Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = Euler angle error

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 5821 KB  
Article
Trajectory Tracking Control Method via Simulation for Quadrotor UAVs Based on Hierarchical Decision Dual-Threshold Adaptive Switching
by Fei Peng, Qiang Gao, Hongqiang Lu, Zhonghong Bu, Bobo Jia, Ganchao Liu and Zhong Tao
Appl. Sci. 2025, 15(20), 11217; https://doi.org/10.3390/app152011217 - 20 Oct 2025
Viewed by 320
Abstract
In complex 3D maneuvering tasks (e.g., post-disaster rescue, urban operations, and infrastructure inspection), the trajectories that quadrotors need to track are often complex—containing both gentle flight phases and highly maneuverable trajectory segments. Under such trajectory tracking tasks with the composite characteristics of “gentle-high [...] Read more.
In complex 3D maneuvering tasks (e.g., post-disaster rescue, urban operations, and infrastructure inspection), the trajectories that quadrotors need to track are often complex—containing both gentle flight phases and highly maneuverable trajectory segments. Under such trajectory tracking tasks with the composite characteristics of “gentle-high maneuvering”, quadrotors face challenges of limited onboard computing resources and short endurance, requiring a balance between trajectory tracking accuracy, computational efficiency, and energy consumption. To address this problem, this paper proposes a lightweight trajectory tracking control method based on hierarchical decision-making and dual-threshold adaptive switching. Inspired by the biological “prediction–reflection” mechanism, this method designs a dual-threshold collaborative early warning switching architecture of “prediction layer–confirmation layer”: The prediction layer dynamically assesses potential risks based on trajectory curvature and jerk, while the confirmation layer confirms in real time the stability risks through an attitude-angular velocity composite index. Only when both exceed the thresholds, it switches from low-energy-consuming Euler angle control to high-precision geometric control. Simulation experiments show that in four typical trajectories (straight-line rapid turn, high-speed S-shaped, anti-interference composite, and narrow space figure-eight), compared with pure geometric control, this method reduces position error by 19.5%, decreases energy consumption by 45.9%, and shortens CPU time by 28%. This study not only optimizes device performance by improving trajectory tracking accuracy while reducing onboard computational load, but also reduces energy consumption to extend UAV endurance, and simultaneously enhances anti-disturbance capability, thereby improving its operational capability to respond to emergencies in complex environments. Overall, this study provides a feasible solution for the efficient and safe flight of resource-constrained onboard platforms in multi-scenario complex environments in the future and has broad application and expansion potential. Full article
Show Figures

Figure 1

18 pages, 4452 KB  
Article
Upper Limb Joint Angle Estimation Using a Reduced Number of IMU Sensors and Recurrent Neural Networks
by Kevin Niño-Tejada, Laura Saldaña-Aristizábal, Jhonathan L. Rivas-Caicedo and Juan F. Patarroyo-Montenegro
Electronics 2025, 14(15), 3039; https://doi.org/10.3390/electronics14153039 - 30 Jul 2025
Viewed by 1218
Abstract
Accurate estimation of upper-limb joint angles is essential in biomechanics, rehabilitation, and wearable robotics. While inertial measurement units (IMUs) offer portability and flexibility, systems requiring multiple inertial sensors can be intrusive and complex to deploy. In contrast, optical motion capture (MoCap) systems provide [...] Read more.
Accurate estimation of upper-limb joint angles is essential in biomechanics, rehabilitation, and wearable robotics. While inertial measurement units (IMUs) offer portability and flexibility, systems requiring multiple inertial sensors can be intrusive and complex to deploy. In contrast, optical motion capture (MoCap) systems provide precise tracking but are constrained to controlled laboratory environments. This study presents a deep learning-based approach for estimating shoulder and elbow joint angles using only three IMU sensors positioned on the chest and both wrists, validated against reference angles obtained from a MoCap system. The input data includes Euler angles, accelerometer, and gyroscope data, synchronized and segmented into sliding windows. Two recurrent neural network architectures, Convolutional Neural Network with Long-short Term Memory (CNN-LSTM) and Bidirectional LSTM (BLSTM), were trained and evaluated using identical conditions. The CNN component enabled the LSTM to extract spatial features that enhance sequential pattern learning, improving angle reconstruction. Both models achieved accurate estimation performance: CNN-LSTM yielded lower Mean Absolute Error (MAE) in smooth trajectories, while BLSTM provided smoother predictions but underestimated some peak movements, especially in the primary axes of rotation. These findings support the development of scalable, deep learning-based wearable systems and contribute to future applications in clinical assessment, sports performance analysis, and human motion research. Full article
(This article belongs to the Special Issue Wearable Sensors for Human Position, Attitude and Motion Tracking)
Show Figures

Figure 1

15 pages, 5326 KB  
Article
A Texture-Based Simulation Framework for Pose Estimation
by Yaoyang Shen, Ming Kong, Hang Yu and Lu Liu
Appl. Sci. 2025, 15(8), 4574; https://doi.org/10.3390/app15084574 - 21 Apr 2025
Viewed by 540
Abstract
An accurate 3D pose estimation of spherical objects remains challenging in industrial inspections and robotics due to their geometric symmetries and limited feature discriminability. This study proposes a texture-optimized simulation framework to enhance pose prediction accuracy through optimizing the surface texture features of [...] Read more.
An accurate 3D pose estimation of spherical objects remains challenging in industrial inspections and robotics due to their geometric symmetries and limited feature discriminability. This study proposes a texture-optimized simulation framework to enhance pose prediction accuracy through optimizing the surface texture features of the design samples. A hierarchical texture design strategy was developed, incorporating complexity gradients (low to high) and color contrast principles, and implemented via VTK-based 3D modeling with automated Euler angle annotations. The framework generated 2297 synthetic images across six texture variants, which were used to train a MobileNet model. The validation tests demonstrated that the high-complexity color textures achieved superior performance, reducing the mean absolute pose error by 64.8% compared to the low-complexity designs. While color improved the validation accuracy universally, the test set analyses revealed its dual role: complex textures leveraged chromatic contrast for robustness, whereas simple textures suffered color-induced noise (a 35.5% error increase). These findings establish texture complexity and color complementarity as critical design criteria for synthetic datasets, offering a scalable solution for vision-based pose estimation. Physical experiments confirmed the practical feasibility, yielding 2.7–3.3° mean errors. This work bridges the simulation-to-reality gaps in symmetric object localization, with implications for robotic manipulation and industrial metrology, while highlighting the need for material-aware texture adaptations in future research. Full article
Show Figures

Figure 1

20 pages, 4874 KB  
Article
Analytical Formulation of Relationship Between Sensors and Euler Angle Errors for Arbitrary Stationary Alignment Based on Accelerometer and Magnetometer
by Chang June Lee and Jung Keun Lee
Sensors 2025, 25(8), 2593; https://doi.org/10.3390/s25082593 - 19 Apr 2025
Viewed by 952
Abstract
An attitude and heading reference system (AHRS) based on the inertial measurement unit is crucial for various applications. In an AHRS, stationary alignments are performed to determine the initial orientation of the sensor frame with respect to the navigation frame. However, the stationary [...] Read more.
An attitude and heading reference system (AHRS) based on the inertial measurement unit is crucial for various applications. In an AHRS, stationary alignments are performed to determine the initial orientation of the sensor frame with respect to the navigation frame. However, the stationary alignment accuracy is affected by sensor error factors. Therefore, several studies have attempted to analyze and minimize the effects of these errors. However, there have been no studies describing and analyzing the Euler angle errors for various sensor orientations. This paper presents the analytical formulation of the relationship between the sensor and the Euler angle errors based on accelerometer and magnetometer signals, regardless of alignment between the sensor and the navigation frames. We selected three-axis attitude determination (TRIAD) as the stationary alignment method and considered the scale, installation, and the offset errors, including noise and constant bias, as sensor error factors. The presented formulation describes the relationship between the sensor error factors and the Euler angle errors as a linear equation. To analyze the Euler angle errors, we performed both sensor-aligned and sensor-misaligned simulations in which the Euler angles were 0° and arbitrary, respectively. The results showed that the presented error formulation could describe the total Euler angle errors and the partial errors induced by each sensor error factor for both the sensor-aligned conditions and the arbitrary Euler angle configurations. Thus, the effects of each sensor error factor on the Euler angle errors can be analytically investigated using the presented formulations for random alignment. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

31 pages, 21628 KB  
Article
Dynamic Modelling and Experimental Investigation of an Active–Passive Variable Stiffness Actuator
by Caidong Wang, Zhou Zhang, Yanqiu Xiao, Pengfei Gao and Xiaoli Liu
Actuators 2025, 14(4), 169; https://doi.org/10.3390/act14040169 - 29 Mar 2025
Cited by 1 | Viewed by 1019
Abstract
To overcome the limitations imposed by the low flexible angle of conventional robots, an active–passive variable stiffness elastic actuator (APVSA) is investigated and a nonlinear dynamic model for the APVSA is established, considering the factors of the moment of inertia, stiffness and damping [...] Read more.
To overcome the limitations imposed by the low flexible angle of conventional robots, an active–passive variable stiffness elastic actuator (APVSA) is investigated and a nonlinear dynamic model for the APVSA is established, considering the factors of the moment of inertia, stiffness and damping of elastic elements, meshing stiffness of gear systems, nonlinear backlash, nonlinear meshing damping, and comprehensive transmission error. The established dynamic model is discretized by the forward Euler method, and the variable stiffness performance and the influence of nonlinear factors on the APVSA are analysed by Adams and Simulink simulations, respectively. A physical prototype and an experimental platform were assembled, and the dynamic and static variable stiffness experiments were conducted. The experimental results realized the expected stiffness adjustment target and provided the foundation for the next step of control. Full article
(This article belongs to the Section Actuator Materials)
Show Figures

Figure 1

17 pages, 5947 KB  
Article
A Lossless Scalar Calibration Algorithm Used for Tri-Axial Magnetometer Cross Array and Its Effectiveness Validation
by Lihua Wu, Yu Huang and Xintong Chen
Sensors 2025, 25(7), 2164; https://doi.org/10.3390/s25072164 - 28 Mar 2025
Viewed by 552
Abstract
The accuracy of a magnetic gradient tensor (MGT) measured by tri-axial magnetometer cross arrays (TAMCAs) is compromised by inherent errors in individual tri-axial magnetometers (TAMs) and inter-sensor misalignment angles (MAs), both of which degrade the resultant MGT data quality. This paper proposes a [...] Read more.
The accuracy of a magnetic gradient tensor (MGT) measured by tri-axial magnetometer cross arrays (TAMCAs) is compromised by inherent errors in individual tri-axial magnetometers (TAMs) and inter-sensor misalignment angles (MAs), both of which degrade the resultant MGT data quality. This paper proposes a novel lossless scalar calibration algorithm that eliminates mathematical approximations while tracking the fluctuation of the reference magnetic intensity (MI). The calibration algorithm is developed to improve TAMCAs’ measurement precision; however it is difficult to provide a completely accurate MGT by experiments. Therefore, we have designed a kind of validation experiment based on a constrained Euler localization to demonstrate the effectiveness of the calibration algorithm. The fundamental principles of the proposed lossless scalar calibration methodology are systematically presented, accompanied by a numerical analysis of relative errors calibrating TAMCA parameters. Key influencing factors are carefully investigated, including the TAM noise level quantified by standard deviation (STD), calibration dataset size, and STD of reference MI fluctuations. In the experiments, to validate the effectiveness of calibrating TAMCAs composed of four fluxgate TAMs (FTAMs), we measured the true geo-MI using a proton magnetometer and regarded an energized circular coil as the alternating current (AC) magnetic source of the constrained Euler localization, respectively. The results indicated that the lossless scalar calibration algorithm significantly improves the measurement accuracy of the geo-MI of the calibration site and MGT of the energized coil. Full article
Show Figures

Figure 1

9 pages, 2036 KB  
Proceeding Paper
PSO-Based PID Tuning for PMSM-Quadrotor UAV System
by Marco Rinaldi, Morteza Moslehi, Giorgio Guglieri and Stefano Primatesta
Eng. Proc. 2025, 90(1), 2; https://doi.org/10.3390/engproc2025090002 - 7 Mar 2025
Cited by 2 | Viewed by 1146
Abstract
This paper presents the simulation and controller optimization of a quadrotor Unmanned Aerial Vehicle (UAV) system. The quadrotor model is derived adopting the Newton-Euler approach, and is intended to be constituted by four three-phase Permanent Magnet Synchronous Motors (PMSM) controlled with a velocity [...] Read more.
This paper presents the simulation and controller optimization of a quadrotor Unmanned Aerial Vehicle (UAV) system. The quadrotor model is derived adopting the Newton-Euler approach, and is intended to be constituted by four three-phase Permanent Magnet Synchronous Motors (PMSM) controlled with a velocity control loop-based Field Oriented Control (FOC) technique. The Particle Swarm Optimization (PSO) algorithm is used to tune the parameters of the PID controllers of quadrotor height, quadrotor attitude angles, and PMSMs’ rotational speeds, which represent the eight critical parameters of the PMSM-quadrotor UAV system. The PSO algorithm is designed to optimize eight Square Error (SE) cost functions which quantify the error dynamics of the controlled variables. For each stabilization task, the PID tuning is divided in two phases. Firstly, the PSO optimizes the error dynamics of altitude and attitude angles of the quadrotor UAV. Secondly, the desired steady-state rotational speeds of the PMSMs are derived, and the PSO is used to optimize the motors’ dynamics. Finally, the complete PMSM-Quadrotor UAV system is simulated for stabilization during the target task. The study is carried out by means of simulations in MATLAB/Simulink®. Full article
Show Figures

Figure 1

23 pages, 9774 KB  
Article
Predictive Torque Control of Permanent Magnet Motor for New-Energy Vehicles Under Low-Carrier-Ratio Conditions
by Zhiqiang Wang, Zhichen Lin, Xuefeng Jin and Yan Yan
World Electr. Veh. J. 2025, 16(3), 146; https://doi.org/10.3390/wevj16030146 - 4 Mar 2025
Viewed by 1107
Abstract
The model predictive-torque-control strategy of a permanent magnet synchronous motor (PMSM) has many advantages such as a fast dynamic response and the ease of implementation. However, when the permanent magnet motor has a large number of pole pairs or operates at high-speed, due [...] Read more.
The model predictive-torque-control strategy of a permanent magnet synchronous motor (PMSM) has many advantages such as a fast dynamic response and the ease of implementation. However, when the permanent magnet motor has a large number of pole pairs or operates at high-speed, due to constraints such as the inverter switching frequency, sampling time, and algorithm execution time, the motor carrier ratio (the ratio of control frequency to operating frequency) becomes relatively low. The discrete model derived from and based on the forward Euler method has a large model error when the carrier ratio decreases, which leads to voltage vector misjudgment and inaccurate duty cycle calculation, thus leading to the decline of control performance. Meanwhile, the shortcomings of the traditional model predictive-torque-control strategy limit the steady-state performance. In response to the above issues, this paper proposes an improved model predictive-torque-control strategy suitable for low-carrier-ratio conditions. The strategy consists of an improved discrete model that considers rotor-angle-position variations and a model prediction algorithm. It also analyzes the sensitivity of model predictive control to parameter changes and designs an online parameter optimization algorithm. Compared with the traditional forward Euler method, the improved discrete model proposed in this paper has obvious advantages under low-carrier-ratio conditions; at the same time, the parameter optimization process enhances the parameter robustness of the model prediction algorithm. Moreover, the proposed model predictive-torque-control strategy has high torque tracking accuracy. The experimental results verify the feasibility and effectiveness of the proposed strategy. Full article
Show Figures

Figure 1

26 pages, 6864 KB  
Article
Physics-Aware Machine Learning Approach for High-Precision Quadcopter Dynamics Modeling
by Ruslan Abdulkadirov, Pavel Lyakhov, Denis Butusov, Nikolay Nagornov and Diana Kalita
Drones 2025, 9(3), 187; https://doi.org/10.3390/drones9030187 - 3 Mar 2025
Cited by 1 | Viewed by 2049
Abstract
In this paper, we propose a physics-informed neural network controller for quadcopter dynamics modeling. Physics-aware machine learning methods, such as physics-informed neural networks, consider the UAV dynamics model, solving the system of ordinary differential equations entirely, unlike proportional–integral–derivative controllers. The more accurate control [...] Read more.
In this paper, we propose a physics-informed neural network controller for quadcopter dynamics modeling. Physics-aware machine learning methods, such as physics-informed neural networks, consider the UAV dynamics model, solving the system of ordinary differential equations entirely, unlike proportional–integral–derivative controllers. The more accurate control action on the quadcopter reduces flight time and power consumption. We applied our fractional optimization algorithms to decreasing the solution error of quadcopter dynamics. Including advanced optimizers in the reinforcement learning model, we achieved the trajectory of UAV flight more accurately than state-of-the-art proportional–integral–derivative controllers. The advanced optimizers allowed the proposed controller to increase the quality of the building trajectory of the UAV compared to the state-of-the-art approach by 10 percentage points. Our model had less error value in spatial coordinates and Euler angles by 25–35% and 30–44%, respectively. Full article
Show Figures

Figure 1

34 pages, 9565 KB  
Article
Quaternion-Based Fast SMC–PD Cross-Domain Tracking Control for Coaxial Hybrid Aerial–Underwater Vehicle Under Oceanic Disturbances
by Mingqing Lu, Wei Yang, Fei Liao, Shichong Wu, Yumin Su and Wenhua Wu
Appl. Sci. 2025, 15(2), 703; https://doi.org/10.3390/app15020703 - 12 Jan 2025
Cited by 2 | Viewed by 2158
Abstract
In this study, nonsingular modeling and cross-domain trajectory tracking control problems for a special class of coaxial hybrid aerial–underwater vehicles (HAUVs) are investigated. Coaxial HAUVs need to effectively overcome the influence of hydrodynamic factors when moving underwater, so the attitude angle required by [...] Read more.
In this study, nonsingular modeling and cross-domain trajectory tracking control problems for a special class of coaxial hybrid aerial–underwater vehicles (HAUVs) are investigated. Coaxial HAUVs need to effectively overcome the influence of hydrodynamic factors when moving underwater, so the attitude angle required by coaxial HAUVs is much larger than that in the air. The attitude representation based on quaternion modeling is adopted to avoid the inherent singularity of Euler angle modeling. A cascade sliding mode control and proportion differentiation (SMC-PD) controller is proposed, which is used to position trajectory and attitude quaternion tracking control, respectively. An adaptive sliding mode controller based on disturbance observer (DO) enhancement is adopted in the outer loop to carry trajectory tracking control. At the same time, the expected attitude angle is calculated by the outer loop (position) and is converted into the expected quaternion. With reference to the idea of enhanced robustness in active disturbance rejection control (ADRC), a feedforward proportion derivation (PD) controller based on DO enhancement is used to track the desired quaternion. A variable parameter adaptive algorithm based on the learning rate is introduced in the cascaded SMC-PD controller. The error convergence speed of the system is further improved by adaptively changing the controller parameters. The stability of the proposed control scheme is proved by using the Lyapunov theory. The numerical simulation results show that the controller has good robustness and effectiveness. Full article
(This article belongs to the Special Issue Modeling, Guidance and Control of Marine Robotics)
Show Figures

Figure 1

13 pages, 1742 KB  
Article
Visual-Inertial Method for Localizing Aerial Vehicles in GNSS-Denied Environments
by Andrea Tonini, Mauro Castelli, Jordan Steven Bates, Nyi Nyi Nyan Lin and Marco Painho
Appl. Sci. 2024, 14(20), 9493; https://doi.org/10.3390/app14209493 - 17 Oct 2024
Cited by 3 | Viewed by 2065
Abstract
Estimating the location of unmanned aerial vehicles (UAVs) within a global coordinate system can be achieved by correlating known world points with their corresponding image projections captured by the vehicle’s camera. Reducing the number of required world points may lower the computational requirements [...] Read more.
Estimating the location of unmanned aerial vehicles (UAVs) within a global coordinate system can be achieved by correlating known world points with their corresponding image projections captured by the vehicle’s camera. Reducing the number of required world points may lower the computational requirements needed for such estimation. This paper introduces a novel method for determining the absolute position of aerial vehicles using only two known coordinate points that reduce the calculation complexity and, therefore, the computation time. The essential parameters for this calculation include the camera’s focal length, detector dimensions, and the Euler angles for Pitch and Roll. The Yaw angle is not required, which is beneficial because Yaw is more susceptible to inaccuracies due to environmental factors. The vehicle’s position is determined through a sequence of straightforward rigid transformations, eliminating the need for additional points or iterative processes for verification. The proposed method was tested using a Digital Elevation Model (DEM) created via LiDAR and 11 aerial images captured by a UAV. The results were compared against Global Navigation Satellite Systems (GNSSs) data and other common image pose estimation methodologies. While the available data did not permit precise error quantification, the method demonstrated performance comparable to GNSS-based approaches. Full article
Show Figures

Figure 1

15 pages, 2867 KB  
Article
Analytical Prediction of Multi-Phase Texture in Laser Powder Bed Fusion
by Wei Huang, Mike Standish, Wenjia Wang, Jinqiang Ning, Linger Cai, Ruoqi Gao, Hamid Garmestani and Steven Y. Liang
J. Manuf. Mater. Process. 2024, 8(5), 234; https://doi.org/10.3390/jmmp8050234 - 17 Oct 2024
Cited by 3 | Viewed by 1799
Abstract
For advancing manufacturing, arising AM, with an inverse philosophical approach compared to conventional procedures, has benefits that include intricate fabrication, reduced material waste, flexible design, and more. Regardless of its potential, AM must overcome several challenges due to multi-physical processes with miscellaneous physical [...] Read more.
For advancing manufacturing, arising AM, with an inverse philosophical approach compared to conventional procedures, has benefits that include intricate fabrication, reduced material waste, flexible design, and more. Regardless of its potential, AM must overcome several challenges due to multi-physical processes with miscellaneous physical stimuli in diverse materials systems and situations, such as anisotropic microstructure and mechanical properties, a restricted choice of materials, defects, and high cost. Unlike conventional experimental work that requires extensive trial and error resources and FEM, which generally consumes substantial computational power, the analytical approach based on physics is an exceptional choice. Understanding the relationship between the microstructure and material properties of the fabricated parts is a crucial focus in AM research. Texture is a vital factor in almost every modern industry. This study first proposed a physics-based model to foreshadow the multi-phase crystallographic orientation distribution in Ti-6Al-4V LPBF while considering the part boundary conditions due to the importance of part geometry in real industry. The thermal distribution obtained from this function operates as the information for the single-phase crystallographic texture model. In this model, we forerun and validate the orientations of single-phase materials utilizing three Euler Angles with the principles of CET and thermodynamics, as well as the intensity of the texture by approximating them with published results. Then, we transform the single-phase texture into a dual-phase texture in Bunge calculation, illustrating visualized by pole figures of both BCC and HCP phases. The tendency and appearances of both BCC and HCP phases in pole figures predicted agree well with the experimental results. This texture evolution model provides a new paradigm for future researchers to model the texture or microstructure evolution semi-analytically and save many computational resources in a real-world perspective. Others have not yet done this work about simulating the multi-phase texture in an analytical approach, so this work bridges the gap in this field. Furthermore, this paper establishes the foundation for future research on materials properties affected by microstructure or texture in academic and industrial environments. The precision and dependability of the results obtained through this method make it a valuable tool for ongoing research and advancement. Full article
(This article belongs to the Special Issue Advances in Powder Bed Fusion Technologies)
Show Figures

Figure 1

29 pages, 1651 KB  
Article
Quaternion-Based Attitude Estimation of an Aircraft Model Using Computer Vision
by Pavithra Kasula, James F. Whidborne and Zeeshan A. Rana
Sensors 2024, 24(12), 3795; https://doi.org/10.3390/s24123795 - 12 Jun 2024
Cited by 2 | Viewed by 5176
Abstract
Investigating aircraft flight dynamics often requires dynamic wind tunnel testing. This paper proposes a non-contact, off-board instrumentation method using vision-based techniques. The method utilises a sequential process of Harris corner detection, Kanade–Lucas–Tomasi tracking, and quaternions to identify the Euler angles from a pair [...] Read more.
Investigating aircraft flight dynamics often requires dynamic wind tunnel testing. This paper proposes a non-contact, off-board instrumentation method using vision-based techniques. The method utilises a sequential process of Harris corner detection, Kanade–Lucas–Tomasi tracking, and quaternions to identify the Euler angles from a pair of cameras, one with a side view and the other with a top view. The method validation involves simulating a 3D CAD model for rotational motion with a single degree-of-freedom. The numerical analysis quantifies the results, while the proposed approach is analysed analytically. This approach results in a 45.41% enhancement in accuracy over an earlier direction cosine matrix method. Specifically, the quaternion-based method achieves root mean square errors of 0.0101 rad/s, 0.0361 rad/s, and 0.0036 rad/s for the dynamic measurements of roll rate, pitch rate, and yaw rate, respectively. Notably, the method exhibits a 98.08% accuracy for the pitch rate. These results highlight the performance of quaternion-based attitude estimation in dynamic wind tunnel testing. Furthermore, an extended Kalman filter is applied to integrate the generated on-board instrumentation data (inertial measurement unit, potentiometer gimbal) and the results of the proposed vision-based method. The extended Kalman filter state estimation achieves root mean square errors of 0.0090 rad/s, 0.0262 rad/s, and 0.0034 rad/s for the dynamic measurements of roll rate, pitch rate, and yaw rate, respectively. This method exhibits an improved accuracy of 98.61% for the estimation of pitch rate, indicating its higher efficiency over the standalone implementation of the direction cosine method for dynamic wind tunnel testing. Full article
(This article belongs to the Special Issue Sensors in Aircraft (Volume II))
Show Figures

Figure 1

20 pages, 4384 KB  
Article
Finite-Time Attitude Control of Quadrotor Unmanned Aerial Vehicle with Disturbance and Actuator Saturation
by Zheng Zhang, Xingwei Li and Lilian Zhang
Appl. Sci. 2024, 14(9), 3639; https://doi.org/10.3390/app14093639 - 25 Apr 2024
Cited by 2 | Viewed by 1835
Abstract
This paper introduces a nonlinear dynamic inversion control algorithm designed to address unknown disturbances and actuator saturation issues in unmanned aerial vehicle (UAV) attitude control. The algorithm is based on a combination of finite-time disturbance observer and anti-saturation auxiliary system, which ensures the [...] Read more.
This paper introduces a nonlinear dynamic inversion control algorithm designed to address unknown disturbances and actuator saturation issues in unmanned aerial vehicle (UAV) attitude control. The algorithm is based on a combination of finite-time disturbance observer and anti-saturation auxiliary system, which ensures the rapid convergence of attitude tracking error. Firstly, based on the Newton–Euler equations, this paper establishes a model of the attitude system for quadrotor UAVs, and this paper eliminates the small-angle flight assumption. Secondly, considering the actuator saturation problem, an anti-saturation auxiliary control system is designed to shorten the time when the control volume is in the saturation interval and achieve finite-time convergence of the attitude error. And then, to improve the robustness of the controller, this paper proposes a disturbance observer based on the finite-time stability theory, which achieves a continuous smooth output of the observation results by introducing a hyperbolic tangent function in the observer, so that the observation error can be converged to zero in a finite time. Finally, it is demonstrated by Simulink simulation that the attitude error and the observation error converge quickly to zero. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

16 pages, 4264 KB  
Article
An Attitude Adaptive Integral Sliding Mode Control Algorithm with Disturbance Observer for Microsatellites to Track High-Speed Moving Targets
by Xinyan Yang, Lei Li, Yurong Liao and Zhaoming Li
Electronics 2024, 13(9), 1631; https://doi.org/10.3390/electronics13091631 - 24 Apr 2024
Viewed by 1309
Abstract
Gaze tracking of high-speed moving targets is a novel application mode for low Earth orbit microsatellites. In this mode, small satellites are equipped with high-resolution, narrow-field-of-view video cameras for stable gaze-tracking imaging of high-speed moving targets. This paper proposes a high-precision attitude adaptive [...] Read more.
Gaze tracking of high-speed moving targets is a novel application mode for low Earth orbit microsatellites. In this mode, small satellites are equipped with high-resolution, narrow-field-of-view video cameras for stable gaze-tracking imaging of high-speed moving targets. This paper proposes a high-precision attitude adaptive integral sliding mode control method with a feedforward compensation disturbance observer to enhance the capability of a microsatellite attitude control system for gaze tracking of high-speed moving targets. Specifically, first, we present the attitude control system model for microsatellites and the calculation method for the desired attitude of target tracking based on image feedback. Then, an adaptive integral sliding mode attitude control algorithm with a feedforward compensation disturbance observer, which meets the requirements of high-precision tracking control, is designed. The developed algorithm utilizes the disturbance observer to observe the friction torque of the flywheel and compensates for it through feedforward control. It also employs the adaptive integral sliding mode control algorithm to reduce the impact of uncertain disturbances, decrease the steady-state error of the system, and enhance attitude control precision. Simulation experiments demonstrated that the designed disturbance observer can successfully observe the frictional disturbance torque of the flywheel. The attitude Euler angle control precision for high-speed moving target tracking reached 0.03°, and the angular velocity control precision reached 0.005°/s, validating the effectiveness of the proposed approach. Full article
Show Figures

Figure 1

Back to TopTop