Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = Eph/ephrin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1747 KiB  
Article
The Role of Biomarkers in the Early Diagnosis of Gastric Cancer: A Study on CCR5, CCL5, PDGF, and EphA7
by Süleyman Bademler, Berkay Kılıç, Muhammed Üçüncü, Alisan Zirtiloglu and Burak İlhan
Curr. Issues Mol. Biol. 2024, 46(9), 10651-10661; https://doi.org/10.3390/cimb46090632 - 23 Sep 2024
Cited by 1 | Viewed by 1340
Abstract
Despite the use of screening programs, gastric cancer (GC) diagnosis may only be possible at an advanced stage. In this study, we examined the serum levels of C-C chemokine receptor type 5 (CCR5), C-C motif chemokine ligand 5 (CCL5), platelet-derived growth factor (PDGF), [...] Read more.
Despite the use of screening programs, gastric cancer (GC) diagnosis may only be possible at an advanced stage. In this study, we examined the serum levels of C-C chemokine receptor type 5 (CCR5), C-C motif chemokine ligand 5 (CCL5), platelet-derived growth factor (PDGF), and EphrinA7 (EphA7) in patients with gastric carcinoma and healthy controls to investigate the significance and usability of these potential biomarkers in the early diagnosis of GC. The study enrolled 69 GC patients and 40 healthy individuals. CCR5, CCL5, PDGF-BB, and EphA7 levels, which have been identified in the carcinogenesis of many cancers, were measured in the blood samples using the ELISA method. CCR5, CCL5, PDGF-BB, and EphA7 were all correlated with GC diagnosis (CCR5, p < 0.001, r = −0.449; CCL5, p = 0.014, r = −0.234; PDGF-BB, p < 0.001, r = −0.700; EPHA7, p < 0.001, r = −0.617). The serum CCR5, EphA7, and especially the PDGF-BB levels of the patients diagnosed with GC were discovered to be significantly higher compared to the healthy controls. PDGF-BB had the highest positive and negative predictive values when evaluated in ROC analysis to determine its diagnostic significance (cut-off value: 59.8 ng/L; AUC: 0.92 (0.87–0.97)). As far as we know, this is the first study to investigate the potential connection between GC and these four biomarkers. The fact that serum CCR5, CCL5, EphA7, and especially PDGF-BB levels in the patient group were significantly higher compared to healthy controls indicates that they can be used with high accuracy in the early diagnosis of GC. In addition, the levels of CCR5, PDGF-BB, and EphA7 can be used as important indicators to predict the biological behavior and prognosis of GC. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

28 pages, 2387 KiB  
Review
The Clinical Relevance of the EPH/Ephrin Signaling Pathway in Pediatric Solid and Hematologic Malignancies
by Elena Chatzikalil, Ioanna E. Stergiou, Stavros P. Papadakos, Ippokratis Konstantinidis and Stamatios Theocharis
Int. J. Mol. Sci. 2024, 25(7), 3834; https://doi.org/10.3390/ijms25073834 - 29 Mar 2024
Cited by 5 | Viewed by 2961
Abstract
Pediatric neoplasms represent a complex group of malignancies that pose unique challenges in terms of diagnosis, treatment, and understanding of the underlying molecular pathogenetic mechanisms. Erythropoietin-producing hepatocellular receptors (EPHs), the largest family of receptor tyrosine kinases and their membrane-tethered ligands, ephrins, orchestrate short-distance [...] Read more.
Pediatric neoplasms represent a complex group of malignancies that pose unique challenges in terms of diagnosis, treatment, and understanding of the underlying molecular pathogenetic mechanisms. Erythropoietin-producing hepatocellular receptors (EPHs), the largest family of receptor tyrosine kinases and their membrane-tethered ligands, ephrins, orchestrate short-distance cell–cell signaling and are intricately involved in cell-pattern morphogenesis and various developmental processes. Unraveling the role of the EPH/ephrin signaling pathway in the pathophysiology of pediatric neoplasms and its clinical implications can contribute to deciphering the intricate landscape of these malignancies. The bidirectional nature of the EPH/ephrin axis is underscored by emerging evidence revealing its capacity to drive tumorigenesis, fostering cell–cell communication within the tumor microenvironment. In the context of carcinogenesis, the EPH/ephrin signaling pathway prompts a reevaluation of treatment strategies, particularly in pediatric oncology, where the modest progress in survival rates and enduring treatment toxicity necessitate novel approaches. Molecularly targeted agents have emerged as promising alternatives, prompting a shift in focus. Through a nuanced understanding of the pathway’s intricacies, we aim to lay the groundwork for personalized diagnostic and therapeutic strategies, ultimately contributing to improved outcomes for young patients grappling with neoplastic challenges. Full article
Show Figures

Figure 1

42 pages, 2218 KiB  
Review
Diversity of Intercellular Communication Modes: A Cancer Biology Perspective
by Thanzeela Ebrahim, Abdul Shukkur Ebrahim and Mustapha Kandouz
Cells 2024, 13(6), 495; https://doi.org/10.3390/cells13060495 - 12 Mar 2024
Cited by 8 | Viewed by 3978
Abstract
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate [...] Read more.
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell–cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play. Full article
Show Figures

Graphical abstract

22 pages, 2638 KiB  
Review
Homeostatic Regulation of Pro-Angiogenic and Anti-Angiogenic Proteins via Hedgehog, Notch Grid, and Ephrin Signaling in Tibial Dyschondroplasia
by Shah Nawaz, Muhammad Fakhar-e-Alam Kulyar, Quan Mo, Wangyuan Yao, Mudassar Iqbal and Jiakui Li
Animals 2023, 13(24), 3750; https://doi.org/10.3390/ani13243750 - 5 Dec 2023
Cited by 5 | Viewed by 2159
Abstract
Precise coupling of two fundamental mechanisms, chondrogenesis and osteogenesis via angiogenesis, plays a crucial role during rapid proliferation of growth plates, and alteration in their balance might lead to pathogenic conditions. Tibial dyschondroplasia (TD) is characterized by an avascular, non-mineralized, jade-white “cartilaginous wedge” [...] Read more.
Precise coupling of two fundamental mechanisms, chondrogenesis and osteogenesis via angiogenesis, plays a crucial role during rapid proliferation of growth plates, and alteration in their balance might lead to pathogenic conditions. Tibial dyschondroplasia (TD) is characterized by an avascular, non-mineralized, jade-white “cartilaginous wedge” with impaired endochondral ossification and chondrocyte proliferation at the proximal end of a tibial bone in rapidly growing poultry birds. Developing vascular structures are dynamic with cartilage growth and are regulated through homeostatic balance among pro and anti-angiogenic proteins and cytokines. Pro-angiogenic factors involves a wide spectrum of multifactorial mitogens, such as vascular endothelial growth factors (VEGF), platelet-derived growth factors (PDGF), basic fibroblast growth factor (bFGF), placental growth factors, transforming growth factor-β (TGF-β), and TNF-α. Considering their regulatory role via the sonic hedgehog, notch-gridlock, and ephrin-B2/EphB4 pathways and inhibition through anti-angiogenic proteins like angiostatin, endostatin, decoy receptors, vasoinhibin, thrombospondin, PEX, and troponin, their possible role in persisting inflammatory conditions like TD was studied in the current literature review. Balanced apoptosis and angiogenesis are vital for physiological bone growth. Any homeostatic imbalance among apoptotic, angiogenetic, pro-angiogenic, or anti-angiogenic proteins ultimately leads to pathological bone conditions like TD and osteoarthritis. The current review might substantiate solid grounds for developing innovative therapeutics for diseases governed by the disproportion of angiogenesis and anti-angiogenesis proteins. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

12 pages, 2367 KiB  
Article
A Pharmacological Investigation of Eph-Ephrin Antagonism in Prostate Cancer: UniPR1331 Efficacy Evidence
by Claudio Festuccia, Miriam Corrado, Alessandra Rossetti, Riccardo Castelli, Alessio Lodola, Giovanni Luca Gravina, Massimiliano Tognolini and Carmine Giorgio
Pharmaceuticals 2023, 16(10), 1452; https://doi.org/10.3390/ph16101452 - 13 Oct 2023
Cited by 1 | Viewed by 1920
Abstract
The Eph kinases are the largest receptor tyrosine kinases (RTKs) family in humans. PC3 human prostate adenocarcinoma cells are a well-established model for studying Eph–ephrin pharmacology as they naturally express a high level of EphA2, a promising target for new cancer therapies. A [...] Read more.
The Eph kinases are the largest receptor tyrosine kinases (RTKs) family in humans. PC3 human prostate adenocarcinoma cells are a well-established model for studying Eph–ephrin pharmacology as they naturally express a high level of EphA2, a promising target for new cancer therapies. A pharmacological approach with agonists did not show significant efficacy on tumor growth in prostate orthotopic murine models, but reduced distal metastasis formation. In order to improve the comprehension of the pharmacological targeting of Eph receptors in prostate cancer, in the present work, we investigated the efficacy of Eph antagonism both in vitro and in vivo, using UniPR1331, a small orally bioavailable Eph–ephrin interaction inhibitor. UniPR1331 was able to inhibit PC3 cells’ growth in vitro in a dose-dependent manner, affecting the cell cycle and inducing apoptosis. Moreover, UniPR1331 promoted the PC3 epithelial phenotype, downregulating epithelial mesenchymal transition (EMT) markers. As a consequence, UniPR1331 reduced in vitro PC3 migration, invasion, and vasculomimicry capabilities. The antitumor activity of UniPR1331 was confirmed in vivo when administered alone or in combination with cytotoxic drugs in PC3-xenograft mice. Our results demonstrated that Eph antagonism is a promising strategy for inhibiting prostate cancer growth, especially in combination with cytotoxic drugs. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

26 pages, 1699 KiB  
Review
EPH/Ephrin Signaling in Normal Hematopoiesis and Hematologic Malignancies: Deciphering Their Intricate Role and Unraveling Possible New Therapeutic Targets
by Ioanna E. Stergiou, Stavros P. Papadakos, Anna Karyda, Ourania E. Tsitsilonis, Meletios-Athanasios Dimopoulos and Stamatios Theocharis
Cancers 2023, 15(15), 3963; https://doi.org/10.3390/cancers15153963 - 4 Aug 2023
Cited by 4 | Viewed by 2595
Abstract
Erythropoietin-producing hepatocellular carcinoma receptors (EPHs) represent the largest family of receptor tyrosine kinases (RTKs). EPH interaction with ephrins, their membrane-bound ligands, holds a pivotal role in embryonic development, while, though less active, it is also implicated in various physiological functions during adult life. [...] Read more.
Erythropoietin-producing hepatocellular carcinoma receptors (EPHs) represent the largest family of receptor tyrosine kinases (RTKs). EPH interaction with ephrins, their membrane-bound ligands, holds a pivotal role in embryonic development, while, though less active, it is also implicated in various physiological functions during adult life. In normal hematopoiesis, different patterns of EPH/ephrin expression have been correlated with hematopoietic stem cell (HSC) maintenance and lineage-committed hematopoietic progenitor cell (HPC) differentiation, as well as with the functional properties of their mature offspring. Research in the field of hematologic malignancies has unveiled a rather complex involvement of the EPH/ephrinsignaling pathway in the pathophysiology of these neoplasms. Aberrations in genetic, epigenetic, and protein levels have been identified as possible players implicated both in tumor progression and suppression, while correlations have also been highlighted regarding prognosis and response to treatment. Initial efforts to therapeutically target the EPH/ephrin axis have been undertaken in the setting of hematologic neoplasia but are mainly confined to the preclinical level. To this end, deciphering the complexity of this signaling pathway both in normal and malignant hematopoiesis is necessary. Full article
(This article belongs to the Special Issue Hematologic Malignancies: Challenges from Diagnosis to Treatment)
Show Figures

Graphical abstract

20 pages, 807 KiB  
Review
Chimeric Antigen Receptor T Cells in Glioblastoma—Current Concepts and Promising Future
by Rebecca Kringel, Katrin Lamszus and Malte Mohme
Cells 2023, 12(13), 1770; https://doi.org/10.3390/cells12131770 - 3 Jul 2023
Cited by 21 | Viewed by 3331
Abstract
Glioblastoma (GBM) is a highly aggressive primary brain tumor that is largely refractory to treatment and, therefore, invariably relapses. GBM patients have a median overall survival of 15 months and, given this devastating prognosis, there is a high need for therapy improvement. One [...] Read more.
Glioblastoma (GBM) is a highly aggressive primary brain tumor that is largely refractory to treatment and, therefore, invariably relapses. GBM patients have a median overall survival of 15 months and, given this devastating prognosis, there is a high need for therapy improvement. One of the therapeutic approaches currently tested in GBM is chimeric antigen receptor (CAR)-T cell therapy. CAR-T cells are genetically altered T cells that are redirected to eliminate tumor cells in a highly specific manner. There are several challenges to CAR-T cell therapy in solid tumors such as GBM, including restricted trafficking and penetration of tumor tissue, a highly immunosuppressive tumor microenvironment (TME), as well as heterogeneous antigen expression and antigen loss. In addition, CAR-T cells have limitations concerning safety, toxicity, and the manufacturing process. To date, CAR-T cells directed against several target antigens in GBM including interleukin-13 receptor alpha 2 (IL-13Rα2), epidermal growth factor receptor variant III (EGFRvIII), human epidermal growth factor receptor 2 (HER2), and ephrin type-A receptor 2 (EphA2) have been tested in preclinical and clinical studies. These studies demonstrated that CAR-T cell therapy is a feasible option in GBM with at least transient responses and acceptable adverse effects. Further improvements in CAR-T cells regarding their efficacy, flexibility, and safety could render them a promising therapy option in GBM. Full article
(This article belongs to the Special Issue Cell Death Mechanisms and Therapeutic Opportunities in Glioblastoma)
Show Figures

Figure 1

25 pages, 1501 KiB  
Review
Unraveling the Significance of EPH/Ephrin Signaling in Liver Cancer: Insights into Tumor Progression and Therapeutic Implications
by Stavros P. Papadakos, Ioanna E. Stergiou, Nikolina Gkolemi, Konstantinos Arvanitakis and Stamatios Theocharis
Cancers 2023, 15(13), 3434; https://doi.org/10.3390/cancers15133434 - 30 Jun 2023
Cited by 11 | Viewed by 2886
Abstract
Liver cancer is a complex and challenging disease with limited treatment options and dismal prognosis. Understanding the underlying molecular mechanisms driving liver cancer progression and metastasis is crucial for developing effective therapeutic strategies. The EPH/ephrin system, which comprises a family of cell surface [...] Read more.
Liver cancer is a complex and challenging disease with limited treatment options and dismal prognosis. Understanding the underlying molecular mechanisms driving liver cancer progression and metastasis is crucial for developing effective therapeutic strategies. The EPH/ephrin system, which comprises a family of cell surface receptors and their corresponding ligands, has been implicated in the pathogenesis of HCC. This review paper aims to provide an overview of the current understanding of the role of the EPH/ephrin system in HCC. Specifically, we discuss the dysregulation of EPH/ephrin signaling in HCC and its impact on various cellular processes, including cell proliferation, migration, and invasion. Overall, the EPH/ephrin signaling system emerges as a compelling and multifaceted player in liver cancer biology. Elucidating its precise mechanisms and understanding its implications in disease progression and therapeutic responses may pave the way for novel targeted therapies and personalized treatment approaches for liver cancer patients. Further research is warranted to unravel the full potential of the EPH/ephrin system in liver cancer and its clinical translation. Full article
(This article belongs to the Special Issue Novel Therapies for Gastrointestinal Cancers)
Show Figures

Figure 1

19 pages, 1063 KiB  
Review
Interactions between Guidance Cues and Neuronal Activity: Therapeutic Insights from Mouse Models
by Maitri Tomar, Jamie Beros, Bruno Meloni and Jennifer Rodger
Int. J. Mol. Sci. 2023, 24(8), 6966; https://doi.org/10.3390/ijms24086966 - 9 Apr 2023
Cited by 1 | Viewed by 2979
Abstract
Topographic mapping of neural circuits is fundamental in shaping the structural and functional organization of brain regions. This developmentally important process is crucial not only for the representation of different sensory inputs but also for their integration. Disruption of topographic organization has been [...] Read more.
Topographic mapping of neural circuits is fundamental in shaping the structural and functional organization of brain regions. This developmentally important process is crucial not only for the representation of different sensory inputs but also for their integration. Disruption of topographic organization has been associated with several neurodevelopmental disorders. The aim of this review is to highlight the mechanisms involved in creating and refining such well-defined maps in the brain with a focus on the Eph and ephrin families of axon guidance cues. We first describe the transgenic models where ephrin-A expression has been manipulated to understand the role of these guidance cues in defining topography in various sensory systems. We further describe the behavioral consequences of lacking ephrin-A guidance cues in these animal models. These studies have given us unexpected insight into how neuronal activity is equally important in refining neural circuits in different brain regions. We conclude the review by discussing studies that have used treatments such as repetitive transcranial magnetic stimulation (rTMS) to manipulate activity in the brain to compensate for the lack of guidance cues in ephrin-knockout animal models. We describe how rTMS could have therapeutic relevance in neurodevelopmental disorders with disrupted brain organization. Full article
(This article belongs to the Special Issue Novel Therapeutic Approaches for Neural Repair)
Show Figures

Figure 1

14 pages, 1945 KiB  
Article
The Therapeutic Effects of EFNB2-Fc in a Cell Model of Kawasaki Disease
by Yijing Tao, Wei Wang, Yihua Jin, Min Wang, Jiawen Xu, Yujia Wang and Fangqi Gong
Pharmaceuticals 2023, 16(4), 500; https://doi.org/10.3390/ph16040500 - 28 Mar 2023
Cited by 2 | Viewed by 2018
Abstract
The EphrinB2/EphB4 signaling pathway involves the regulation of vascular morphogenesis and angiogenesis. However, little is known about EphrinB2/EphB4 in the pathogenesis of Kawasaki disease (KD) and coronary artery aneurysm formation. Hence, this study aimed to explore the role of EphrinB2/EphB4 and the potential [...] Read more.
The EphrinB2/EphB4 signaling pathway involves the regulation of vascular morphogenesis and angiogenesis. However, little is known about EphrinB2/EphB4 in the pathogenesis of Kawasaki disease (KD) and coronary artery aneurysm formation. Hence, this study aimed to explore the role of EphrinB2/EphB4 and the potential therapeutic effect of EphrinB2-Fc in the coronary arterial endothelial injury of KD. The levels of EphB4 were compared between KD patients and healthy children. Human coronary artery endothelial cells (HCAECs) were stimulated with sera from acute KD patients to establish the KD cell model. The overexpression of EphB4 or treatment with EphrinB2-Fc was found to intervene in the cell model. The cell migration, angiogenesis, and proliferation ability were assessed, and the expression of inflammation-related factors was measured. Our study showed that EphB4 showed low expression in both KD patients and the cell model of KD. The EphB4 protein levels in the CECs of CAA+ KD patients were much lower than those in healthy children. EphrinB2-Fc treatment of KD sera-activated HCAECs suppressed cell proliferation, reduced the expression of inflammation-related factors (such as IL-6 and P-selectin), and elevated cell angiogenesis ability. The results reveal that EphrinB2-Fc has a protective function in endothelial cells and has promising clinical applications for protecting vascular endothelium in patients with KD. Full article
(This article belongs to the Special Issue EPH and Ephrins in Pathogenesis and as Drug Target)
Show Figures

Figure 1

21 pages, 3437 KiB  
Article
Identification of Myelin Basic Protein Proximity Interactome Using TurboID Labeling Proteomics
by Evgeniya V. Smirnova, Tatiana V. Rakitina, Rustam H. Ziganshin, George A. Saratov, Georgij P. Arapidi, Alexey A. Belogurov and Anna A. Kudriaeva
Cells 2023, 12(6), 944; https://doi.org/10.3390/cells12060944 - 20 Mar 2023
Cited by 5 | Viewed by 5449
Abstract
Myelin basic protein (MBP) is one of the key structural elements of the myelin sheath and has autoantigenic properties in multiple sclerosis (MS). Its intracellular interaction network is still partially deconvoluted due to the unfolded structure, abnormally basic charge, and specific cellular localization. [...] Read more.
Myelin basic protein (MBP) is one of the key structural elements of the myelin sheath and has autoantigenic properties in multiple sclerosis (MS). Its intracellular interaction network is still partially deconvoluted due to the unfolded structure, abnormally basic charge, and specific cellular localization. Here we used the fusion protein of MBP with TurboID, an engineered biotin ligase that uses ATP to convert biotin to reactive biotin-AMP that covalently attaches to nearby proteins, to determine MBP interactome. Despite evident benefits, the proximity labeling proteomics technique generates high background noise, especially in the case of proteins tending to semi-specific interactions. In order to recognize unique MBP partners, we additionally mapped protein interaction networks for deaminated MBP variant and cyclin-dependent kinase inhibitor 1 (p21), mimicking MBP in terms of natively unfolded state, size and basic amino acid clusters. We found that in the plasma membrane region, MBP is colocalized with adhesion proteins occludin and myelin protein zero-like protein 1, solute carrier family transporters ZIP6 and SNAT1, Eph receptors ligand Ephrin-B1, and structural components of the vesicle transport machinery—synaptosomal-associated protein 23 (SNAP23), vesicle-associated membrane protein 3 (VAMP3), protein transport protein hSec23B and cytoplasmic dynein 1 heavy chain 1. We also detected that MBP potentially interacts with proteins involved in Fe2+ and lipid metabolism, namely, ganglioside GM2 activator protein, long-chain-fatty-acid-CoA ligase 4 (ACSL4), NADH-cytochrome b5 reductase 1 (CYB5R1) and metalloreductase STEAP3. Assuming the emerging role of ferroptosis and vesicle cargo docking in the development of autoimmune neurodegeneration, MBP may recruit and regulate the activity of these processes, thus, having a more inclusive role in the integrity of the myelin sheath. Full article
(This article belongs to the Special Issue Proteomic Applications in Ageing and Neurodegenerative Conditions)
Show Figures

Figure 1

10 pages, 2870 KiB  
Article
The EphA1 and EphA2 Signaling Modulates the Epithelial Permeability in Human Sinonasal Epithelial Cells and the Rhinovirus Infection Induces Epithelial Barrier Dysfunction via EphA2 Receptor Signaling
by Jae Min Shin, Moon Soo Han, Jae Hyung Park, Seung Hyeok Lee, Tae Hoon Kim and Sang Hag Lee
Int. J. Mol. Sci. 2023, 24(4), 3629; https://doi.org/10.3390/ijms24043629 - 11 Feb 2023
Cited by 5 | Viewed by 2157
Abstract
Deficiencies in epithelial barrier integrity are involved in the pathogenesis of chronic rhinosinusitis (CRS). This study aimed to investigate the role of ephrinA1/ephA2 signaling on sinonasal epithelial permeability and rhinovirus-induced epithelial permeability. This role in the process of epithelial permeability was evaluated by [...] Read more.
Deficiencies in epithelial barrier integrity are involved in the pathogenesis of chronic rhinosinusitis (CRS). This study aimed to investigate the role of ephrinA1/ephA2 signaling on sinonasal epithelial permeability and rhinovirus-induced epithelial permeability. This role in the process of epithelial permeability was evaluated by stimulating ephA2 with ephrinA1 and inactivating ephA2 with ephA2 siRNA or inhibitor in cells exposed to rhinovirus infection. EphrinA1 treatment increased epithelial permeability, which was associated with decreased expression of ZO-1, ZO-2, and occludin. These effects of ephrinA1 were attenuated by blocking the action of ephA2 with ephA2 siRNA or inhibitor. Furthermore, rhinovirus infection upregulated the expression levels of ephrinA1 and ephA2, increasing epithelial permeability, which was suppressed in ephA2-deficient cells. These results suggest a novel role of ephrinA1/ephA2 signaling in epithelial barrier integrity in the sinonasal epithelium, suggesting their participation in rhinovirus-induced epithelial dysfunction. Full article
(This article belongs to the Special Issue Innate Immune Cell Effector Responses)
Show Figures

Graphical abstract

13 pages, 1005 KiB  
Review
The EPH/Ephrin System in Pancreatic Ductal Adenocarcinoma (PDAC): From Pathogenesis to Treatment
by Stavros P. Papadakos, Nikolaos Dedes, Nikolina Gkolemi, Nikolaos Machairas and Stamatios Theocharis
Int. J. Mol. Sci. 2023, 24(3), 3015; https://doi.org/10.3390/ijms24033015 - 3 Feb 2023
Cited by 11 | Viewed by 3314
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a major concern for health care systems worldwide, since its mortality remains unaltered despite the surge in cutting-edge science. The EPH/ephrin signaling system was first investigated in the 1980s. EPH/ephrins have been shown to exert bidirectional signaling and [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is a major concern for health care systems worldwide, since its mortality remains unaltered despite the surge in cutting-edge science. The EPH/ephrin signaling system was first investigated in the 1980s. EPH/ephrins have been shown to exert bidirectional signaling and cell-to-cell communication, influencing cellular morphology, adhesion, migration and invasion. Recent studies have highlighted the critical role of the EPH/ephrin system in various physiologic processes, including cellular proliferation, survival, synaptic plasticity and angiogenesis. Thus, it has become evident that the EPH/ephrin signaling system may have compelling effects on cell homeostasis that contribute to carcinogenesis. In particular, the EPH/ephrins have an impact on pancreatic morphogenesis and development, whereas several EPHs and ephrins are altered in PDAC. Several clinical and preclinical studies have attempted to elucidate the effects of the EPH/ephrin pathway, with multilayered effects on PDAC development. These studies have highlighted its highly promising role in the diagnosis, prognosis and therapeutic management of PDAC. The aim of this review is to explore the obscure aspects of the EPH/ephrin system concerning the development, physiology and homeostasis of the pancreas. Full article
(This article belongs to the Special Issue Ephrin Receptors and Cancer 2.0)
Show Figures

Figure 1

24 pages, 1659 KiB  
Review
Eph Receptors in Cancer
by Sakshi Arora, Andrew M. Scott and Peter W. Janes
Biomedicines 2023, 11(2), 315; https://doi.org/10.3390/biomedicines11020315 - 23 Jan 2023
Cited by 27 | Viewed by 4184
Abstract
Eph receptor tyrosine kinases play critical functions during development, in the formation of tissue and organ borders, and the vascular and neural systems. Uniquely among tyrosine kinases, their activities are controlled by binding to membrane-bound ligands, called ephrins. Ephs and ephrins generally have [...] Read more.
Eph receptor tyrosine kinases play critical functions during development, in the formation of tissue and organ borders, and the vascular and neural systems. Uniquely among tyrosine kinases, their activities are controlled by binding to membrane-bound ligands, called ephrins. Ephs and ephrins generally have a low expression in adults, functioning mainly in tissue homeostasis and plasticity, but are often overexpressed in cancers, where they are especially associated with undifferentiated or progenitor cells, and with tumour development, vasculature, and invasion. Mutations in Eph receptors also occur in various tumour types and are suspected to promote tumourigenesis. Ephs and ephrins have the capacity to operate as both tumour promoters and tumour suppressors, depending on the circumstances. They have been demonstrated to impact tumour cell proliferation, migration, and invasion in vitro, as well as tumour development, angiogenesis, and metastases in vivo, making them potential therapeutic targets. However, successful development of therapies will require detailed understanding of the opposing roles of Ephs in various cancers. In this review, we discuss the variations in Eph expression and functions in a variety of malignancies. We also describe the multiple strategies that are currently available to target them in tumours, including preclinical and clinical development. Full article
Show Figures

Figure 1

10 pages, 1549 KiB  
Article
Cannabigerol Activates Cytoskeletal Remodeling via Wnt/PCP in NSC-34: An In Vitro Transcriptional Study
by Ivan Anchesi, Federica Betto, Luigi Chiricosta, Agnese Gugliandolo, Federica Pollastro, Stefano Salamone and Emanuela Mazzon
Plants 2023, 12(1), 193; https://doi.org/10.3390/plants12010193 - 3 Jan 2023
Viewed by 2895
Abstract
Cannabigerol (CBG) is a non-psychoactive phytocannabinoid present in the Cannabis sativa L. plant. In our study, CBG at the concentration of 10 µM was used to treat NSC-34 motor neuron-like cells. The aim of the study was to evaluate the effects of CBG [...] Read more.
Cannabigerol (CBG) is a non-psychoactive phytocannabinoid present in the Cannabis sativa L. plant. In our study, CBG at the concentration of 10 µM was used to treat NSC-34 motor neuron-like cells. The aim of the study was to evaluate the effects of CBG on NSC-34 cells, using next-generation sequencing (NGS) technology. Analysis showed the activation of the WNT/planar cell polarity (PCP) pathway and Ephrin-Eph signaling. The results revealed that CBG increases the expression of genes associated with the onset process of cytoskeletal remodeling and axon guidance. Full article
(This article belongs to the Special Issue Studies on Cannabis sativa and Cannabinoids)
Show Figures

Figure 1

Back to TopTop