Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = Ficus carica fruit extract

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 1973 KiB  
Review
A Journey Along the Boulevard of Bioactive Compounds from Natural Sources, with Cosmetic and Pharmaceutical Potential: Bee Venom, Cobra Venom, Ficus carica
by Monica Dinu, Carmen Galea, Ana Maria Chirilov, Alin Laurențiu Tatu, Lawrence Chukwudi Nwabudike, Olimpia Dumitriu Buzia and Claudia Simona Stefan
Cosmetics 2024, 11(6), 195; https://doi.org/10.3390/cosmetics11060195 - 18 Nov 2024
Cited by 2 | Viewed by 3862
Abstract
Animal venom and plant extracts have been used since ancient times in traditional medicine worldwide. Natural components, valued for their safety and effectiveness, have been consistently used in cosmetic and pharmaceutical applications. We propose a journey along the boulevard of active compounds from [...] Read more.
Animal venom and plant extracts have been used since ancient times in traditional medicine worldwide. Natural components, valued for their safety and effectiveness, have been consistently used in cosmetic and pharmaceutical applications. We propose a journey along the boulevard of active compounds from natural sources, where bee venom (BV), cobra venom (CV), and Ficus carica reveal their individual therapeutic and cosmetic properties. The originality of this review lies in exploring the synergy of these bioactive sources, an approach that has not been presented in the literature. Although BV, CV, and Ficus carica have different origins and compositions, they have multiple common pharmacological and cosmetic actions, which make them ideal for inclusion in various products that can be used for skin care and health in general. Their anti-inflammatory, antioxidant, immunomodulatory, antimicrobial, neuroprotective, and regenerative properties give them an essential role in the creation of potential innovative and effective products in the pharmaceutical and cosmetics industry. Although many plant extracts have antioxidant and anti-inflammatory properties, Ficus carica was chosen due to its complex biochemical composition, which provides valuable benefits in skin regeneration and protection against oxidative stress. According to the International Nomenclature of Cosmetic Ingredients (INCI), Ficus carica is used in the form of an extract of fruits, leaves, juice, bark or stem, each having specific applicability in topical formulations; due to the diversity of bioactive compounds, it can amplify the effectiveness of BV and CV, helping to enhance their beneficial effects and reducing the risk of adverse effects, due to its well-tolerated nature. Thus, this combination of natural ingredients opens up new perspectives in the development of innovative products, optimizing efficiency and maintaining a favorable safety profile. In this context, due to the reported experimental results, the three natural sources caught our attention, and we conceived the present work, which is a review made following the analysis of the current progress in the study of the bioactive compounds present in BV, CV, and Ficus carica. We focused on the novelties regarding pharmacological and cosmetic actions presented in the literature, and we highlighted the safety profile, as well as the modern approaches regarding the delivery and transport systems of the active substances from the three natural sources, and we evaluated their prospects in therapeutic and cosmetic use. This paper not only expands our knowledge of bioactive compounds, but it can also generate new ideas and motivations for the research and development of innovative treatments and skincare methods. Full article
Show Figures

Figure 1

23 pages, 2901 KiB  
Article
Antioxidant Activity and Effectiveness of Fig Extract in Counteracting Carbon Tetrachloride-Induced Oxidative Damage in Rats
by Leila Kebal, Noureddine Djebli, Katarzyna Pokajewicz, Nadjet Mostefa and Piotr P. Wieczorek
Molecules 2024, 29(9), 1997; https://doi.org/10.3390/molecules29091997 - 26 Apr 2024
Cited by 4 | Viewed by 2660
Abstract
Figs are the edible fruits of the fig tree, Ficus carica L., that have been used for centuries for human consumption and in traditional medicine, to treat skin problems, inflammation, and gastrointestinal disorders. Our previous study investigated the presence of phenolic compounds in [...] Read more.
Figs are the edible fruits of the fig tree, Ficus carica L., that have been used for centuries for human consumption and in traditional medicine, to treat skin problems, inflammation, and gastrointestinal disorders. Our previous study investigated the presence of phenolic compounds in aqueous extracts of two Algerian popular fig varieties, azendjar (Az) and taamriouth (Ta), as well as their in vitro antioxidant activity. In this study, we assessed hydroethanolic extracts of these fig varieties. The total phenolic content was measured, along with the phenolic profile. Rutin was determined to be the dominant phenolic compound, followed by vanillic acid, 3,4-dihydroxybenzoic acid, quercetin, 4-hydroxybenzoic acid, rosmarinic acid (in Az only), and cinnamic acid. The antioxidant activity of the extracts was evaluated both in vitro (DPPH and FRAP assays) and in vivo, in rats intoxicated with carbon tetrachloride. In all assays, the fig extract—especially the dark-peeled fig variety azendjar—showed antioxidant potency. The administration of fig extract resulted in a reduction in liver damage, expressed by both different biochemical markers and histopathological study (less degraded liver architecture, reduced fibrosis, and only mild inflammation). A dose-dependent therapeutic effect was observed. The extract from the dark-peeled fig variety, Az, was characterized by a higher phenolic content and a stronger antioxidant activity than the extract from the light-peeled variety—Ta. Our study justifies the use of figs in traditional healing and shows the potential of using fig extracts in natural medicines and functional foods. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

14 pages, 3778 KiB  
Article
Exploring New Fruit- and Vegetable-Derived Rennet for Cheese Making
by Severina Pacifico, Emilia Caputo, Simona Piccolella and Luigi Mandrich
Appl. Sci. 2024, 14(6), 2257; https://doi.org/10.3390/app14062257 - 7 Mar 2024
Cited by 5 | Viewed by 3886
Abstract
Cheese production is an ancient practice to preserve a perishable food, such as milk, for a long time. The first step of cheese processing involves the addition of rennet, which contains the enzymes necessary for the hydrolysis and coagulation of the caseins present [...] Read more.
Cheese production is an ancient practice to preserve a perishable food, such as milk, for a long time. The first step of cheese processing involves the addition of rennet, which contains the enzymes necessary for the hydrolysis and coagulation of the caseins present in milk. Typically, animal-derived rennet, such as calf rennet containing chymosin, are used as source of enzymes for cheese processing. Alternatively, microbial chymosin or recombinant chymosin is used. However, recently, plant-derived rennet such as the ones derived from thistle and bitter orange flowers and from artichoke (Cynara cardunculus var. scolymus) have also been demonstrated to be valid sources of enzymes for cheese processing. Therefore, herein, different plant and fruit extracts were tested and compared for their ability to coagulate milk caseins. In particular, beyond artichoke and cardoon (Cynara cardunculus) extracts, those from pineapple (Ananas comosus (L.) Merr.), papaya (Carica papaya L.), common fig (Ficus carica L.) milky sap, and oyster mushroom (Pleurotus ostreatus (Jacq. ex Fr.) P. Kumm.) were investigated for their proteolytic, esterase, and milk-clotting activities. The extracts were then exploited as vegetable and fruit rennet for the experimental production of cheeses, which were examined, after 30 days of maturation, for their moisture, fat, protein, and free fatty acid (FFA) content. Interestingly, the artichoke, cardoon, and thistle mushroom extracts showed high proteolytic activity compared to calf rennet, while the level of esterase activity appeared to be similar for all the extracts. The papaya extract showed the lowest proteolytic and esterase activity. Although the pH, moisture, fat, and protein contents were very similar to those of cheese made with calf rennet, the medium- and long-chain FFAs broadly differed among produced cheeses, with variations in the lipid quality indices. Full article
(This article belongs to the Special Issue Advance in Processing and Quality Control of Dairy Products)
Show Figures

Figure 1

14 pages, 5448 KiB  
Article
In Vitro and In Vivo Anti-Psoriasis Activity of Ficus carica Fruit Extracts via JAK-STAT Modulation
by Jeong Hwa Lee and Mi-Young Lee
Life 2023, 13(8), 1671; https://doi.org/10.3390/life13081671 - 31 Jul 2023
Cited by 7 | Viewed by 3815
Abstract
Psoriasis, a chronic and autoimmune inflammatory disorder of the skin, has been often underdiagnosed and underestimated despite its prevalence and considerable negative effects on the quality of life. In this study, the anti-inflammatory activity of Ficus carica fruit extract (FFE) was investigated against [...] Read more.
Psoriasis, a chronic and autoimmune inflammatory disorder of the skin, has been often underdiagnosed and underestimated despite its prevalence and considerable negative effects on the quality of life. In this study, the anti-inflammatory activity of Ficus carica fruit extract (FFE) was investigated against LPS-stimulated RAW 264.7 cells. The in vitro results showed that FFE reduced the production of nitric oxide (NO) and iNOS expression. Moreover, FFE reduced the level of β-hexosaminidase released with histamine in allergic reactions. However, the MAPK and NFκB signaling molecules associated with the inflammatory response were not significantly regulated by FFE. In contrast, the phosphorylation of JAK1 and STAT3 in the JAK–STAT signaling pathway was dramatically reduced by FFE treatment. Psoriasis-like skin lesions were induced in BALB/c mice using imiquimod (IMQ) to test the feasibility of FFE as a treatment for psoriasis. The efficacy of FFE was evaluated based on phenotypic and histological features. FFE was effective in relieving the symptoms of psoriasis-like skin lesions, such as erythema, dryness, scales, and thick epidermis. Notably, STAT3 modulation was also contributable to the in vivo ameliorative activity of FFE. Taken together, FFE with anti-psoriasis activity in vitro and in vivo through the JAK–STAT modulation could be developed as a therapeutic agent against psoriasis. Full article
(This article belongs to the Special Issue Inflammation and Natural Products)
Show Figures

Figure 1

13 pages, 3816 KiB  
Article
Antibacterial and Antibiofilm Activity of Ficus carica-Mediated Calcium Oxide (CaONPs) Phyto-Nanoparticles
by Asif Ullah Khan, Tahir Hussain, Abdullah, Mubarak Ali Khan, Mervt M. Almostafa, Nancy S. Younis and Galal Yahya
Molecules 2023, 28(14), 5553; https://doi.org/10.3390/molecules28145553 - 20 Jul 2023
Cited by 25 | Viewed by 4131
Abstract
The significance of nanomaterials in biomedicines served as the inspiration for the design of this study. In this particular investigation, we carried out the biosynthesis of calcium oxide nanoparticles (CaONPs) by employing a green-chemistry strategy and making use of an extract of Ficus [...] Read more.
The significance of nanomaterials in biomedicines served as the inspiration for the design of this study. In this particular investigation, we carried out the biosynthesis of calcium oxide nanoparticles (CaONPs) by employing a green-chemistry strategy and making use of an extract of Ficus carica (an edible fruit) as a capping and reducing agent. There is a dire need for new antimicrobial agents due to the alarming rise in antibiotic resistance. Nanoparticles’ diverse antibacterial properties suggest that they might be standard alternatives to antimicrobial drugs in the future. We describe herein the use of a Ficus carica extract as a capping and reducing agent in the phyto-mediated synthesis of CaONPs for the evaluation of their antimicrobial properties. The phyto-mediated synthesis of NPs is considered a reliable approach due to its high yield, stability, non-toxicity, cost-effectiveness and eco-friendliness. The CaONPs were physiochemically characterized by UV-visible spectroscopy, energy-dispersive X-ray (EDX), scanning-electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). The biological synthesis of the calcium oxide nanoparticles revealed a characteristic surface plasmon resonance peak (SPR) at 360 nm in UV-Vis spectroscopy, which clearly revealed the successful reduction of the Ca2+ ions to Ca0 nanoparticles. The characteristic FTIR peak seen at 767 cm−1 corresponded to Ca-O bond stretching and, thus, confirmed the biosynthesis of the CaONPs, while the scanning-electron micrographs revealed near-CaO aggregates with an average diameter of 84.87 ± 2.0 nm. The antibacterial and anti-biofilm analysis of the CaONPs showed inhibition of bacteria in the following order: P. aeruginosa (28 ± 1.0) > S. aureus (23 ± 0.3) > K. pneumoniae (18 ± 0.9) > P. vulgaris (13 ± 1.6) > E. coli (11 ± 0.5) mm. The CaONPs were shown to considerably inhibit biofilm formation, providing strong evidence for their major antibacterial activity. It is concluded that this straightforward environmentally friendly method is capable of synthesizing stable and effective CaONPs. The therapeutic value of CaONPs is indicated by their potential as a antibacterial and antibiofilm agents in future medications. Full article
(This article belongs to the Special Issue Advances in Potential Bioapplications of Functional Nanomaterials)
Show Figures

Figure 1

18 pages, 9322 KiB  
Article
Fig Leaves (Ficus carica L.): Source of Bioactive Ingredients for Industrial Valorization
by Carlos S. H. Shiraishi, Yosra Zbiss, Custódio Lobo Roriz, Maria Inês Dias, Miguel A. Prieto, Ricardo C. Calhelha, Maria José Alves, Sandrina A. Heleno, da Cunha Mendes V., Márcio Carocho, Rui M. V. Abreu and Lillian Barros
Processes 2023, 11(4), 1179; https://doi.org/10.3390/pr11041179 - 11 Apr 2023
Cited by 10 | Viewed by 7801
Abstract
The fig tree (Ficus carica L.) was one of the first domesticated trees. In 2019, the world’s fig fruit production was estimated at 1153 tons. However, fig leaves are not utilized, resulting in copious quantities of bio-waste. To identify promising fig tree [...] Read more.
The fig tree (Ficus carica L.) was one of the first domesticated trees. In 2019, the world’s fig fruit production was estimated at 1153 tons. However, fig leaves are not utilized, resulting in copious quantities of bio-waste. To identify promising fig tree varieties, hydroethanolic extracts were prepared from the leaves of five fig tree varieties (Pasteliere—PA, Longue d’Aout—LA, Dauphinie—DA, Boujassote Noire—BN, and Marseille—MA). The variety with the highest concentration of organic acids was BN (146.5 mg/g dw), while glucose, fructose, and sucrose were the predominant sugars across all varieties. All extracts present α-tocopherol as the prevalent tocopherol isoform (above 78%), while PUFA fatty acids were predominant, ranging from 53% to 71% of total fatty acids. BN showed moderate antioxidant activity (EC50 0.23 ± 0.01 mg/mL), while the DA variety presented promising cytotoxicity against the tumor AGS and MCF-7 cell line (GI50 158 ± 13 and 223 ± 21 μg/mL) and especially in the inhibition of Nitric Oxide Production evaluation (IC50 20 ± 5 μg/mL). The DA activities are probably related to high concentrations of flavonoids, specifically the predominant apigenin-C-hexoside-C-pentoside and quercetin-O-deoxyhexosyl-hexoside. Finally, the BN and DA varieties showed good antimicrobial activity, especially against Yersinia enterocolitica. Fig leaves can be considered sustainable sources of industrially valuable bioactive molecules, and several potential applications were highlighted. Full article
(This article belongs to the Special Issue Advances in Green Extraction Processes of Bioactive Compounds)
17 pages, 1782 KiB  
Review
Industrial Application and Health Prospective of Fig (Ficus carica) By-Products
by Izza Faiz ul Rasool, Afifa Aziz, Waseem Khalid, Hyrije Koraqi, Shahida Anusha Siddiqui, Ammar AL-Farga, Wing-Fu Lai and Anwar Ali
Molecules 2023, 28(3), 960; https://doi.org/10.3390/molecules28030960 - 18 Jan 2023
Cited by 36 | Viewed by 11763
Abstract
The current review was carried out on the industrial application of fig by-products and their role against chronic disorders. Fig is basically belonging to fruit and is botanically called Ficus carica. There are different parts of fig, including the leaves, fruits, seeds [...] Read more.
The current review was carried out on the industrial application of fig by-products and their role against chronic disorders. Fig is basically belonging to fruit and is botanically called Ficus carica. There are different parts of fig, including the leaves, fruits, seeds and latex. The fig parts are a rich source of bioactive compounds and phytochemicals including antioxidants, phenolic compounds, polyunsaturated fatty acids, phytosterols and vitamins. These different parts of fig are used in different food industries such as the bakery, dairy and beverage industries. Fig by-products are used in extract or powder form to value the addition of different food products for the purpose of improving the nutritional value and enhancing the stability. Fig by-products are additive-based products which contain high phytochemicals fatty acids, polyphenols and antioxidants. Due to the high bioactive compounds, these products performed a vital role against various diseases including cancer, diabetes, constipation, cardiovascular disease (CVD) and the gastrointestinal tract (GIT). Concussively, fig-based food products may be important for human beings and produce healthy food. Full article
(This article belongs to the Special Issue Integration between Food Chemistry and Health in Focus)
Show Figures

Figure 1

21 pages, 5829 KiB  
Article
An Extract from Ficus carica Cell Cultures Works as an Anti-Stress Ingredient for the Skin
by Irene Dini, Danila Falanga, Ritamaria Di Lorenzo, Annalisa Tito, Gennaro Carotenuto, Claudia Zappelli, Lucia Grumetto, Antonia Sacchi, Sonia Laneri and Fabio Apone
Antioxidants 2021, 10(4), 515; https://doi.org/10.3390/antiox10040515 - 25 Mar 2021
Cited by 24 | Viewed by 6170
Abstract
Psychological stress activates catecholamine production, determines oxidation processes, and alters the lipid barrier functions in the skin. Scientific evidence associated with the detoxifying effect of fruits and vegetables, the growing awareness of the long-term issues related to the use of chemical-filled cosmetics, the [...] Read more.
Psychological stress activates catecholamine production, determines oxidation processes, and alters the lipid barrier functions in the skin. Scientific evidence associated with the detoxifying effect of fruits and vegetables, the growing awareness of the long-term issues related to the use of chemical-filled cosmetics, the aging of the population, and the increase in living standards are the factors responsible for the growth of food-derived ingredients in the cosmetics market. A Ficus carica cell suspension culture extract (FcHEx) was tested in vitro (on keratinocytes cells) and in vivo to evaluate its ability to manage the stress-hormone-induced damage in skin. The FcHEx reduced the epinephrine (−43% and −24% at the concentrations of 0.002% and 0.006%, respectively), interleukin 6 (−38% and −36% at the concentrations of 0.002% and 0.006%, respectively), lipid peroxide (−25%), and protein carbonylation (−50%) productions; FcHEx also induced ceramide synthesis (+150%) and ameliorated the lipid barrier performance. The in vivo experiments confirmed the in vitro test results. Transepidermal water loss (TEWL; −12.2%), sebum flow (−46.6% after two weeks and −73.8% after four weeks; on the forehead −56.4% after two weeks and −80.1% after four weeks), and skin lightness (+1.9% after two weeks and +2.7% after four weeks) defined the extract’s effects on the skin barrier. The extract of the Ficus carica cell suspension cultures reduced the transepidermal water loss, the sebum production, the desquamation, and facial skin turning to a pale color from acute stress, suggesting its role as an ingredient to fight the signs of psychological stress in the skin. Full article
(This article belongs to the Special Issue The Potential of Dietary Antioxidants)
Show Figures

Figure 1

7 pages, 1571 KiB  
Proceeding Paper
Fungicide-Free Management of Papaya Anthracnose (Colletotrichum gloeosporioides Penz.) Disease Using Combined Bio-Rationales and Bee Wax in Organic Agriculture
by Niveka Srikantharajah, Kandiah Pakeerathan and Gunasingham Mikunthan
Biol. Life Sci. Forum 2021, 4(1), 16; https://doi.org/10.3390/IECPS2020-08906 - 7 Dec 2020
Cited by 2 | Viewed by 4351
Abstract
Papaya (Carica papaya L.) is an economically important orchard crop, mainly cultivated in tropical and sub-tropical countries. Due its excellent medicinal value, papaw is recommended for daily consumption by medical professionals as fresh fruit. Papaya production is being hampered by papaya Anthracnose [...] Read more.
Papaya (Carica papaya L.) is an economically important orchard crop, mainly cultivated in tropical and sub-tropical countries. Due its excellent medicinal value, papaw is recommended for daily consumption by medical professionals as fresh fruit. Papaya production is being hampered by papaya Anthracnose disease, caused by Colletotrichum gloeosporioides, which is inflicting major economic losses of around 40–100% during field cultivation, transportation, and storage in organic agriculture. An investigation was planned to assess the antifungal capacity of the medicinal plants Spinacia oleracea, Limonia acidissima, Allium sativum, Achyranthes aspera, Calotropis gigantea, Ocimum basilicum, Mukia scabrella, Ficus racemose, Azadiracta indica, Ocimum tenuiflorum, Lantana camara and Ocimum cinnamon combined with bee wax coating against papaya anthracnose disease. Fifty-percent concentrations of botanical were extracted from dried leaves using a methanol-based solvent extraction method. Two sets of partially ripened non-infected marketable papaya fruits were collected and treated with 50% concentration of botanical extracts and allowed to dry. One set was coated with melted wax by spraying under cool conditions using a power sprayer, along with a non-treated control. These experimental setups were arranged in a complete randomized design with five replicates. Four hours after wax coating, both sets were inoculated with spores of C. gloeosporioides. Data on disease incidence, disease severity (0–5 scale), number of days for disease-free period, pH, and TSS were measured in both sets and ANOVA was performed using SAS software. Duncan’s Multiple Ranges Test (DMRT) was used to determine the least significant differences among the treatments at p < 0.05. The results show that disease incidence and severity in O. basilicum + bee wax treated fruits was 0% and 5%, respectively, and significant at p < 0.05 until the 10th day post-inoculation; thereafter, disease incidence and severity were slowly increased to 15% on the 14th day post-inoculation, but in other treatments and the control, disease incidence and severity varied from 60–80% and 100%, respectively, from the fifth day post-inoculation. Moreover, bee wax-coated papaya fruits showed significantly higher preserved days, to a maximum of 17.047 ± 3.86. Weight loss percentage, pH and TSS were not significantly on par among wax-coated treatments but were significant when compared with wax-free treatments. This study concludes that the combined application O. basilicum + bee wax is a promising alternative to nasty fungicides. Full article
(This article belongs to the Proceedings of The 1st International Electronic Conference on Plant Science)
Show Figures

Figure 1

Back to TopTop