Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = FeAl intermetallic powder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 26078 KiB  
Article
The Effect of Mg Content on the Microstructure and Open Porosity of a Porous FeAl Intermetallic Compound
by Weilun Xue, Zhuoxuan Liu, Dongming Liu and Zhigang Xu
Metals 2025, 15(6), 628; https://doi.org/10.3390/met15060628 - 31 May 2025
Viewed by 343
Abstract
In this study, a porous FeAl intermetallic compound with high porosity was synthesized via vacuum sintering using Mg powder as a pore-forming agent, leveraging its high saturated vapor pressure and almost non-reactivity with Fe. The influence of the addition of Mg powder on [...] Read more.
In this study, a porous FeAl intermetallic compound with high porosity was synthesized via vacuum sintering using Mg powder as a pore-forming agent, leveraging its high saturated vapor pressure and almost non-reactivity with Fe. The influence of the addition of Mg powder on pore characteristics and microstructure evolution was systematically investigated. The results indicate that variations in Mg content within sintered compacts exhibit a negligible impact on primary phase composition, with the FeAl phase remaining predominant. However, excessive initial Mg content induces the encapsulation of the FeAl phase by minor Fe2Al5 and Al3Mg2 phases, compromising the phase’s purity. The porosity positively correlates with Mg content, and porous material with a porosity of 72.8% is obtained (40 at.% of Mg as an additive). Moreover, the pore structure manifests as an interconnected hole morphology. These findings provide valuable insights for further exploration of the design of porous FeAl material and its performance enhancement in emerging applications. Full article
Show Figures

Figure 1

14 pages, 9412 KiB  
Article
Microstructural Evolution of High-Entropy Intermetallic Compounds during Detonation Spraying
by Ahmad Ostovari Moghaddam, Mikhail Sudarikov, Nataliya Shaburova, Marina Polyakova, Marina Samodurova and Evgeny Trofimov
Metals 2024, 14(1), 50; https://doi.org/10.3390/met14010050 - 30 Dec 2023
Cited by 2 | Viewed by 1473
Abstract
This study aims at investigating the feasibility of depositing quality coatings from various high-entropy intermetallic compounds (HEICs) using detonation spraying (DS). Four different HEIC coatings, namely (NbTaVCrTi)Al3, (NbTaVNiFe)Al3, (NbTaVZrHf)Al3, and (FeNiCoCrMn)(MoCr), were prepared by DS on low [...] Read more.
This study aims at investigating the feasibility of depositing quality coatings from various high-entropy intermetallic compounds (HEICs) using detonation spraying (DS). Four different HEIC coatings, namely (NbTaVCrTi)Al3, (NbTaVNiFe)Al3, (NbTaVZrHf)Al3, and (FeNiCoCrMn)(MoCr), were prepared by DS on low alloy steel substrates. The HEIC powders were first prepared by arc melting followed by ball milling and then used as reinforcement particles to deposit HEIC coatings. Elemental segregation was observed for all the as-cast samples. Powders with average particle sizes of about ~25 µm for (NbTaVCrTi)Al3, ~22 µm for (NbTaVNiFe)Al3, ~34 µm for (NbTaVZrHf)Al3, and ~18 µm for (FeNiCoCrMn)(MoCr) were obtained. (NbTaVCrTi)Al3, (NbTaVNiFe)Al3, and (NbTaVZrHf)Al3 HEICs exhibited a nearly single D022 (TaAl3 type) structure, while (FeNiCoCrMn)(MoCr) exhibited a single D8b (FeCr type) structure. Dense coatings consisted of a lamellar microstructure and sound bonding with the substrate, and low porosity was obtained for all the samples. Crystal structures of the HEIC samples were highly retained during DS, whereas all the samples underwent some degree of oxidation. Microhardness values of 745 HV for (NbTaVCrTi)Al3, 753 HV for (NbTaVNiFe)Al3, and 862 HV for (NbTaVZrHf)Al3 were obtained, which are significantly higher than the microhardness of the substrate (~140 HV). Among all the samples, (FeNiCoCrMn)(MoCr) exhibited the highest microhardness values of about 1047 HV. Full article
Show Figures

Figure 1

13 pages, 4198 KiB  
Article
Deciphering Microstructures and Phases of Gas-Atomised Novel Al-Fe-Si-Cr-Ni Alloys
by Bhaskaranand Bhatt, Alessandra Martucci, Enrico Virgillito, Federico Gobber, Federica Bondioli, Diego Manfredi, Mariangela Lombardi and Paolo Fino
Metals 2024, 14(1), 17; https://doi.org/10.3390/met14010017 - 22 Dec 2023
Cited by 2 | Viewed by 2325
Abstract
Rapid solidification techniques, such as gas atomisation, have been widely implemented in metallic alloys/composites to increase solid solubility, avoid or mitigate segregation phenomena, and favour metastable phase formation to enhance performance. Particularly, gas atomisation can enhance the solid solubility of low diffusion coefficient [...] Read more.
Rapid solidification techniques, such as gas atomisation, have been widely implemented in metallic alloys/composites to increase solid solubility, avoid or mitigate segregation phenomena, and favour metastable phase formation to enhance performance. Particularly, gas atomisation can enhance the solid solubility of low diffusion coefficient elements like Fe, Ni, Mn, Zr, and Cr in the α-Al matrix, yielding metastable phases. As a result, Al alloys exhibit excellent strength at high temperatures. In this study, the AISI 304L alloy was employed to introduce Fe, Ni, and Cr elements into the AlSi10Mg alloy through gas atomisation, resulting in the formation of two distinct hypereutectic AlFe-based alloys: AlFe9Si8Cr2Ni and AlFe18Si8Cr5Ni2. Gas-atomised alloy powders were separated into different size fractions by sieving and characterised using X-ray diffraction, differential scanning calorimetry, optical microscopy, and scanning electron microscopy. Microstructural analyses revealed dendritic patterns with distinct phases, highlighting the influence of the alloying element content on the solidification processes. Furthermore, a synergic evaluation of the XRD and EDS analysis results allowed the identification of intermetallic phases and their distribution in the two systems. Full article
Show Figures

Figure 1

10 pages, 3127 KiB  
Article
Detonation Spraying of Ni-Based Composite Coatings Reinforced by High-Entropy Intermetallic Particles
by Ahmad Ostovari Moghaddam, Nataliya Shaburova, Majid Naseri, Yulia Latfulina, Marina Samodurova, Valerii Krymsky, Ksenia Litvinyuk and Evgeny Trofimov
Metals 2023, 13(11), 1807; https://doi.org/10.3390/met13111807 - 26 Oct 2023
Cited by 4 | Viewed by 1495
Abstract
Ni-based composite coatings reinforced by high-entropy intermetallic compounds (HEICs) were prepared by detonation spraying (DS) on low alloy steel substrates. To this end, first (Ti-Nb)(V-Cr-Ni-Fe) and Al3(TiZrNbCrHfTa) HEIC powders were fabricated by arc melting followed by ball milling. The as-milled HEIC [...] Read more.
Ni-based composite coatings reinforced by high-entropy intermetallic compounds (HEICs) were prepared by detonation spraying (DS) on low alloy steel substrates. To this end, first (Ti-Nb)(V-Cr-Ni-Fe) and Al3(TiZrNbCrHfTa) HEIC powders were fabricated by arc melting followed by ball milling. The as-milled HEIC powders were then employed as reinforcement particles to prepare Ni-7wt.% HEIC composite coatings. The average particle size of the (Ti-Nb)(V-Cr-Ni-Fe) and Al3(TiZrNbCrHfTa) HEIC powders were 18 and 35 µm, respectively, while the average particle size of the Ni powder was 56 µm. (Ti-Nb)(V-Cr-Ni-Fe) exhibited a single hexagonal C14 Laves phase in spite of Ti and Nb segregations. The XRD pattern of Al3(TiZrNbCrHfTa) indicated the presence of a tetragonal D022-type structure along with some minor CrTi and Cr5Al8 phases. The sprayed Ni-7wt.% FeNiCrV-TiNb and Ni-7wt.% Al3(TiZrNbCrHfTa) composite coatings retained crystal structures of the powder mixtures, suggesting proper thermal stability for both powders. The coatings exhibited a dense microstructure consisting of a lamellar microstructure with low porosity and sound bonding with the substrate. The microhardness of Ni-7wt.% FeNiCrV-TiNb (450 HV) was higher than that of Al3(TiZrNbCrHfTa) (338 HV), and it exhibited lower fluctuation than that of Ni-7wt.% Al3(TiZrNbCrHfTa). DS is an effective method to fabricate metal matrix composites reinforced by HEICs with a low level of porosity. Full article
Show Figures

Figure 1

14 pages, 4499 KiB  
Article
Effects of Material Structure on Stress Relaxation Characteristics of Rapidly Solidified Al-Fe Alloy
by Ryohei Kobayashi, Tatsuya Funazuka, Toru Maeda and Tomomi Shiratori
Materials 2023, 16(17), 5949; https://doi.org/10.3390/ma16175949 - 30 Aug 2023
Viewed by 1608
Abstract
An Al-Fe alloy which was produced by hot extrusion of rapidly solidified powder is a possible solution to substitute copper-based electrical conductor material due to its high strength and high electrical conductivity. However, the stress relaxation characteristic—an essential parameter as a conductor material—and [...] Read more.
An Al-Fe alloy which was produced by hot extrusion of rapidly solidified powder is a possible solution to substitute copper-based electrical conductor material due to its high strength and high electrical conductivity. However, the stress relaxation characteristic—an essential parameter as a conductor material—and the effect of the material structure have not been reported, which was the aim of the present paper. An Al-5%Fe alloy was selected as the test material. The material structures were controlled by hot extrusion practice, annealing, and cold rolling. The Al-Fe intermetallic compound particles controlled the residual stress after the stress relaxation test via the Orowan mechanism. Decreasing the mean inter-particle distance reduces the electrical conductivity. The increase in the number of dislocations by the cold rolling increased strength at room temperature without changing electrical conductivity; however, it did not have a positive effect on the stress relaxation characteristics. The stress relaxation characteristics and the electrical conductivity of the Al-Fe alloy were superior to conventional C52100 H04 phosphor bronze when compared with the case of the same mass. Full article
(This article belongs to the Special Issue Physical Metallurgy of Metals and Alloys II)
Show Figures

Figure 1

16 pages, 5594 KiB  
Article
Wet Ball Milling Applied to Production of Composites and Coatings Based on Ti, W, and Nb Carbides
by Marina Eryomina and Svetlana Lomayeva
Powders 2023, 2(2), 499-514; https://doi.org/10.3390/powders2020031 - 15 Jun 2023
Cited by 1 | Viewed by 2001
Abstract
The paper demonstrates the potential of wet ball milling of metals for the synthesis of various carbides and carbohydrides. The work reports on multicomponent carbides formed in Ti-(Cu/Fe/Si)-C, W-Fe-C, and Nb-(Cu/Fe/Si/Al)-C systems, as well as metastable or high-temperature intermetallics formed in Ti-Si, Nb-Si, [...] Read more.
The paper demonstrates the potential of wet ball milling of metals for the synthesis of various carbides and carbohydrides. The work reports on multicomponent carbides formed in Ti-(Cu/Fe/Si)-C, W-Fe-C, and Nb-(Cu/Fe/Si/Al)-C systems, as well as metastable or high-temperature intermetallics formed in Ti-Si, Nb-Si, Nb-Al, and Nb-Cu-Fe systems, which are stabilized with interstitial carbon. The formation of phase composition of powders fabricated under mechanochemical synthesis and subsequent thermal treatment has been studied. The as-fabricated powders have been used to produce bulk compacts and to apply wear-resistant coatings on steel (iron). Full article
(This article belongs to the Special Issue Particle Technologies)
Show Figures

Figure 1

6 pages, 939 KiB  
Communication
Conceptual Design of a Pilot Process for Manufacturing Aluminum-Based Intermetallic Compound Powders
by Melchor Salazar and Flavio-Américo Lagos
Powders 2023, 2(2), 493-498; https://doi.org/10.3390/powders2020030 - 15 Jun 2023
Viewed by 1209
Abstract
The FeAl intermetallic compound is of great interest for industry due to its low density, low cost and high mechanical and corrosion resistance, so it can replace stainless steels and nickel-based alloys for some applications. In previous publications, the concept (principle) test for [...] Read more.
The FeAl intermetallic compound is of great interest for industry due to its low density, low cost and high mechanical and corrosion resistance, so it can replace stainless steels and nickel-based alloys for some applications. In previous publications, the concept (principle) test for a novel FeAl powder manufacturing process has been shown. It consists mainly of the following stages: (a) metallic strip manufacture through rapid solidification, (b) water vapor exposure of these metallic strips for their disintegration and powder generation and (c) powder drying. Experimental tests were performed for 2 g of the FeAl intermetallic compound. However, this process can be extended to manufacture any other intermetallic compound containing aluminum, such as TiAl, NiAl, CoAl or any other that can be obtained from every element that can combine with aluminum, if the aluminum content is between 55 and 60 at.%. Nowadays, this process is at technology readiness level (TRL) 3. Therefore, in this paper, a process equipment up-scaling configuration for producing up to 15 kg powder is proposed. This manufacturing process is an industrial alternative to those commonly used to produce powders of this type of intermetallic compounds, such as mechanical alloying (MA). Moreover, several alternatives for employing renewable energy sources are given, making it even more environmentally sustainable. Full article
Show Figures

Graphical abstract

14 pages, 3649 KiB  
Article
Impact of Using Tungsten, Cobalt, and Aluminum Additives on the Tribological and Mechanical Properties of Iron Composites
by Moustafa M. Mohammed, Nashmi H. Alrasheedi, Omayma A. El-Kady, Joy Djuansjah, Fadl A. Essa and Ammar H. Elsheikh
Crystals 2023, 13(3), 395; https://doi.org/10.3390/cryst13030395 - 24 Feb 2023
Cited by 1 | Viewed by 1937
Abstract
The effect of tungsten, aluminum, and cobalt on the mechanical properties of iron-based composites prepared by powder technology was studied. Five samples with different contents of tungsten, aluminum, and cobalt were established. The five samples have the following chemical compositions: (I) full iron [...] Read more.
The effect of tungsten, aluminum, and cobalt on the mechanical properties of iron-based composites prepared by powder technology was studied. Five samples with different contents of tungsten, aluminum, and cobalt were established. The five samples have the following chemical compositions: (I) full iron sample, (II) 5wt.% tungsten, (III) 5wt.% tungsten-4wt.% cobalt-1wt.% aluminum, (IV) 5wt.% tungsten-2.5wt.% cobalt-2.5wt.% aluminum, and (V) 5wt.% tungsten-1wt.% cobalt-4wt.% aluminum. The mixed composite powders were prepared by mechanical milling, in which 10:1 ball to powder ratio with 350 rpm for 20 h was cold compacted by a diaxial press under 80 bars, then sintered at temperatures ranging from 1050 °C to 1250 °C in an argon furnace. The samples were characterized mechanically and physically using XRD, SEM, a density measuring device, a hardness measuring device, a compression test device, and a tribological device for wear and friction tests. XRD results refer to the formation of different intermetallic compounds such as Fe7W6, Al5Co2, Fe2W2Co and Co7W6 with the main peaks of Fe. The good combination of tribological and mechanical properties was recorded for sample number five, which contained 5% W, 4% Al, 1% Co and Fe base, where it obtained the highest wear resistance, largest hardness, acceptable compressive strength, and lowest friction coefficient due to the good combination of hard and anti-friction intermetallic action compared with the other samples. This sample is a good candidate for applications which require high wear resistance and a moderate friction coefficient accompanied with high toughness, like bearing materials for both static and dynamic loading with superior mechanical and tribological properties. Full article
(This article belongs to the Special Issue Metal Matrix Composite Materials and Coatings)
Show Figures

Figure 1

16 pages, 21052 KiB  
Article
Effect of APS Spraying Parameters on the Microstructure Formation of Fe3Al Intermetallics Coatings Using Mechanochemically Synthesized Nanocrystalline Fe-Al Powders
by Cezary Senderowski, Nataliia Vigilianska, Oleksii Burlachenko, Oleksandr Grishchenko, Anatolii Murashov and Sergiy Stepanyuk
Materials 2023, 16(4), 1669; https://doi.org/10.3390/ma16041669 - 16 Feb 2023
Cited by 5 | Viewed by 1706
Abstract
The present paper presents a study of the behaviour of Fe3Al intermetallic powders particles based on 86Fe-14Al, 86Fe-14(Fe5Mg), and 60.8Fe-39.2(Ti37.5Al) compositions obtained by mechanochemical synthesis at successive stages of the plasma spraying process: during transfer in the volume of the gas [...] Read more.
The present paper presents a study of the behaviour of Fe3Al intermetallic powders particles based on 86Fe-14Al, 86Fe-14(Fe5Mg), and 60.8Fe-39.2(Ti37.5Al) compositions obtained by mechanochemical synthesis at successive stages of the plasma spraying process: during transfer in the volume of the gas stream and deformation at the moment of impact on the substrate. The effect of the change in current on the size of powder particles during their transfer through the high-temperature stream and the degree of particle deformation upon impact with the substrate was determined. It was found that during transfer through the plasma jet, there was an increase in the average size of sputtering products by two–three times compared to the initial effects of mechanochemical synthesis due to the coagulation of some particles. In this case, an increase in current from 400 to 500 A led to a growth in average particle size by 14–47% due to the partial evaporation of fine particles with an increase in their heating degree. An increase in current also led to a 5–10% growth in particle deformation degree upon impact on the substrate due to the rising temperature and velocity of the plasma jet. Based on the research, the parameters of plasma spraying of mechanically synthesized Fe3Al intermetallic-based powders were determined, at which dense coatings with a thin-lamellar structure were formed. Full article
Show Figures

Figure 1

11 pages, 2869 KiB  
Article
Powder Metallurgy Processing and Characterization of the χ Phase Containing Multicomponent Al-Cr-Fe-Mn-Mo Alloy
by Tomasz Stasiak, Mourtada Aly Sow, Matthieu Touzin, Franck Béclin and Catherine Cordier
Alloys 2023, 2(1), 44-54; https://doi.org/10.3390/alloys2010003 - 13 Feb 2023
Cited by 1 | Viewed by 4222
Abstract
High entropy alloys present many promising properties, such as high hardness or thermal stability, and can be candidates for many applications. Powder metallurgy techniques enable the production of bulk alloys with fine microstructures. This study aimed to investigate powder metallurgy preparation, i.e., mechanical [...] Read more.
High entropy alloys present many promising properties, such as high hardness or thermal stability, and can be candidates for many applications. Powder metallurgy techniques enable the production of bulk alloys with fine microstructures. This study aimed to investigate powder metallurgy preparation, i.e., mechanical alloying and sintering, non-equiatomic high entropy alloy from the Al-Cr-Fe-Mn-Mo system. The structural and microstructural investigations were performed on powders and the bulk sample. The indentation was carried out on the bulk sample. The mechanically alloyed powder consists of two bcc phases, one of which is significantly predominant. The annealed powder and the sample sintered at 950 °C for 1 h consist of a predominantly bcc phase (71 ± 2 vol.%), an intermetallic χ phase (26 ± 2 vol.%), and a small volume fraction of multielement carbides—M6C and M23C6. The presence of carbides results from carbon contamination from the balls and vial during mechanical alloying and the graphite die during sintering. The density of the sintered sample is 6.71 g/cm3 (98.4% relative density). The alloy presents a very high hardness of 948 ± 34 HV1N and Young’s modulus of 245 ± 8 GPa. This study showed the possibility of preparing ultra-hard multicomponent material reinforced by the intermetallic χ phase. The research on this system presented new knowledge on phase formation in multicomponent systems. Moreover, strengthening the solid solution matrix via hard intermetallic phases could be interesting for many industrial applications. Full article
(This article belongs to the Special Issue High-Entropy Alloys)
Show Figures

Figure 1

14 pages, 9650 KiB  
Article
Combustion Synthesis and Reactive Spark Plasma Sintering of Non-Equiatomic CoAl-Based High Entropy Intermetallics
by Kirill Vasilevich Kuskov, Andrey A. Nepapushev, Sofiya Aydinyan, Dmitry G. Shaysultanov, Nikita D. Stepanov, Khachik Nazaretyan, Suren Kharatyan, Elena V. Zakharova, Dmitry S. Belov and Dmitry O. Moskovskikh
Materials 2023, 16(4), 1490; https://doi.org/10.3390/ma16041490 - 10 Feb 2023
Cited by 5 | Viewed by 2247
Abstract
The present work reports the direct production of a high-entropy (HE) intermetallic CoNi0.3Fe0.3Cr0.15Al material with a B2 structure from mechanically activated elemental powder mixtures. Fast and efficient combustion synthesis (CS), spark plasma sintering (SPS), and reactive SPS [...] Read more.
The present work reports the direct production of a high-entropy (HE) intermetallic CoNi0.3Fe0.3Cr0.15Al material with a B2 structure from mechanically activated elemental powder mixtures. Fast and efficient combustion synthesis (CS), spark plasma sintering (SPS), and reactive SPS (RSPS) methods were used to synthesize the HE powders and bulks. The formation of the main B2 phase along with some amounts of secondary BCC and FCC phases are reported, and L12 intermetallic (CS scheme) and BCC based on Cr (CS + SPS and RSPS schemes at 1000 °C) were observed in all samples. The interaction between the components during heating to 1600 °C of the mechanically activated mixtures and CS powders has been studied. It has been shown that the formation of the CoNi0.3Fe0.3Cr0.15Al phase occurs at 1370 °C through the formation of intermediate intermetallic phases (Al9Me2, AlCo, AlNi3) and their solid solutions, which coincidences well with thermodynamic calculations and solubility diagrams. Compression tests at room and elevated temperatures showed that the alloy obtained by the RSPS method has enhanced mechanical properties (σp = 2.79 GPa, σ0.2 = 1.82 GPa, ε = 11.5% at 400 °C) that surpass many known alloys in this system. High mechanical properties at elevated temperatures are provided by the B2 ordered phase due to the presence of impurity atoms and defects in the lattice. Full article
(This article belongs to the Special Issue Spark Plasma Sintered Materials with Advanced Properties)
Show Figures

Figure 1

11 pages, 4988 KiB  
Article
Phase Stability of Dross Particles in Hot-Dip Zn-55wt%Al-1.6wt%Si Galvanizing Bath
by Dongdong Qu, Matthew Gear, Qinfen Gu, Nega Setargew, Wayne Renshaw, Stuart McDonald, David StJohn and Kazuhiro Nogita
Materials 2023, 16(3), 1211; https://doi.org/10.3390/ma16031211 - 31 Jan 2023
Cited by 1 | Viewed by 2409
Abstract
Dross in a Zn-55wt%Al-1.6wt%Si metal coating bath is a mixture of bath metal and the quaternary intermetallic phase τ5c-Al20Fe5Si2(+Zn). Understanding the properties and formation of dross in a hot-dip Al-Zn galvanizing bath at the processing temperature (~600 [...] Read more.
Dross in a Zn-55wt%Al-1.6wt%Si metal coating bath is a mixture of bath metal and the quaternary intermetallic phase τ5c-Al20Fe5Si2(+Zn). Understanding the properties and formation of dross in a hot-dip Al-Zn galvanizing bath at the processing temperature (~600 °C) is critical for improving the production quality of steel sheet coating. However, dross analysis is usually conducted at room temperature with dross samples taken from the hot-dip bath and it is not known how representative these samples are of the phase(s) existing at high temperature. Using in-situ synchrotron X-ray diffraction (XRD), the crystal lattice and the coefficient of thermal expansion (CTE) of the intermetallic phase have been determined in the temperature range of 30 °C to 660 °C. Phase formation and phase stability of the intermetallic phase in the dross powder have been determined, providing fundamental knowledge for optimizing the production and quality of steel sheet coating. Full article
Show Figures

Figure 1

21 pages, 23918 KiB  
Article
Aluminum Scrap to Hydrogen: Complex Effects of Oxidation Medium, Ball Milling Parameters, and Copper Additive Dispersity
by Olesya A. Buryakovskaya, Musi Zh. Suleimanov, Mikhail S. Vlaskin, Vinod Kumar and Grayr N. Ambaryan
Metals 2023, 13(2), 185; https://doi.org/10.3390/met13020185 - 17 Jan 2023
Cited by 9 | Viewed by 2630
Abstract
An effective combination of oxidation medium, ball milling parameters, and copper additive disperstiy ensuring fast aluminum scrap reaction with high hydrogen yield, was suggested. Different milling parameters (5, 10, and 15 mm steel balls; 1 and 2 h; unidirectional and bidirectional rotation modes) [...] Read more.
An effective combination of oxidation medium, ball milling parameters, and copper additive disperstiy ensuring fast aluminum scrap reaction with high hydrogen yield, was suggested. Different milling parameters (5, 10, and 15 mm steel balls; 1 and 2 h; unidirectional and bidirectional rotation modes) were tested for Al-10 wt.% Cu (50–70 μm) composition. The samples milled with 5 (2 h) and 10 mm (1 and 2 h) balls contained undesirable intermetallic phases Al2Cu and Cu9Al4, while those activated with 15 mm balls (1 h) provided the second-finest powder and best preservation of the original Cu and Al phases. Among the tested (at 60 °C) 2 M solutions NaCl, LiCl, KCl, MgCl2, ZnCl2, BaCl2, CaCl2, NiCl2, CoCl2, FeCl2, and AlCl3, the first six appeared to be almost useless (below 4% hydrogen yield), the following four provided better results, and the ultimate 91.5% corresponded to AlCl3. Samples with Cu dispersity of 50–100 nm, 1–19, 50–70, and 150–250 μm, and with no additive, were milled under the optimal parameters and tested in AlCl3. Their total yields were similar (~90–94%), while reaction rates differed. The highest rate was obtained for the sample modified with 50–70 μm powder. Full article
Show Figures

Figure 1

13 pages, 3646 KiB  
Article
Study of the Microstructural, Thermal, and Magnetic Properties of High-Energy Ball-Milled Nanocrystalline Fe(Al)
by Hana Ibn Gharsallah, Myriam Azabou, Mohamed Khitouni, Jason Daza and Joan-Josep Suñol
Crystals 2022, 12(10), 1430; https://doi.org/10.3390/cryst12101430 - 10 Oct 2022
Cited by 3 | Viewed by 1634
Abstract
In this work, structural, microstructural, thermal, and magnetic properties of a Fe-25at%Al alloy produced by high-energy mechanical milling were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and vibrating sample magnetometry (VSM) techniques. At the early stage of [...] Read more.
In this work, structural, microstructural, thermal, and magnetic properties of a Fe-25at%Al alloy produced by high-energy mechanical milling were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and vibrating sample magnetometry (VSM) techniques. At the early stage of the milling process, three phases, namely, Fe, Al, and Fe(Al), coexist in the milled powder. After 20 h of milling, the results of the refinement of the XRD pattern reveal the formation of the supersaturated bcc-Fe(Al) solid solution with a crystallite size of 10 nm. The DSC curves show several overlapped exothermic peaks associated with the relaxation of the deformed structure and various phase transitions, such as the formation of Al13Fe4 and Fe3Al intermetallic. During milling times, the alloyed samples have a hard-ferromagnetic behavior, where Hc varies from 628 Oe to 746 Oe when the milling time increases from 4 to 40 h. The magnetic properties were related to the microstructural changes. Full article
(This article belongs to the Special Issue Emerging Topics on High Performance Alloys)
Show Figures

Figure 1

28 pages, 13979 KiB  
Article
Cold-Sprayed Multilayer Thermal Barrier–Catalytic Coatings for Engine Pistons: Coatings Design and Properties
by Roman Gr. Maev, Jimi Tjong, Eugene Leshchinsky, Mircea Pantea and Volf Leshchynsky
Coatings 2022, 12(9), 1332; https://doi.org/10.3390/coatings12091332 - 13 Sep 2022
Cited by 3 | Viewed by 2824
Abstract
Yttrium-stabilized zirconia thermal barrier coatings (TBCs) of combustion chambers and piston crowns are used most frequently to increase the chamber temperature and the internal combustion engine efficiency. The development of multilayer metal matrix composite coating is of great importance to diminish the ceramic [...] Read more.
Yttrium-stabilized zirconia thermal barrier coatings (TBCs) of combustion chambers and piston crowns are used most frequently to increase the chamber temperature and the internal combustion engine efficiency. The development of multilayer metal matrix composite coating is of great importance to diminish the ceramic thermal barrier coating’s brittleness and susceptibility to degradation providing the similar thermal insulation. Our group is developing multilayer TBCs based on intermetallic (Fe-Al) compounds combined with alternating zirconia-based layers made by low-pressure cold spraying (LPCS) and sintering. The Fe-Al intermetallic phase was synthesized during reaction sintering of stainless steel and Al particles in the powder layer previously obtained by cold spraying. A double-nozzle low-pressure cold-spraying gun was used to deposit two layers (stainless steel and Al-YSZ) per one track. The effect of the breaking of the brittle ZrO2 particles due to impingement with the substrate results in the formation of a relatively homogeneous structure with ZrO2 particle size of 3–10 μm. Cold-spray deposition of additional Cu-Ni-Graphene catalytic layers on the TBCs is developed to improve performance and emissions of engines. The microstructure, thermal conductivity, thermal shock behavior and microhardness of TBCs were examined and discussed. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

Back to TopTop