Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (121)

Search Parameters:
Keywords = FUT10

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 503 KB  
Article
Associations Between Neurofeedback, Anthropometrics, Technical, Physical, and Tactical Performance in Young Women’s Football Players
by Sílvio A. Carvalho, Pedro Bezerra, José E. Teixeira, Pedro Forte, Rui M. Silva and José Mª Cancela-Carral
J. Funct. Morphol. Kinesiol. 2025, 10(4), 423; https://doi.org/10.3390/jfmk10040423 - 30 Oct 2025
Viewed by 350
Abstract
Background: Neurofeedback training has emerged as a promising tool for enhancing performance by targeting specific brain activity patterns linked to motor skills, decision-making, and concentration. This study aimed to explore the associations between neurofeedback outcomes and football-specific performance metrics, including anthropometric, physical, [...] Read more.
Background: Neurofeedback training has emerged as a promising tool for enhancing performance by targeting specific brain activity patterns linked to motor skills, decision-making, and concentration. This study aimed to explore the associations between neurofeedback outcomes and football-specific performance metrics, including anthropometric, physical, technical, and tactical dimensions. Methods: A quasi-experimental design was used to examine the effects of a six-week neurofeedback training program on motor skills, tactical decision-making, and physical performance in young women’s football players (n = 8, aged 14–18). Participants underwent 30-min sessions three times a week targeting sensorimotor rhythms (SMRs) in the 12–15 Hz range within virtual football scenarios. Pre- and post-intervention assessments included anthropometric measures, neurophysiological evaluations, Loughborough Soccer Shooting Test (LSST), and Yo-Yo Intermittent Recovery Test Level 1 (YYIR1). Tactical decision-making was evaluated with a FUT-SAT-based instrument, and biological maturity was estimated using the Mirwald equations. Results: Statistical analyses using Pearson’s correlations revealed significant associations between neurofeedback outcomes, motor efficiency indices (MEIs), decision-making (DM), and football performance metrics. Correlation coefficients ranged from 0.504 to 0.998, with p-values from 0.010 to <0.001, indicating significant associations across physical, technical, and tactical dimensions. Conclusions: This study highlights the beneficial impact of neurofeedback on football performance in young female athletes. Full article
Show Figures

Figure 1

15 pages, 1267 KB  
Article
Genetic Variations of the FUT3 Gene in Le(a−b−) Individuals and Their Association with Lewis Antibody Responses
by Oytip Nathalang, Piyathida Khumsuk, Wiradee Sasikarn and Kamphon Intharanut
Med. Sci. 2025, 13(4), 218; https://doi.org/10.3390/medsci13040218 - 2 Oct 2025
Viewed by 443
Abstract
Background: The biosynthesis of Lewis (Le) antigens depends on the FUT3 gene, encoding an α(1,3/4)-fucosyltransferase. Individuals lacking functional FUT3 exhibit a Le(a–b–) phenotype, regardless of secretor status. Methods: This study determined the prevalence of FUT3 single nucleotide variants (SNVs) in Thai blood donors [...] Read more.
Background: The biosynthesis of Lewis (Le) antigens depends on the FUT3 gene, encoding an α(1,3/4)-fucosyltransferase. Individuals lacking functional FUT3 exhibit a Le(a–b–) phenotype, regardless of secretor status. Methods: This study determined the prevalence of FUT3 single nucleotide variants (SNVs) in Thai blood donors and characterised genotype and allele distributions. We also examined the association between FUT3 variants and the presence of Le antibodies to better understand variability in immune responses. A total of 112 blood donors were recruited, comprising 52 non-responders and 60 responders for Le antibody detection. The FUT3 coding sequence was amplified by polymerase chain reaction and directly sequenced to identify single nucleotide variants (SNVs) and haplotypes. Results: Associations between FUT3 SNVs, haplotypes, and Le antibody responsiveness were subsequently analysed. Thirteen FUT3 SNVs were identified, with c.59T>G (rs28362459) present in all Le(a–b–) cases. The FUT3*01N.17.03 (le59,1067) haplotype was most common (0.634) and showed the strongest association with Le antibody responsiveness (adjusted OR = 3.052, 95% CI: 1.683–5.534, p < 0.0001). Differences in antibody types, isotypes, and the FUT3*01N.17.03 genotype between groups were not statistically significant. Conclusions: This first study characterises FUT3 variations in Le(a–b–) Thai blood donors and identifies FUT3*01N.17.03 as associated with Le antibody responsiveness, highlighting its relevance for population-specific genetic diagnostics in transfusion medicine. Full article
(This article belongs to the Section Translational Medicine)
Show Figures

Figure 1

14 pages, 1832 KB  
Article
Potential for Core Fucose-Targeted Therapy Against HBV Infection of Human Normal Hepatocytes
by Shinji Takamatsu, Chiharu Morita, Daisuke Sakon, Kotaro Nakamura, Honoka Hishii, Jumpei Kondo, Keiji Ueda and Eiji Miyoshi
Viruses 2025, 17(9), 1242; https://doi.org/10.3390/v17091242 - 15 Sep 2025
Viewed by 704
Abstract
Core fucose is one of the most important glycans in HBV infection. In this study, we investigated whether Pholiota squarrosa lectin (PhoSL), a lectin that specifically binds to core fucose, exerts an inhibitory effect in an HBV infection model of normal human hepatocytes. [...] Read more.
Core fucose is one of the most important glycans in HBV infection. In this study, we investigated whether Pholiota squarrosa lectin (PhoSL), a lectin that specifically binds to core fucose, exerts an inhibitory effect in an HBV infection model of normal human hepatocytes. Similarly to previous studies using hepatocellular carcinoma cells (HepG2-C4), the coexistence of PhoSL during HBV infection inhibited HBe antigen production and HBV cccDNA in normal human hepatocytes in a PhoSL concentration-dependent manner. Furthermore, this effect of PhoSL was found to be able to suppress HBe antigen production in a treatment period-dependent manner, even when PhoSL was administered after HBV infection. Our previous research has revealed that the mechanism by which PhoSL inhibits HBV infection is through physical inhibition by binding to the HBV receptor and inhibition of HBV entry into cells by inhibiting the phosphorylation of EGFR, a co-receptor for NTCP. Furthermore, this study suggested that PhoSL may also inhibit HBV proliferation in cells through other mechanisms that require further investigation. PhoSL is a lectin, derived from edible Pholiota squarrosa (shaggy scalycap) mushrooms, that is resistant to acid and heat. In addition, it has a low molecular weight and can be chemically synthesized, so it is expected to be used clinically as a new carbohydrate therapy for HBV in the future. Full article
(This article belongs to the Special Issue Role of Lectins in Viral Infections and Antiviral Intervention)
Show Figures

Graphical abstract

21 pages, 3818 KB  
Article
26-SNP Panel Aids Guiding Androgenetic Alopecia Therapy and Provides Insight into Mechanisms of Action
by Hannah Gaboardi, Valentina Russo, Laura Vila-Vecilla, Vishal Patel and Gustavo Torres De Souza
Cosmetics 2025, 12(5), 190; https://doi.org/10.3390/cosmetics12050190 - 2 Sep 2025
Viewed by 1689
Abstract
Inter-individual variability in response to androgenetic alopecia (AGA) therapies remains a therapeutic challenge. This study evaluated the clinical and mechanistic utility of a 26-SNP pharmacogenetic panel in guiding treatment decisions. By using a database containing data from 252 individuals stratified by genotype, overall [...] Read more.
Inter-individual variability in response to androgenetic alopecia (AGA) therapies remains a therapeutic challenge. This study evaluated the clinical and mechanistic utility of a 26-SNP pharmacogenetic panel in guiding treatment decisions. By using a database containing data from 252 individuals stratified by genotype, overall response rates were high (85.6–91.0%), exceeding published benchmarks for minoxidil, finasteride, and dutasteride. SNP association analysis identified rs1042028 in SULT1A1 as a robust predictor of poor response across all three drugs (minoxidil: p = 2.4 × 10−8, OR = 0.09; dutasteride: p = 0.023, OR = 0.21; finasteride: p = 0.025, OR = 0.11). For dutasteride, the TT genotype of rs39848 in SRD5A1 was also associated with reduced efficacy (p = 0.018, OR = 0.02). SNP–SNP interaction analysis revealed significant epistatic effects between genes involved in prostaglandin signalling and oxidative stress response, including PTGFR × MUC1 (p = 5.38 × 10−6) and GPR44 × FUT2 (p = 9.4 × 10−5). Network enrichment analyses further supported drug-specific mechanistic clusters. Importantly, no statistically significant differences in response were observed between pharmacogenetically guided treatment groups (p > 0.1), suggesting successful genotype-based alignment. Together, these findings demonstrate that SNP-informed therapy can enhance efficacy, clarify drug mechanisms, and provide a foundation for precision treatment in AGA. Full article
Show Figures

Figure 1

16 pages, 820 KB  
Article
Impact of Farmland Use Transition on Grain Carbon Sink Transfer in Karst Mountainous Areas
by Yuandong Zou, Xuejing Li, Xuhai Zhao, Zhao Yu, Xiaoyu Hu, Hai Wang, Yanzhi Luo, Yi Zheng, Yingying Li and Liangen Zeng
Land 2025, 14(9), 1734; https://doi.org/10.3390/land14091734 - 27 Aug 2025
Viewed by 738
Abstract
Farmland use transition (FUT) not only reshapes agricultural production systems but also significantly impacts cross-regional carbon sink transfers in the grain trade. However, comprehensive studies exploring connections between FUT and grain carbon sink transfer (GCST) are limited. We constructed an indicator system and [...] Read more.
Farmland use transition (FUT) not only reshapes agricultural production systems but also significantly impacts cross-regional carbon sink transfers in the grain trade. However, comprehensive studies exploring connections between FUT and grain carbon sink transfer (GCST) are limited. We constructed an indicator system and transformation framework for FUT by considering dominant and recessive dimensions. Moreover, we estimate GCST based on grain supply–demand balance and fixed carbon coefficients. Fixed effects and threshold models are employed to identify both linear and nonlinear relationships between FUT and GCST. Results show that FUT significantly reshapes carbon sink flows. In terms of dominant FUT indicators, cultivation land rate (CLR) and grain planting area proportion (GPAP) positively drive GCST by expanding the carbon sink supply and exporting ecological services. Regarding recessive FUT indicators, both grain yield per unit area (GYield) and pesticide-fertilizer intensity (PFI) promote GCST, highlighting the role of efficiency and inputs, while rural per capita disposable income (RPCDI) suppresses GCST due to agricultural marginalization. A grain yield threshold of 2.092 t/ha is identified. Below this value, FUT exerts substantial positive effects on GCST. Above it, the effects weaken. This study explains the relationship between FUT and ecosystem carbon sinks, providing a scientific basis for advancing green agriculture in karst mountainous areas. Full article
Show Figures

Graphical abstract

17 pages, 695 KB  
Review
Genetic Diseases of Fucosylation: Insights from Model Organisms
by Muhammad T. Ameen and Curtis R. French
Genes 2025, 16(7), 800; https://doi.org/10.3390/genes16070800 - 3 Jul 2025
Viewed by 1813
Abstract
Fucosylation plays a fundamental role in maintaining cellular functions and biological processes across all animals. As a form of glycosylation, it involves the biochemical addition of fucose, a six-carbon monosaccharide, to biological molecules like lipids, proteins, and glycan chains. This modification is essential [...] Read more.
Fucosylation plays a fundamental role in maintaining cellular functions and biological processes across all animals. As a form of glycosylation, it involves the biochemical addition of fucose, a six-carbon monosaccharide, to biological molecules like lipids, proteins, and glycan chains. This modification is essential for optimizing cellular interactions required for receptor-ligand binding, cell adhesion, immune responses, and development. Disruptions in cellular fucose synthesis or in the mechanisms enabling its transfer to other molecules have been linked to human disease. Inherited defects in the fucosylation pathway are rare, with about thirty patients described. Through genome-wide association studies (GWAS), variants in fucosylation pathway genes have been associated with complex diseases such as glaucoma and stroke, and somatic mutations are often found in cancers. Recent studies have applied targeted genetic animal models to elucidate the mechanisms through which disruptions in fucosylation contribute to disease pathogenesis and progression. Key focus areas include GDP-fucose synthesis through de novo or salvage pathways, GDP-fucose transport into the Golgi and endoplasmic reticulum (ER), and its transfer by fucosyltransferases (FUTs) or protein O-fucosyltransferases (POFUTs) onto acceptor molecules. Loss or gain of function fucosylation gene mutations in animal models such as mice, zebrafish, and invertebrates have provided insights into some fucosylation disease pathogenesis. This review aims to bring together these findings, summarizing key insights from existing animal studies to possibly infer fucosylation disease mechanisms in humans. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 1598 KB  
Article
Detection of Selection Signatures and Genome-Wide Association Analysis of Body Weight Traits in Xianan Cattle
by Huaini Zhu, Xiaofeng Li, Man Zhang, Siyu Liu, Yan Zhang, Ying Zheng, Zhitong Wei, Mingpeng Han, Hetian Huang, Tong Fu and Dong Liang
Genes 2025, 16(6), 682; https://doi.org/10.3390/genes16060682 - 30 May 2025
Viewed by 841
Abstract
Background: Xianan cattle, the first cross-bred beef cattle developed in China, are recognized for their rapid growth, tolerance to rough feed, and high meat yield. These characteristics make them a valuable model for studies aimed at improving beef production traits. Methods: In this [...] Read more.
Background: Xianan cattle, the first cross-bred beef cattle developed in China, are recognized for their rapid growth, tolerance to rough feed, and high meat yield. These characteristics make them a valuable model for studies aimed at improving beef production traits. Methods: In this study, two complementary gene mapping strategies, selection signature analysis and association analysis, were employed to identify candidate genes associated with body weight. The analyses utilized resequencing data comprising 16,250,950 high-quality single nucleotide polymorphisms (SNPs). Twenty independent variables showed significant correlations with body weight, with effect sizes ranging from 239 kg to 629.37 kg, while controlling for a false discovery rate (FDR) of less than 0.5. Results: The most prominent signal was identified in the 54.24–54.39 MB region on chromosome 9, which contains the MANEA gene. Furthermore, we investigated the functional role of the MANEA gene at the cellular level. siRNA-mediated knockdown of MANEA resulted in significant alterations in the expression of downstream genes, notably MGAT1, MGAT3, FUT8, and HK1. Among these, the expression of MGAT1 was markedly increased, showing an increase of up to 600-fold compared to the control. Conclusions: These results offer critical insights into the molecular mechanisms underlying body weight regulation and provide a foundation for developing strategies to enhance economically important production traits in beef cattle. Full article
(This article belongs to the Special Issue Research on Genetics and Breeding of Cattle)
Show Figures

Figure 1

26 pages, 948 KB  
Review
Fermented Dairy Products as Precision Modulators of Gut Microbiota and Host Health: Mechanistic Insights, Clinical Evidence, and Future Directions
by Yuan Gao, Yanyan Liu, Tingting Ma, Qimeng Liang, Junqi Sun, Xiaomeng Wu, Yinglong Song, Hui Nie, Jun Huang and Guangqing Mu
Foods 2025, 14(11), 1946; https://doi.org/10.3390/foods14111946 - 29 May 2025
Cited by 9 | Viewed by 10221
Abstract
Dairy products—encompassing yogurt, kefir, cheese, and cultured milk beverages—are emerging as versatile, food-based modulators of gut microbiota and host physiology. This review synthesizes mechanistic insights demonstrating how live starter cultures and their fermentation-derived metabolites (short-chain fatty acids, bioactive peptides, and exopolysaccharides) act synergistically [...] Read more.
Dairy products—encompassing yogurt, kefir, cheese, and cultured milk beverages—are emerging as versatile, food-based modulators of gut microbiota and host physiology. This review synthesizes mechanistic insights demonstrating how live starter cultures and their fermentation-derived metabolites (short-chain fatty acids, bioactive peptides, and exopolysaccharides) act synergistically to enhance microbial diversity, reinforce epithelial barrier integrity via upregulation of tight-junction proteins, and modulate immune signaling. Clinical evidence supports significant improvements in metabolic parameters (fasting glucose, lipid profiles, blood pressure) and reductions in systemic inflammation across metabolic syndrome, hypertension, and IBS cohorts. We highlight critical modulatory factors—including strain specificity, host enterotypes and FUT2 genotype, fermentation parameters, and matrix composition—that govern probiotic engraftment, postbiotic yield, and therapeutic efficacy. Despite promising short-term outcomes, current studies are limited by heterogeneous designs and brief intervention periods, underscoring the need for long-term, adaptive trials and integrative multi-omics to establish durability and causality. Looking forward, precision nutrition frameworks that harness baseline microbiota profiling, host genetics, and data-driven fermentation design will enable bespoke fermented dairy formulations, transforming these traditional foods into next-generation functional matrices for targeted prevention and management of metabolic, inflammatory, and neuroimmune disorders. Full article
Show Figures

Figure 1

8 pages, 312 KB  
Communication
Non-Secretor Status Due to FUT2 Stop Mutation Is Associated with Reduced Rotavirus Infections but Not with Other Enteric Pathogens in Rwandan Children
by Jean Bosco Munyemana, Jean Claude Kabayiza, Eric Seruyange, Staffan Nilsson, Gustaf E. Rydell, Anna Martner, Maria E. Andersson and Magnus Lindh
Microorganisms 2025, 13(5), 1071; https://doi.org/10.3390/microorganisms13051071 - 3 May 2025
Viewed by 2152
Abstract
Enteric pathogens remain a health threat for children in low-income countries. A single nucleotide polymorphism (SNP) in the FUT2 gene that precludes the expression of fucosyltransferase 2 has been reported to influence the susceptibility to rotavirus and norovirus infections. The aim of this [...] Read more.
Enteric pathogens remain a health threat for children in low-income countries. A single nucleotide polymorphism (SNP) in the FUT2 gene that precludes the expression of fucosyltransferase 2 has been reported to influence the susceptibility to rotavirus and norovirus infections. The aim of this study was to investigate the association between G428A at rs601338 (stop codon variant) in the FUT2 gene and a range of enteric pathogens in children under 5 years of age. Rectal swab samples from 668 children (median age 13.6 months, 51% males, 93% rotavirus vaccinated, 468 with diarrhea) from Rwanda were analyzed via PCR for pathogen detection and SNP genotyping. A FUT2 stop codon (‘non-secretor’ status) was found in 19% of all children. Rotavirus was detected in 5.3% of non-secretors compared with in 13% of secretors (OR = 0.39, p = 0.019). Rotavirus P[8] was the predominant genotype and was found in 2.3% of non-secretors compared with 8.8% of secretors (p = 0.009). There was no association with any other pathogen, including noroviruses, of which 2 of 14 GII.4 infections were detected among non-secretors. Thus, the FUT2 stop codon variant was associated with rotavirus but not with any other pathogen. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

19 pages, 4449 KB  
Article
Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry and Network Pharmacology Reveal the Mechanisms of Rhodiola crenulata in Improving Non-Alcoholic Fatty Liver Disease
by Xin Zeng, Jianwei Wang, Qinyi Xu, Chengdan Deng, Xi Yi, Shang Wang, Ling Yao and Wei Xiang
Curr. Issues Mol. Biol. 2025, 47(5), 324; https://doi.org/10.3390/cimb47050324 - 1 May 2025
Viewed by 1113
Abstract
Rhodiola crenulata (RC) is a traditional herb and functional food that has demonstrated beneficial effects in improving physical function, enhancing work capacity, alleviating fatigue, and preventing altitude sickness. Additionally, RC has shown promising effects in the treatment of non-alcoholic fatty liver disease (NAFLD), [...] Read more.
Rhodiola crenulata (RC) is a traditional herb and functional food that has demonstrated beneficial effects in improving physical function, enhancing work capacity, alleviating fatigue, and preventing altitude sickness. Additionally, RC has shown promising effects in the treatment of non-alcoholic fatty liver disease (NAFLD), although its specific bioactive components and underlying mechanisms remain unclear. In this study, ultra-high-performance liquid chromatography–mass spectrometry (UHPLC-MS) combined with network pharmacology was employed to identify six potential bioactive compounds from the serum of rats treated with RC—Salidroside, Tyrosol, Crenulatin, Catechin gallate, Eriodictyol, and Rhodiooctanoside—that may contribute to its therapeutic effects on NAFLD. The efficacy of these compounds in improving NAFLD was assessed in vitro using HepG2 cells exposed to Palmitic acid (PA), and it was found that Catechin gallate exhibited a significant effect in reducing lipid accumulation in HepG2 cells. Furthermore, based on network pharmacology predictions, molecular docking studies suggested that the primary targets of Catechin gallate in alleviating fatty liver might include ABCB1, DYRK1A, PGD, and FUT4. Molecular dynamics simulations revealed stable binding interactions between Catechin gallate and these four target proteins. This study clarifies the material basis of RC in the treatment of NAFLD and provides a theoretical foundation for the application of RC and Catechin gallate as functional additives for the management of NAFLD. Full article
Show Figures

Figure 1

13 pages, 2291 KB  
Article
Genetic Analysis Reveals a Protective Effect of Sphingomyelin on Cholelithiasis
by Kun Mao, Ang Li, Haochen Liu, Yuntong Gao, Ziyan Wang, Xisu Wang, Shixuan Liu, Ziyuan Gao, Jiaqi Quan, Moyan Shao, Yunxi Liu, Liang Shi, Bo Zhang and Tianxiao Zhang
Genes 2025, 16(5), 523; https://doi.org/10.3390/genes16050523 - 29 Apr 2025
Viewed by 831
Abstract
Background: Cholelithiasis is the most common disorder affecting the biliary system. Choline is an essential nutrient in the human diet and is crucial for the synthesis of neurotransmitters. Previous studies have suggested an association between choline metabolites and cholelithiasis. However, the underlying mechanisms [...] Read more.
Background: Cholelithiasis is the most common disorder affecting the biliary system. Choline is an essential nutrient in the human diet and is crucial for the synthesis of neurotransmitters. Previous studies have suggested an association between choline metabolites and cholelithiasis. However, the underlying mechanisms remain unclear. This research aims to fill the knowledge gap regarding the role of choline metabolites in cholelithiasis. Methods: Genetic data related to choline metabolites and other covariates were retrieved from the U.K. Biobank and IEU OpenGWAS database. Two-sample (TSMR) and multivariate Mendelian randomization (MVMR) analyses, mediation analysis, linkage disequilibrium score regression (LDSC), colocalization analysis, and enrichment analysis were performed. Results: A significant causal relationship was identified between serum level of sphingomyelin and cholelithiasis (p-value = 0.0002). A protective causal effect was identified in MVMR analysis. The following mediated MR analysis indicated that only LDL mediated a large part of the causal relationship (59.18%). Seven genes, including GCKR, SNX17, ABCG8, MARCH8, FUT2, APOH, and HNF1A, were revealed to be colocalized with the causal signal between sphingomyelin and cholelithiasis. Conclusion: The present study has identified a protective effect between sphingomyelin and cholelithiasis. This effect is largely mediated by LDL. The findings of this study offer valuable information for further exploration of the molecular mechanisms of cholelithiasis. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

17 pages, 2554 KB  
Article
Merging High-Throughput, Amplicon-Based Second and Third Generation Sequencing Data: An Integrative and Modular Data Analysis Framework for Haplotype Prediction and Output Evaluation
by Sylvia Mink, Christian Attenberger, Yannik Busch, Johanna Kiefer, Wolfgang Peter, Janne Cadamuro, Tim A. Steiert, Andre Franke and Christoph Gassner
Int. J. Mol. Sci. 2025, 26(7), 3443; https://doi.org/10.3390/ijms26073443 - 7 Apr 2025
Viewed by 1152
Abstract
Despite providing highly accurate results, the short reads generated by second generation sequencing have major limitations in mapping complex genomic regions. Longer reads can resolve these issues and additionally phase distant variants. The third generation sequencing platform ONT currently achieves the longest sequencing [...] Read more.
Despite providing highly accurate results, the short reads generated by second generation sequencing have major limitations in mapping complex genomic regions. Longer reads can resolve these issues and additionally phase distant variants. The third generation sequencing platform ONT currently achieves the longest sequencing reads but falls short in sequencing accuracy. Additionally, deriving phased haplotypes from amplicon-based NGS data remains a complex and time-consuming task that requires extensive bioinformatic expertise. We constructed an integrative, open-access modular data-analysis framework that allows for automated processing of high-throughput sequencing data from both second (Illumina) and third generation (ONT) sequencing platforms, combining the strengths of both technologies. Variant information is automatically evaluated and color-coded for discrepancies. Haplotypes are listed by frequency. All parts of the framework can be used independently. The framework’s performance was validated using synthetic and tested with real-life data by analyzing partly homologous FUT1/2/3 sequencing data from 400 blood donors. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

15 pages, 4755 KB  
Article
Identification of Candidate Genes and eQTLs Related to Porcine Reproductive Function
by Tong Zeng, Ji Wang, Zhexi Liu, Xiaofeng Wang, Han Zhang, Xiaohua Ai, Xuemei Deng and Keliang Wu
Animals 2025, 15(7), 1038; https://doi.org/10.3390/ani15071038 - 3 Apr 2025
Viewed by 1468
Abstract
Expression quantitative trait locus (eQTL) mapping is an effective tool for identifying genetic variations that regulate gene expression. An increasing number of studies suggested that SNPs associated with complex traits in farm animals are considered as expression quantitative trait loci. Identifying eQTLs associated [...] Read more.
Expression quantitative trait locus (eQTL) mapping is an effective tool for identifying genetic variations that regulate gene expression. An increasing number of studies suggested that SNPs associated with complex traits in farm animals are considered as expression quantitative trait loci. Identifying eQTLs associated with gene expression levels in the endometrium helps to unravel the regulatory mechanisms of genes related to reproductive functions in this tissue and provides molecular markers for the genetic improvement of high-fertility sow breeding. In this study, 218 RNA-seq data from pig endometrial tissue were used for eQTL analysis to identify genetic variants regulating gene expression. Additionally, weighted gene co-expression network analysis (WGCNA) was performed to identify hub genes involved in reproductive functions. The eQTL analysis identified 34,876 significant cis-eQTLs regulating the expression of 5632 genes (FDR ≤ 0.05), and 90 hub genes were identified by WGCNA analysis. By integrating eQTL and WGCNA results, 14 candidate genes and 16 fine-mapped cis-eQTLs were identified, including FRK, ARMC3, SLC35F3, TMEM72, FFAR4, SOWAHA, PSPH, FMO5, HPN, FUT2, RAP1GAP, C6orf52, SEL1L3, and CLGN, which were involved in the physiological processes of reproduction in sows through hormone regulation, cell adhesion, and amino acid and lipid metabolism. These eQTLs regulate the high expression of candidate genes in the endometrium, thereby affecting reproductive-related physiological functions. These findings enhance our understanding of the genetic basis of reproductive traits and provide valuable genetic markers for marker-assisted selection (MAS), which can be applied to improve sow fecundity and optimize breeding strategies for high reproductive performance. Full article
(This article belongs to the Special Issue Research Advances in Pig Reproduction)
Show Figures

Figure 1

20 pages, 7225 KB  
Article
Glycolysis-Driven Prognostic Model for Acute Myeloid Leukemia: Insights into the Immune Landscape and Drug Sensitivity
by Rongsheng Zhang, Wen Jin and Kankan Wang
Biomedicines 2025, 13(4), 834; https://doi.org/10.3390/biomedicines13040834 - 31 Mar 2025
Viewed by 964
Abstract
Background: Acute myeloid leukemia (AML), a malignant blood disease, is caused by the excessive growth of undifferentiated myeloid cells, which disrupt normal hematopoiesis and may invade several organs. Given the high heterogeneity in prognosis, identifying stable prognostic biomarkers is crucial for improved [...] Read more.
Background: Acute myeloid leukemia (AML), a malignant blood disease, is caused by the excessive growth of undifferentiated myeloid cells, which disrupt normal hematopoiesis and may invade several organs. Given the high heterogeneity in prognosis, identifying stable prognostic biomarkers is crucial for improved risk stratification and personalized treatment strategies. Although glycolysis has been extensively studied in cancer, its prognostic significance in AML remains unclear. Methods: Glycolysis-related prognostic genes were identified by differential expression profiles. We modeled prognostic risk by least absolute shrinkage and selection operator (LASSO) regression and validated it by Kaplan–Meier (KM) survival analysis, receiver operating characteristic (ROC) curves, and independent datasets (BeatAML2.0, GSE37642, GSE71014). Mechanisms were further explored through immune microenvironment analysis and drug sensitivity scores. Results: Differential expression and survival correlation analysis across the genes associated with glycolysis revealed multiple glycolytic genes associated with the outcomes of AML. We constructed a seven-gene prognostic model (G6PD, TFF3, GALM, SOD1, NT5E, CTH, FUT8). Kaplan–Meier analysis demonstrated significantly reduced survival in high-risk patients (hazard ratio (HR) = 3.4, p < 0.01). The model predicted the 1-, 3-, and 5-year survival outcomes, achieving area under the curve (AUC) values greater than 0.8. Immune profiling indicated distinct cellular compositions between risk groups: high-risk patients exhibited elevated monocytes and neutrophils but reduced Th1 cell infiltration. Drug sensitivity analysis showed that high-risk patients exhibited resistance to crizotinib and lapatinib but were more sensitive to motesanib. Conclusions: We established a novel glycolysis-related gene signature for AML prognosis, enabling effective risk classification. Combined with immune microenvironment analysis and drug sensitivity analysis, we screened metabolic characteristics and identified an immune signature to provide deeper insight into AML. Our findings may assist in identifying new therapeutic targets and more effective personalized treatment regimes. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

44 pages, 3571 KB  
Review
Protein O-Fucosyltransferases: Biological Functions and Molecular Mechanisms in Mammals
by Huilin Hao, Benjamin M. Eberand, Mark Larance and Robert S. Haltiwanger
Molecules 2025, 30(7), 1470; https://doi.org/10.3390/molecules30071470 - 26 Mar 2025
Cited by 3 | Viewed by 3529
Abstract
Domain-specific O-fucosylation is an unusual type of glycosylation, where the fucose is directly attached to the serine or threonine residues in specific protein domains via an O-linkage. O-fucosylated proteins play critical roles in a wide variety of biological events and [...] Read more.
Domain-specific O-fucosylation is an unusual type of glycosylation, where the fucose is directly attached to the serine or threonine residues in specific protein domains via an O-linkage. O-fucosylated proteins play critical roles in a wide variety of biological events and hold important therapeutic values, with the most studied being the Notch receptors and ADAMTS proteins. O-fucose glycans modulate the function of the proteins they modify and are closely associated with various diseases including cancer. In mammals, alongside the well-documented protein O-fucosyltransferase (POFUT) 1-mediated O-fucosylation of epidermal growth factor-like (EGF) repeats and POFUT2-mediated O-fucosylation of thrombospondin type 1 repeats (TSRs), a new type of O-fucosylation was recently identified on elastin microfibril interface (EMI) domains, mediated by POFUT3 and POFUT4 (formerly FUT10 and FUT11). In this review, we present an overview of our current knowledge of O-fucosylation, integrating the latest findings and with a particular focus on its biological functions and molecular mechanisms. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

Back to TopTop