (KOH, MXene oxidation) or [...] Read more.
Cellulose nanofibrils (CNFs) are promising materials for flexible and green supercapacitor electrodes, while Ti3C2Tx MXene exhibits high specific capacitance. However, the diffusion limitation of ions and chemical instability in the generally used highly basic (KOH, MXene oxidation) or acidic (H2SO4, CNF degradation) electrolytes limits their performance and durability. Herein, freestanding CNF/MXene cryogel membranes were prepared by deep freeze-casting (at −50 and −80 °C), using different weight percentages of components (10, 50, 90), and evaluated for their structural and physico-chemical stability in other less aggressive aqueous electrolyte solutions (Na2/Mg/Mn/K2-SO4, Na2CO3), to examine the influence of the ions transport on their pseudocapacitive properties. While the membrane prepared with 50 wt% (2.5 mg/cm2) of MXene loading at −80 °C shrank in a basic Na2CO3 electrolyte, the capacitance was performed via the forming of an electroactive layer on its interface, giving it high stability (90% after 3 days of cycling) but lower capacitance (8 F/g at 2 mV/s) than in H2SO4 (25 F/g). On the contrary, slightly acidic electrolytes extended the cations’ transport path due to excessive but still size-limited diffusion of the hydrated ions (SO42− > Na+ > Mn2+ > Mg2+) during membrane swelling, which blocked it, reducing the electroactive surface area and lowering conductivities (<3 F/g). Full article
(This article belongs to the Special Issue Cellulose Gels: Properties and Prospective Applications)
Show Figures

Graphical abstract

10 pages, 2095 KiB  
Article
One-Step Synthesis of Zirconium Sulfide Nanoparticles on Flexible Carbon Cloth for Supercapacitor Application
by Yu-Xuan Wang, Dung-Sheng Tsai, Chu-Jung Huang, Zi-Yu Chen and Chuan-Pei Lee
Batteries 2025, 11(4), 138; https://doi.org/10.3390/batteries11040138 - 31 Mar 2025
Cited by 1 | Viewed by 591
Abstract
Zirconium sulfide nanoparticles (ZrxSy) are prepared on a flexible substrate of carbon cloth (CC) via a one-step synthesis approach using the low-pressure chemical vapor deposition (LPCVD) technique. The scanning electron microscopy (SEM) image reveals that the particle sizes are [...] Read more.
Zirconium sulfide nanoparticles (ZrxSy) are prepared on a flexible substrate of carbon cloth (CC) via a one-step synthesis approach using the low-pressure chemical vapor deposition (LPCVD) technique. The scanning electron microscopy (SEM) image reveals that the particle sizes are in the range of ca. 3~23 nm with an average value of ~13.02 nm. The synthesized ZrxSy nanoparticles are composed of ZrS3 and Zr9S2 phases, which is verified by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM). By using the ZrxSy/CC as a supercapacitor flexible electrode, the capacitance extracted from the cyclic voltammetry measurement is 406 C g−1 at a scan rate of 5 mV s−1; the capacitance values obtained from GCD curves at a current density of 0.5 A g−1 and 1 A g−1 are 151 and 134 C g−1, respectively. These results highlight the promising potential of ZrxSy as a supercapacitor material for future energy-storage technology. Full article
Show Figures

Figure 1

27 pages, 4714 KiB  
Review
Advancements in Metal-Ion Capacitors: Bridging Energy and Power Density for Next-Generation Energy Storage
by Ramkumar Vanaraj, Bharathi Arumugam, Gopiraman Mayakrishnan and Seong-Cheol Kim
Energies 2025, 18(5), 1253; https://doi.org/10.3390/en18051253 - 4 Mar 2025
Cited by 2 | Viewed by 1286
Abstract
Metal-ion capacitors (MICs) have emerged as advanced hybrid energy storage devices that combine the high energy density of batteries with the superior power density and long cycle life of supercapacitors. By leveraging a unique configuration of faradaic and non-faradaic energy storage mechanisms, MICs [...] Read more.
Metal-ion capacitors (MICs) have emerged as advanced hybrid energy storage devices that combine the high energy density of batteries with the superior power density and long cycle life of supercapacitors. By leveraging a unique configuration of faradaic and non-faradaic energy storage mechanisms, MICs offer a balanced performance that meets the diverse requirements of modern applications, including renewable energy systems, electric vehicles, and portable electronics. MICs employ diverse ions such as lithium, sodium, and potassium, which provide flexibility in material selection, scalability, and cost-effectiveness. For instance, lithium-ion capacitors (LICs) excel in compact and high-performance applications, while sodium-ion (NICs) and potassium-ion capacitors (KICs) provide sustainable and affordable solutions for large-scale energy storage. This review highlights the advancements in electrode materials, including carbon-based materials, transition metal oxides, and emerging candidates like MXenes and metal–organic frameworks (MOFs), which enhance MIC performance. The role of electrolytes, ranging from organic and aqueous to hybrid and solid-state systems, is also examined, emphasizing their influence on energy density, safety, and operating voltage. Additionally, the article discusses the environmental and economic benefits of MICs, including the use of earth-abundant materials and bio-derived carbons, which align with global sustainability goals. The review concludes with an analysis of practical applications, commercialization challenges, and future research directions, including AI-driven material discovery and integration into decentralized energy systems. As versatile and transformative energy storage devices, MICs are poised to play a critical role in advancing sustainable and efficient energy solutions for the future. Full article
Show Figures

Figure 1

26 pages, 5528 KiB  
Review
Pseudocapacitive Storage in High-Performance Flexible Batteries and Supercapacitors
by Zhenxiao Lu and Xiaochuan Ren
Batteries 2025, 11(2), 63; https://doi.org/10.3390/batteries11020063 - 7 Feb 2025
Cited by 7 | Viewed by 2223
Abstract
Attention to electrochemical energy storage (EES) devices continues to grow as the demand increases for energy storage systems in the storage and transmission of renewable energy. The expanded market requirement for mobile electronics devices and flexible electronic devices also calls for efficient energy [...] Read more.
Attention to electrochemical energy storage (EES) devices continues to grow as the demand increases for energy storage systems in the storage and transmission of renewable energy. The expanded market requirement for mobile electronics devices and flexible electronic devices also calls for efficient energy suppliers. EES devices applying pseudocapacitive materials and generated pseudocapacitive storage are gaining increasing focus because they are capable of overcoming the capacity limitations of electrical double-layer capacitors (EDLCs) and offsetting the rate performance of batteries. The pseudocapacitive storage mechanism generally occurs on the surface or near the surface of the electrode materials, which could avoid the slow ion diffusion process. Developing materials with beneficial nanostructures and optimized phases supporting pseudocapacitive storage would efficiently improve the energy density and charging rate for EES devices, such as batteries and flexible supercapacitors. This review offers a detailed assessment of pseudocapacitance, including classification, working mechanisms, analysis methods, promotion routes and advanced applications. The future challenges facing the effective utilization of pseudocapacitive mechanisms in upcoming energy storage devices are also discussed. Full article
Show Figures

Figure 1

15 pages, 7847 KiB  
Article
High-Capacity Energy Storage Devices Designed for Use in Railway Applications
by Krystian Woźniak, Beata Kurc, Łukasz Rymaniak, Natalia Szymlet, Piotr Pielecha and Jakub Sobczak
Energies 2024, 17(23), 5904; https://doi.org/10.3390/en17235904 - 25 Nov 2024
Viewed by 923
Abstract
This paper investigates the application of high-capacity supercapacitors in railway systems, with a particular focus on their role in energy recovery during braking processes. The study highlights the potential for significant energy savings by capturing and storing energy generated through electrodynamic braking. Experimental [...] Read more.
This paper investigates the application of high-capacity supercapacitors in railway systems, with a particular focus on their role in energy recovery during braking processes. The study highlights the potential for significant energy savings by capturing and storing energy generated through electrodynamic braking. Experimental measurements conducted on a diesel–electric multiple unit revealed that approximately 28.3% to 30.5% of the energy could be recovered from the traction network, regardless of the type of drive used—whether electric or diesel. This research also explores the integration of starch-based carbon as an electrode material in supercapacitors, offering an innovative, sustainable alternative to traditional graphite or graphene electrodes. The carbon material was obtained through a simple carbonization process, with experimental results demonstrating a material capacity of approximately 130 F/g. To quantify the energy recovery, calculations were made regarding the mass and power requirements of the supercapacitors. For the tested vehicle, it was estimated that around 28.7% of the energy could be recovered during the braking process. To store 15 kWh of energy, the total mass of the capacitors required is approximately 245.1 kg. The study emphasizes the importance of increasing voltage levels in railway systems, which can enhance energy transmission and utilization efficiency. Additionally, the paper discusses the necessity of controlled energy discharge, allowing for the flexible management of energy release to meet the varying power demands of trains. By integrating high-voltage supercapacitors and advanced materials like starch-based carbon, this research paves the way for more sustainable and efficient railway systems, contributing to the industry’s goals of reducing emissions and improving operational performance. The findings underscore the crucial role of these capacitors in modernizing railway infrastructure and promoting environmentally responsible transportation solutions. Full article
Show Figures

Figure 1

18 pages, 5203 KiB  
Review
Conductive Hydrogel Materials for Flexible Supercapacitor Electrodes
by Kun Zhang, Zhizhou Chen, Jinling Li, Gaoqiang Feng, Chang Xu, Jizhi Yang and Wanwan Li
Crystals 2024, 14(11), 971; https://doi.org/10.3390/cryst14110971 - 9 Nov 2024
Cited by 1 | Viewed by 2301
Abstract
Flexible supercapacitors (SCs), as promising energy storage devices, have shown great potential for both next-generation wearable electronics and addressing the global energy crisis. Conductive hydrogels (CHs) are suitable electrode materials for flexible SCs on account of their intrinsic characteristics and functional advantages, such [...] Read more.
Flexible supercapacitors (SCs), as promising energy storage devices, have shown great potential for both next-generation wearable electronics and addressing the global energy crisis. Conductive hydrogels (CHs) are suitable electrode materials for flexible SCs on account of their intrinsic characteristics and functional advantages, such as a unique 3D porous structure, remarkable conductivity, tunable chemical and physical properties, and outstanding mechanical properties. Herein, an overview of the fabrication strategies for CHs as electrode materials in flexible SCs, as well as their advantages and disadvantages, and perspectives on CH-based SCs is provided. First, the fabrication strategies for CHs are systematically introduced. Second, various multifunctional CH-based SCs are presented and discussed. Finally, this review concludes with insights into the challenges and opportunities related to CHs or CH-based SCs, indicating future research prospects and application orientations in this field. Full article
(This article belongs to the Special Issue Research on Energy Storage and Conversion Materials)
Show Figures

Figure 1

11 pages, 2651 KiB  
Communication
Synthesis of Needle-like CoO Nanowires Decorated with Electrospun Carbon Nanofibers for High-Performance Flexible Supercapacitors
by Xiang Zhang
Nanomaterials 2024, 14(21), 1770; https://doi.org/10.3390/nano14211770 - 4 Nov 2024
Cited by 1 | Viewed by 1237
Abstract
Needle-like CoO nanowires have been successfully synthesized by a facile hydrothermal process on an electrospun carbon nanofibers substrate. The as-prepared sample mesoporous CoO nanowires aligned vertically on the surface of carbon nanofibers and cross-linked with each other, producing loosely porous nanostructures. These hybrid [...] Read more.
Needle-like CoO nanowires have been successfully synthesized by a facile hydrothermal process on an electrospun carbon nanofibers substrate. The as-prepared sample mesoporous CoO nanowires aligned vertically on the surface of carbon nanofibers and cross-linked with each other, producing loosely porous nanostructures. These hybrid composite electrodes exhibit a high specific capacitance of 1068.3 F g−1 at a scan rate of 5 mV s−1 and a good rate capability of 613.7 F g−1 at a scan rate of 60 mV s−1 in a three-electrode cell. The CoO NWs@CNF//CNT@CNF asymmetric device exhibits remarkable cycling stability and delivers a capacitance of 79.3 F/g with a capacitance retention of 92.1 % after 10,000 cycles. The asymmetric device delivers a high energy density of 37 Wh kg−1 with a power density of 0.8 kW kg−1 and a high power density of 16 kW kg−1 with an energy density of 23 Wh kg−1. This study demonstrated a promising strategy to enhance the electrochemical performance of flexible supercapacitors. Full article
(This article belongs to the Special Issue Advanced Nanocomposites for Batteries and Supercapacitors)
Show Figures

Figure 1

Back to TopTop