Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = EBG (Electromagnetic Band Gap)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6269 KiB  
Article
Miniaturized EBG Antenna for Efficient 5.8 GHz RF Energy Harvesting in Self-Powered IoT and Medical Sensors
by Yahya Albaihani, Rizwan Akram, Abdullah. M. Almohaimeed, Ziyad M. Almohaimeed, Lukman O. Buhari and Mahmoud Shaban
Sensors 2025, 25(15), 4777; https://doi.org/10.3390/s25154777 - 3 Aug 2025
Viewed by 264
Abstract
This study presents a compact and high-efficiency microstrip antenna integrated with a square electromagnetic band-gap (EBG) structure for radio frequency energy harvesting to power battery-less Internet of Things (IoT) sensors and medical devices in the 5.8 GHz Industrial, Scientific, and Medical (ISM) band. [...] Read more.
This study presents a compact and high-efficiency microstrip antenna integrated with a square electromagnetic band-gap (EBG) structure for radio frequency energy harvesting to power battery-less Internet of Things (IoT) sensors and medical devices in the 5.8 GHz Industrial, Scientific, and Medical (ISM) band. The proposed antenna features a compact design with reduced physical dimensions of 36 × 40 mm2 (0.69λo × 0.76λo) while providing high-performance parameters such as a reflection coefficient of −27.9 dB, a voltage standing wave ratio (VSWR) of 1.08, a gain of 7.91 dBi, directivity of 8.1 dBi, a bandwidth of 188 MHz, and radiation efficiency of 95.5%. Incorporating EBG cells suppresses surface waves, enhances gain, and optimizes impedance matching through 50 Ω inset feeding. The simulated and measured results of the designed antenna show a high correlation. This study demonstrates a robust and promising solution for high-performance wireless systems requiring a compact size and energy-efficient operation. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

18 pages, 4955 KiB  
Article
Design of a High-Gain X-Band Electromagnetic Band Gap Microstrip Patch Antenna for CubeSat Applications
by Linh Phuong Ta, Daisuke Nakayama and Miyuki Hirose
Electronics 2025, 14(11), 2216; https://doi.org/10.3390/electronics14112216 - 29 May 2025
Viewed by 467
Abstract
Microstrip patch antennas (MPAs) are widely used in satellite communication due to their low profile, compact size, and ease of fabrication. This paper presents a design of an X-band microstrip patch antenna using an electromagnetic band gap (EBG) structure for CubeSat applications. The [...] Read more.
Microstrip patch antennas (MPAs) are widely used in satellite communication due to their low profile, compact size, and ease of fabrication. This paper presents a design of an X-band microstrip patch antenna using an electromagnetic band gap (EBG) structure for CubeSat applications. The X-band is preferred for CubeSat missions in high-speed communication, long distance or deep space because it allows communication at higher data rates, and the antenna is smaller than those used for lower frequency bands. In our study, the EBG elements are analyzed, modified and optimized so that the antenna can fit a 10 cm × 10 cm surface area of a standard 3U CubeSat structure while providing a significant high gain and circular polarization (CP). A noticeable point of this research is that the simplicity of the antenna and the EBG structure are being maintained by just using a simple single-probe feed to achieve a total antenna efficiency exceeding 90%, and the measured gain of around 11.7 dBi at the desired frequency of 8.483 GHz. Furthermore, the measured axial ratio (AR) is around 1.4 dB at 8.483 GHz, which satisfied the lower-than-3 dB requirement for CP antennas in general. The simulation, analysis and measured results are discussed in detail. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Graphical abstract

31 pages, 3762 KiB  
Review
A Comprehensive Review and Analysis of the Design Aspects, Structure, and Applications of Flexible Wearable Antennas
by Sunaina Singh, Ranjan Mishra, Ankush Kapoor and Soni Singh
Telecom 2025, 6(1), 3; https://doi.org/10.3390/telecom6010003 - 3 Jan 2025
Cited by 5 | Viewed by 2673
Abstract
This review provides a comprehensive analysis of the design, materials, fabrication techniques, and applications of flexible wearable antennas, with a primary focus on their roles in Wireless Body Area Networks (WBANs) and healthcare technologies. Wearable antennas are increasingly vital for applications that require [...] Read more.
This review provides a comprehensive analysis of the design, materials, fabrication techniques, and applications of flexible wearable antennas, with a primary focus on their roles in Wireless Body Area Networks (WBANs) and healthcare technologies. Wearable antennas are increasingly vital for applications that require seamless integration with the human body while maintaining optimal performance under deformation and environmental stress. Return loss, gain, bandwidth, efficiency, and the SAR are some of the most important parameters that define the performance of an antenna. Their interactions with human tissues are also studied in greater detail. Such studies are essential to ensure that wearable and body-centric communication systems perform optimally, remain safe, and are in compliance with regulatory standards. Advanced materials, including textiles, polymers, and conductive composites, are analyzed for their electromagnetic properties and mechanical resilience. This study also explores innovative fabrication techniques, such as inkjet printing, screen printing, and embroidery, which enable scalable and cost-effective production. Additionally, solutions for SAR optimization, including the use of metamaterials, electromagnetic band gap (EBG) structures, and frequency-selective surfaces (FSSs), are discussed. This review highlights the transformative potential of wearable antennas in healthcare, the IoT, and next-generation communication systems, emphasizing their adaptability for real-time monitoring and advanced wireless technologies, such as 5G and 6G. The integration of energy harvesting, biocompatible materials, and sustainable manufacturing processes is identified as a future direction, paving the way for wearable antennas to become integral to the evolution of smart healthcare and connected systems. Full article
Show Figures

Figure 1

12 pages, 4991 KiB  
Article
A 77 GHz Transmit Array for In-Package Automotive Radar Applications
by Francesco Greco, Emilio Arnieri, Giandomenico Amendola, Raffaele De Marco and Luigi Boccia
Telecom 2024, 5(3), 792-803; https://doi.org/10.3390/telecom5030040 - 14 Aug 2024
Viewed by 2405
Abstract
A packaged transmit array (TA) antenna is designed for automotive radar applications operating at 77 GHz. The compact dimensions of the proposed configuration make it compatible with standard quad flat no-lead package (QFN) technology. The TA placed inside the package cover is used [...] Read more.
A packaged transmit array (TA) antenna is designed for automotive radar applications operating at 77 GHz. The compact dimensions of the proposed configuration make it compatible with standard quad flat no-lead package (QFN) technology. The TA placed inside the package cover is used to focus the field radiated by a feed placed in the same package. The unit cell of the array is composed of two pairs of stacked patches separated by a central ground plane. A planar patch antenna surrounded by a mushroom-type EBG (Electromagnetic Band Gap) structure is used as the primary feed. An analytical approach is employed to evaluate the primary parameters of the suggested TA, including its directivity, gain and spillover efficiency. The final design has been refined using comprehensive full-wave simulations. The simulated gain is 14.2 dBi at 77 GHz, with a half-power beamwidth of 22°. This proposed setup is a strong contender for highly integrated mid-gain applications in the automotive sector. Full article
Show Figures

Figure 1

20 pages, 11618 KiB  
Article
MmWave Tx-Rx Self-Interference Suppression through a High Impedance Surface Stacked EBG
by Adewale K. Oladeinde, Ehsan Aryafar and Branimir Pejcinovic
Electronics 2024, 13(15), 3067; https://doi.org/10.3390/electronics13153067 - 2 Aug 2024
Viewed by 1538
Abstract
This paper proposes a full-duplex (FD) antenna design with passive self-interference (SI) suppression for the 28 GHz mmWave band. The reduction in SI is achieved through the design of a novel configuration of stacked Electromagnetic Band Gap structures (EBGs), which create a high [...] Read more.
This paper proposes a full-duplex (FD) antenna design with passive self-interference (SI) suppression for the 28 GHz mmWave band. The reduction in SI is achieved through the design of a novel configuration of stacked Electromagnetic Band Gap structures (EBGs), which create a high impedance path to travelling electromagnetic waves between the transmit and receive antenna elements. The EBG is composed of stacked patches on layers 1 and 2 of a four-layer stack-up configuration. We present the design, optimization, and prototyping of unit antenna elements, stacked EBGs, and integration of stacked EBGs with antenna elements. We also evaluate the design through both HFSS (High Frequency Structure Simulator) and over-the-air measurements in an anechoic chamber. Through extensive evaluations, we show that (i) compared to an architecture that does not use EBGs, the proposed novel stacked EBG design provides an average of 25 dB of additional reduction in SI over 1 GHz of bandwidth, (ii) unit antenna element has over 1 GHz of bandwidth at −10 dB return loss, and (iii) HFSS simulations show close correlation with actual measurement results; however, measured results could still be several dB lower or higher than predicted simulation results. For example, the gap between simulated and measured antenna gains is less than 1 dB for 26–28 GHz and 28.5–30 GHz frequencies, but almost 3 dB for 28–28.5 GHz frequency band. Full article
(This article belongs to the Special Issue Antenna Design and Its Applications)
Show Figures

Figure 1

15 pages, 13763 KiB  
Article
A Design Method and Application of Meta-Surface-Based Arbitrary Passband Filter for Terahertz Communication
by Da Hou, Lihui Wang, Qiuhua Lin, Xiaodong Xu, Yin Li, Zhiyong Luo and Hao Chen
Sensors 2024, 24(4), 1291; https://doi.org/10.3390/s24041291 - 17 Feb 2024
Cited by 2 | Viewed by 1805
Abstract
A meta-surface-based arbitrary bandwidth filter realization method for terahertz (THz) future communications is presented. The approach involves integrating a meta-surface-based bandstop filter into an ultra-wideband (UWB) bandpass filter and adjusting the operating frequency range of the meta-surface bandstop filter to realize the design [...] Read more.
A meta-surface-based arbitrary bandwidth filter realization method for terahertz (THz) future communications is presented. The approach involves integrating a meta-surface-based bandstop filter into an ultra-wideband (UWB) bandpass filter and adjusting the operating frequency range of the meta-surface bandstop filter to realize the design of arbitrary bandwidth filters. It effectively addresses the complexity of designing traditional arbitrary bandwidth filters and the challenges in achieving impedance matching. To underscore its practicality, the paper employs silicon substrate integrated gap waveguide (SSIGW) and this method to craft a THz filter. To begin, design equations for electromagnetic band gap (EBG) structures were developed in accordance with the requirements of through-silicon via (TSV) and applied to the design of the SSIGW. Subsequently, this article employs equivalent transmission line models and equivalent circuits to conduct theoretical analyses for both the UWB passband and the meta-surface stopband portions. The proposed THz filter boasts a center frequency of 0.151 THz, a relative bandwidth of 6.9%, insertion loss below 0.68 dB, and stopbands exceeding 20 GHz in both upper and lower ranges. The in-band group delay is 0.119 ± 0.048 ns. Compared to reported THz filters, the SSIGW filter boasts advantages such as low loss and minimal delay, making it even more suitable for future wireless communication. Full article
(This article belongs to the Special Issue Millimeter-Wave Antennas for 5G)
Show Figures

Figure 1

13 pages, 16250 KiB  
Article
Broadband Continuous Transverse Stub (CTS) Array Antenna for High-Power Applications
by Yunfei Sun, Kelin Zhou, Juntao He, Zihan Yang, Chengwei Yuan and Qiang Zhang
Micromachines 2023, 14(11), 2127; https://doi.org/10.3390/mi14112127 - 20 Nov 2023
Viewed by 2195
Abstract
A continuous transverse stub (CTS) array antenna with broad bandwidth and high-power handling capacity is proposed in this paper. The technologies of multi-step impedance matching and T-shaped electromagnetic band-gap (EBG) loading are utilized, which improved the antenna operating frequency bandwidth. An H-plane lens [...] Read more.
A continuous transverse stub (CTS) array antenna with broad bandwidth and high-power handling capacity is proposed in this paper. The technologies of multi-step impedance matching and T-shaped electromagnetic band-gap (EBG) loading are utilized, which improved the antenna operating frequency bandwidth. An H-plane lens horn is used to feed the CTS array. As a result, a good bandwidth capability of more than 32% is achieved, with a gain variation less than 3.0 dB. The measured sidelobe level (SLL) is below −18 dB in the entire frequency range. Moreover, the power handling capacity of the antenna is more than 80 MW and can reach the GW level after arraying, which indicates that this antenna has application potential in the high-power microwave (HPM) field. Full article
(This article belongs to the Special Issue Microwave Passive Components, 2nd Edition)
Show Figures

Figure 1

15 pages, 3714 KiB  
Article
A High Performance All-Textile Wearable Antenna for Wristband Application
by Asma Ejaz, Iqra Jabeen, Zia Ullah Khan, Akram Alomainy, Khaled Aljaloud, Ali H. Alqahtani, Niamat Hussain, Rifaqat Hussain and Yasar Amin
Micromachines 2023, 14(6), 1169; https://doi.org/10.3390/mi14061169 - 31 May 2023
Cited by 22 | Viewed by 4054
Abstract
A compact, conformal, all-textile wearable antenna is proposed in this paper for the 2.45 GHz ISM (Industrial, Scientific and Medical) band. The integrated design consists of a monopole radiator backed by a 2 × 1 Electromagnetic Band Gap (EBG) array, resulting in a [...] Read more.
A compact, conformal, all-textile wearable antenna is proposed in this paper for the 2.45 GHz ISM (Industrial, Scientific and Medical) band. The integrated design consists of a monopole radiator backed by a 2 × 1 Electromagnetic Band Gap (EBG) array, resulting in a small form factor suitable for wristband applications. An EBG unit cell is optimized to work in the desired operating band, the results of which are further explored to achieve bandwidth maximization via floating EBG ground. A monopole radiator is made to work in association with the EBG layer to produce the resonance in the ISM band with plausible radiation characteristics. The fabricated design is tested for free space performance analysis and subjected to human body loading. The proposed antenna design achieves bandwidth of 2.39 GHz to 2.54 GHz with a compact footprint of 35.4 × 82.4 mm2. The experimental investigations reveal that the reported design adequately retains its performance while operating in close proximity to human beings. The presented Specific Absorption Rate (SAR) analysis reveals 0.297 W/kg calculated at 0.5 W input power, which certifies that the proposed antenna is safe for use in wearable devices. Full article
Show Figures

Figure 1

21 pages, 3726 KiB  
Article
Triple-Band Notched Ultra-Wideband Microstrip MIMO Antenna with Bluetooth Band
by Mohamed S. El-Gendy, Mohamed Mamdouh M. Ali, Ernesto Bautista Thompson and Imran Ashraf
Sensors 2023, 23(9), 4475; https://doi.org/10.3390/s23094475 - 4 May 2023
Cited by 9 | Viewed by 2583
Abstract
In this paper, a novel ultra-wideband UWB antenna element with triple-band notches is proposed. The proposed UWB radiator element operates from 2.03 GHz up to 15.04 GHz with triple rejected bands at the WiMAX band (3.28–3.8 GHz), WLAN band (5.05–5.9 GHz), and X-band [...] Read more.
In this paper, a novel ultra-wideband UWB antenna element with triple-band notches is proposed. The proposed UWB radiator element operates from 2.03 GHz up to 15.04 GHz with triple rejected bands at the WiMAX band (3.28–3.8 GHz), WLAN band (5.05–5.9 GHz), and X-band (7.78–8.51 GHz). In addition, the radiator supports the Bluetooth band (2.4–2.483 GHz). Three different techniques were utilized to obtain the triple-band notches. An alpha-shaped coupled line with a stub-loaded resonator (SLR) band stop filter was inserted along the main feeding line before the radiator to obtain a WiMAX band notch characteristic. Two identical U-shaped slots were etched on the proposed UWB radiator to achieve WLAN band notch characteristics with a very high degree of selectivity. Two identical metallic frames of an octagon-shaped electromagnetic band gap structure (EBG) were placed along the main feeding line to achieve the notch characteristic with X-band satellite communication with high sharpness edges. A novel UWB multiple-input multiple-output (MIMO) radiator is proposed. The proposed UWB-MIMO radiator was fabricated on FR-4 substrate material and measured. The isolation between every two adjacent ports was below −20 dB over the FCC-UWB spectrum and the Bluetooth band for the four MIMO antennas. The envelope correlation coefficient (ECC) between the proposed antennas in MIMO does not exceed 0.05. The diversity gains (DG) for all the radiators are greater than 9.98 dB. Full article
(This article belongs to the Special Issue Fault-Tolerant Sensing Paradigms for Autonomous Vehicles)
Show Figures

Figure 1

20 pages, 14993 KiB  
Article
Design and SAR Analysis of a Dual Band Wearable Antenna for WLAN Applications
by Ashfaq Ahmad, Farooq Faisal, Sadiq Ullah and Dong-You Choi
Appl. Sci. 2022, 12(18), 9218; https://doi.org/10.3390/app12189218 - 14 Sep 2022
Cited by 41 | Viewed by 4667
Abstract
This paper presents the design of three types of dual band (2.5 & 5.2 GHz) wearable microstrip patch antennas. The first one is based on a conventional ground plane, whereas the other two antennas are based on two different types of two-dimensional electromagnetic [...] Read more.
This paper presents the design of three types of dual band (2.5 & 5.2 GHz) wearable microstrip patch antennas. The first one is based on a conventional ground plane, whereas the other two antennas are based on two different types of two-dimensional electromagnetic band gap (EBG) structures. The design of these two different dual-band EBG structures using wearable substrates incorporates several factors in order to improve the performance of the proposed conventional ground plane (dual band) wearable antenna. The second EBG with plus-shaped slots is about 22.7% more compact in size relative to the designed mushroom-like EBG. Subsequently, we have demonstrated that the mushroom-like EBG and the EBG with plus-shaped slots improve the bandwidth by 5.2 MHz and 7.9 MHz at lower resonance frequencies and by 33.6 MHz and 16.7 MHz at higher resonance frequencies, respectively. Furthermore, improvements in gain of 4.33% and 16.5% at a frequency of 2.5 GHz and improvements in gain of 30.43% and 4.57% at 5.2 GHz have been achieved by using the mushroom-like EBG and EBG with plus-shaped slots, respectively. The operation of the conventional ground plane antenna is investigated under different bending conditions, such as wrapped around different rounded body parts. The proposed conventional ground plane antenna is placed over a three-layered (flat body phantom (chest)) and four-layered (rounded body parts) tissue models, and a thorough SAR analysis has been performed. It is concluded that the proposed antenna reduces SAR effects (<2 W/kg) on the human body, thereby making it useful for numerous critical wearable applications. Full article
(This article belongs to the Special Issue Data Analysis and Artificial Intelligence for IoT)
Show Figures

Figure 1

14 pages, 4964 KiB  
Article
Substrateless Packaging for a D-Band MMIC Based on a Waveguide with a Glide-Symmetric EBG Hole Configuration
by Weihua Yu, Abbas Vosoogh, Bowu Wang and Zhongxia Simon He
Sensors 2022, 22(17), 6696; https://doi.org/10.3390/s22176696 - 4 Sep 2022
Cited by 9 | Viewed by 3325
Abstract
This paper presents a novel substrateless packaging solution for the D-band active e mixer MMIC module, using a waveguide line with a glide-symmetric periodic electromagnetic bandgap (EBG) hole configuration. The proposed packaging concept has the benefit of being able to control signal propagation [...] Read more.
This paper presents a novel substrateless packaging solution for the D-band active e mixer MMIC module, using a waveguide line with a glide-symmetric periodic electromagnetic bandgap (EBG) hole configuration. The proposed packaging concept has the benefit of being able to control signal propagation behavior by using a cost-effective EBG hole configuration for millimeter-wave- and terahertz (THz)-frequency-band applications. Moreover, the mixer MMIC is connected to the proposed hollow rectangular waveguide line via a novel wire-bond wideband transition without using any intermediate substrate. A simple periodical nail structure is utilized to suppress the unwanted modes in the transition. Additionally, the presented solution does not impose any limitations on the chip’s dimensions or shape. The packaged mixer module shows a return loss lower than 10 dB for LO (70–85 GHz) and RF (150–170 GHz) ports, achieving a better performance than that of traditional waveguide transitions. The module could be used as a transmitter or receiver, and the conversion loss shows good agreement in multiple samples. The proposed packaging solution has the advantages of satisfactory frequency performance, broadband adaptability, low production costs, and excellent repeatability for millimeter-wave- and THz-band systems, which would facilitate the commercialization of millimeter-wave and THz products. Full article
(This article belongs to the Special Issue mm Wave Integrated Circuits Based Sensing Systems and Applications)
Show Figures

Figure 1

19 pages, 7293 KiB  
Article
Combined RIS and EBG Surfaces Inspired Meta-Wearable Textile MIMO Antenna Using Viscose-Wool Felt
by Amira Nur Suraya Shamsuri Agus, Thennarasan Sabapathy, Muzammil Jusoh, Mahmoud A. Abdelghany, Kabir Hossain, Surentiran Padmanathan, Samir Salem Al-Bawri and Ping Jack Soh
Polymers 2022, 14(10), 1989; https://doi.org/10.3390/polym14101989 - 13 May 2022
Cited by 11 | Viewed by 3289
Abstract
In this paper, we present a textile multiple-input–multiple-output (MIMO) antenna designed with a metamaterial inspired reactive impedance surface (RIS) and electromagnetic bandgap (EBG) using viscose-wool felt. Rectangular RIS was used as a reflector to improve the antenna gain and bandwidth to address well [...] Read more.
In this paper, we present a textile multiple-input–multiple-output (MIMO) antenna designed with a metamaterial inspired reactive impedance surface (RIS) and electromagnetic bandgap (EBG) using viscose-wool felt. Rectangular RIS was used as a reflector to improve the antenna gain and bandwidth to address well known crucial challenges—maintaining gain while reducing mutual coupling in MIMO antennas. The RIS unit cell was designed to achieve inductive impedance at the center frequency of 2.45 GHz with a reflection phase of 177.6°. The improved bandwidth of 170 MHz was achieved by using a square shaped RIS under a rectangular patch antenna, and this also helped to attain an additional gain of 1.29 dBi. When the antenna was implemented as MIMO, a split ring resonator backed by strip line type EBG was used to minimize the mutual coupling between the antenna elements. The EBG offered a sufficient band gap region from 2.37 GHz to 2.63 GHz. Prior to fabrication, bending analysis was carried out to validate the performance of the reflection coefficient (S11) and transmission coefficient (S21). The results of the analysis show that bending conditions have very little impact on antenna performance in terms of S-parameters. The effect of strip line supported SRR-based EBG was further analyzed with the fabricated prototype to clearly show the advantage of the designed EBG towards the mutual coupling reduction. The designed MIMO-RIS-EBG array-based antenna revealed an S21 reduction of −9.8 dB at 2.45 GHz frequency with overall S21 of <−40 dB. The results also indicated that the proposed SRR-EBG minimized the mutual coupling while keeping the mean effective gain (MEG) variations of <3 dB at the desired operating band. The specific absorption rate (SAR) analysis showed that the proposed design is not harmful to human body as the values are less than the regulated SAR. Overall, the findings in this study indicate the potential of the proposed MIMO antenna for microwave applications in a wearable format. Full article
(This article belongs to the Special Issue High Performance Textiles)
Show Figures

Graphical abstract

8 pages, 3458 KiB  
Article
Numerical Simulation of a Hollow-Core Woodpile-Based Mode Launcher for Dielectric Laser Accelerators
by Giorgio Sebastiano Mauro, Giuseppe Torrisi, Andrea Locatelli, Alberto Bacci, Costantino De Angelis, David Mascali and Gino Sorbello
Appl. Sci. 2022, 12(5), 2609; https://doi.org/10.3390/app12052609 - 3 Mar 2022
Cited by 6 | Viewed by 2108
Abstract
Hollow core microstructures powered by infrared lasers represent a new and promising area of accelerator research, where advanced concepts of electromagnetism must be used to satisfy multiple requirements. Here, we present the design of a dielectric electromagnetic band gap (EBG) mode launcher–converter for [...] Read more.
Hollow core microstructures powered by infrared lasers represent a new and promising area of accelerator research, where advanced concepts of electromagnetism must be used to satisfy multiple requirements. Here, we present the design of a dielectric electromagnetic band gap (EBG) mode launcher–converter for high-power coupling in dielectric laser accelerators (DLAs). The device is based on a silicon woodpile structure, and it is composed of two perpendicularly coupled hollow-core waveguides—a transverse electric (TE)-like mode waveguide (excited from laser power) and a transverse magnetic (TM)-like mode (accelerating) waveguide—in analogy with the TE10-to-TM01 waveguide mode converters of radio frequency (RF) linear accelerators (LINACs). The structure is numerically designed and optimized, showing insertion losses (IL) <0.5 dB and efficient mode conversion in the operating bandwidth. The operating wavelength is 5 μm, corresponding to a frequency of ≈60 THz, in a spectral region where solid-state continuous-wave (CW) lasers exist and are actively developed. The presented woodpile coupler shows an interaction impedance in the order of 10 kΩ, high power handling and efficiency. Full article
(This article belongs to the Special Issue Compact Particle Accelerators Technology)
Show Figures

Figure 1

17 pages, 1455 KiB  
Article
A New Reconfigurable Filter Based on a Single Electromagnetic Bandgap Honey Comb Geometry Cell
by Andre Tavora de Albuquerque Silva, Claudio Ferreira Dias, Eduardo Rodrigues de Lima, Gustavo Fraidenraich and Larissa Medeiros de Almeida
Electronics 2021, 10(19), 2390; https://doi.org/10.3390/electronics10192390 - 30 Sep 2021
Cited by 2 | Viewed by 2105
Abstract
This work presents a new unit cell electromagnetic bandgap (EBG) design based on HoneyComb geometry (HCPBG). The new HCPBG takes a uniplanar geometry (UCPBG—uniplanar compact PBG) as a reference and follows similar design methods for defining geometric parameters. The new structure’s advantages consist [...] Read more.
This work presents a new unit cell electromagnetic bandgap (EBG) design based on HoneyComb geometry (HCPBG). The new HCPBG takes a uniplanar geometry (UCPBG—uniplanar compact PBG) as a reference and follows similar design methods for defining geometric parameters. The new structure’s advantages consist of reduced occupied printed circuit board area and flexible rejection band properties. In addition, rotation and slight geometry modification in the HCPBG cell allow changing the profile of the attenuation frequency range. This paper also presents a reconfigurable unit cell HCPBG filter strategy, for which the resonance center frequency is shifted by changing the gap capacitance with the assistance of varactor diodes. The HCPBG filter and reconfiguration behavior is demonstrated through electromagnetic (EM) simulations over the FR1 band of the 5G communication network. Intelligent communication systems can use the reconfiguration feature to select the optimal operating frequency for maximum attenuation of unwanted or interfering signals, such as harmonics or intermodulation products. Full article
(This article belongs to the Special Issue Metamaterials and Metasurfaces)
Show Figures

Figure 1

12 pages, 13248 KiB  
Article
Wideband and High-Gain Wearable Antenna Array with Specific Absorption Rate Suppression
by Haoran Zu, Bian Wu, Peibin Yang, Wenhua Li and Jinjin Liu
Electronics 2021, 10(17), 2056; https://doi.org/10.3390/electronics10172056 - 26 Aug 2021
Cited by 19 | Viewed by 2835
Abstract
In this paper, a wideband and high-gain antenna array with specific absorption rate suppression is presented. By adopting the wideband monopole antenna array and the uniplanar compact electromagnetic band gap (UC-EBG) structure, the proposed wearable antenna array can realize a high gain of [...] Read more.
In this paper, a wideband and high-gain antenna array with specific absorption rate suppression is presented. By adopting the wideband monopole antenna array and the uniplanar compact electromagnetic band gap (UC-EBG) structure, the proposed wearable antenna array can realize a high gain of 11.8–13.6 dBi within the operating band of 4.5–6.5 GHz. The sidelobe level of the proposed wearable antenna array is less than −12 dB, and the cross polarization in the main radiation direction is less than −35 dB. Benefiting from the UC-EBG design, the specific absorption rate is suppressed effectively, guaranteeing the safety of the proposed antenna array to the human body. The proposed antenna array is processed and tested, and the measurement results show good agreement with the simulation results. Full article
(This article belongs to the Special Issue Novel Microwave/Millimeter-Wave Devices and Antennas)
Show Figures

Figure 1

Back to TopTop