Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Evernia mesomorpha

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6305 KiB  
Article
The Hydration-Dependent Dynamics of Greenhouse Gas Fluxes of Epiphytic Lichens in the Permafrost-Affected Region
by Oxana V. Masyagina, Svetlana Yu. Evgrafova, Natalia M. Kovaleva, Anna E. Detsura, Elizaveta V. Porfirieva, Oleg V. Menyailo and Anastasia I. Matvienko
Forests 2024, 15(11), 1962; https://doi.org/10.3390/f15111962 - 7 Nov 2024
Viewed by 1188
Abstract
Recent studies actively debate oxic methane (CH4) production processes in water and terrestrial ecosystems. This previously unknown source of CH4 on a regional and global scale has the potential to alter our understanding of climate-driving processes in vulnerable ecosystems, particularly [...] Read more.
Recent studies actively debate oxic methane (CH4) production processes in water and terrestrial ecosystems. This previously unknown source of CH4 on a regional and global scale has the potential to alter our understanding of climate-driving processes in vulnerable ecosystems, particularly high-latitude ecosystems. Thus, the main objective of this study is to use the incubation approach to explore possible greenhouse gas (GHG) fluxes by the most widely distributed species of epiphytic lichens (ELs; Evernia mesomorpha Nyl. and Bryoria simplicior (Vain.) Brodo et D. Hawksw.) in the permafrost zone of Central Siberia. We observed CH4 production by hydrated (50%–400% of thallus water content) ELs during 2 h incubation under illumination. Moreover, in agreement with other studies, we found evidence that oxic CH4 production by Els is linked to the CO2 photoassimilation process, and the EL thallus water content regulates that relationship. Although the GHG fluxes presented here were obtained under a controlled environment and are probably not representative of actual emissions in the field, more research is needed to fully comprehend ELs’ function in the C cycle. This particular research provides a solid foundation for future studies into the role of ELs in the C cycle of permafrost forest ecosystems under ongoing climate change (as non-methanogenesis processes in oxic environments). Full article
Show Figures

Figure 1

23 pages, 5554 KiB  
Article
Ecological Risks from Atmospheric Deposition of Nitrogen and Sulphur in Jack Pine forests of Northwestern Canada
by Nicole Vandinther and Julian Aherne
Nitrogen 2023, 4(1), 102-124; https://doi.org/10.3390/nitrogen4010008 - 16 Feb 2023
Cited by 2 | Viewed by 2457
Abstract
Chronic elevated nitrogen (N) deposition can have adverse effects on terrestrial ecosystems. For large areas of northern Canada distant from emissions sources, long-range atmospheric transport of N may impact plant species diversity, even at low deposition levels. The objective of this study was [...] Read more.
Chronic elevated nitrogen (N) deposition can have adverse effects on terrestrial ecosystems. For large areas of northern Canada distant from emissions sources, long-range atmospheric transport of N may impact plant species diversity, even at low deposition levels. The objective of this study was to establish plant species community thresholds for N deposition under multiple environmental gradients using gradient forest analysis. Plant species abundance data for 297 Jack pine (Pinus banksiana Lamb.)-dominant forest plots across Alberta and Saskatchewan, Canada, were evaluated against 43 bioclimatic and deposition variables. Bioclimatic variables were overwhelmingly the most important drivers of community thresholds. Nonetheless, dry N oxide (DNO) and dry N dioxide deposition inferred a total deposited N (TDN) community threshold of 1.4–2.1 kg N ha−1 yr−1. This range was predominantly associated with changes in several lichen species, including Cladina mitis, Vulpicida pinastri, Evernia mesomorpha and Lecanora circumborealis, some of which are known bioindicators of N deposition. A secondary DNO threshold appeared to be driving changes in several vascular species and was equivalent to 2.45–3.15 kg N ha−1 yr−1 on the TDN gradient. These results suggest that in low deposition ‘background’ regions a biodiversity-based empirical critical load of 1.4–3.15 kg N ha−1 yr−1 will protect lichen communities and other N-sensitive species in Jack pine forests across Northwestern Canada. Nitrogen deposition above the critical load may lead to adverse effects on plant species biodiversity within these forests. Full article
Show Figures

Figure 1

9 pages, 1381 KiB  
Article
Antimicrobial Activity of Divaricatic Acid Isolated from the Lichen Evernia mesomorpha against Methicillin-Resistant Staphylococcus aureus
by Jong Min Oh, Yi Jeong Kim, Hyo-Seung Gang, Jin Han, Hyung-Ho Ha and Hoon Kim
Molecules 2018, 23(12), 3068; https://doi.org/10.3390/molecules23123068 - 23 Nov 2018
Cited by 30 | Viewed by 5569
Abstract
One hundred and seventy seven acetone extracts of lichen and 258 ethyl acetate extracts of cultured lichen-forming fungi (LFF) were screened for antimicrobial activity against Staphylococcus aureus and Enterococcus faecium using a disk diffusion method. Divaricatic acid was isolated from Evernia mesomorpha and [...] Read more.
One hundred and seventy seven acetone extracts of lichen and 258 ethyl acetate extracts of cultured lichen-forming fungi (LFF) were screened for antimicrobial activity against Staphylococcus aureus and Enterococcus faecium using a disk diffusion method. Divaricatic acid was isolated from Evernia mesomorpha and identified by LC-MS, 1H-, 13C- and DEPT-NMR. Purified divaricatic acid was effective against Gram + bacteria, such as Bacillus subtilis, Staphylococcus epidermidis, Streptococcus mutans, and Enterococcus faecium, with the minimum inhibitory concentration (MIC) values ranging from 7.0 to 64.0 μg/mL, whereas vancomycin was effective in the MICs ranging from 0.78 to 25.0 μg/mL. Interestingly, the antibacterial activity of divaricatic acid was higher than vancomycin against S. epidermidis and E. faecium, and divaricatic acid was active against Candida albicans. In addition, divaricatic acid was active as vancomycin against S. aureus (3A048; an MRSA). These results suggested that divaricatic acid is a potential antimicrobial agent for the treatment of MRSA infections. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

Back to TopTop