Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = DNDI-0690

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4251 KiB  
Article
Antibacterial and Antibiofilm Properties of the Alexidine Dihydrochloride (MMV396785) against Acinetobacter baumannii
by Kirti Upmanyu, Qazi Mohd. Rizwanul Haq and Ruchi Singh
Antibiotics 2023, 12(7), 1155; https://doi.org/10.3390/antibiotics12071155 - 6 Jul 2023
Cited by 3 | Viewed by 2392
Abstract
Antibiotic-resistant Acinetobacter baumannii infections among patients in hospital settings are rising at an alarming rate. The World Health Organization has designated carbapenem-resistant A. baumannii as a priority pathogen for drug discovery. Based on the open drug discovery approach, we screened 400 compounds provided [...] Read more.
Antibiotic-resistant Acinetobacter baumannii infections among patients in hospital settings are rising at an alarming rate. The World Health Organization has designated carbapenem-resistant A. baumannii as a priority pathogen for drug discovery. Based on the open drug discovery approach, we screened 400 compounds provided as a Pandemic Response Box by MMV and DNDi to identify compounds with antibacterial and antibiofilm activity against two A. baumannii reference strains using a highly robust resazurin assay. In vitro screening identified thirty compounds with MIC ≤ 50μM having growth inhibitory properties against the planktonic state. Five compounds, with MMV IDs MMV396785, MMV1578568, MMV1578574, MMV1578564, and MMV1579850, were able to reduce metabolically active cells in the biofilm state. Of these five compounds, MMV396785 showed potential antibacterial and antibiofilm activity with MIC, MBIC, and MBEC of 3.125 μM, 12.5, and 25–100 µM against tested A. baumannii strains, respectively, showing biofilm formation inhibition by 93% and eradication of pre-formed biofilms by 60–77.4%. In addition, MMV396785 showed a drastic reduction in the surface area and thickness of biofilms. Further investigations at the molecular level by qRT-PCR revealed the downregulation of biofilm-associated genes when exposed to 50 µM MMV396785 in all tested strains. This study identified the novel compound MMV396785 as showing potential in vitro antibacterial and antibiofilm efficacy against A. baumannii. Full article
(This article belongs to the Section Antibiofilm Strategies)
Show Figures

Figure 1

32 pages, 1995 KiB  
Review
Further Investigations of Nitroheterocyclic Compounds as Potential Antikinetoplastid Drug Candidates
by Carlos García-Estrada, Yolanda Pérez-Pertejo, Bárbara Domínguez-Asenjo, Vanderlan Nogueira Holanda, Sankaranarayanan Murugesan, María Martínez-Valladares, Rafael Balaña-Fouce and Rosa M. Reguera
Biomolecules 2023, 13(4), 637; https://doi.org/10.3390/biom13040637 - 1 Apr 2023
Cited by 12 | Viewed by 3906
Abstract
Due to the lack of specific vaccines, management of the trypanosomatid-caused neglected tropical diseases (sleeping sickness, Chagas disease and leishmaniasis) relies exclusively on pharmacological treatments. Current drugs against them are scarce, old and exhibit disadvantages, such as adverse effects, parenteral administration, chemical instability [...] Read more.
Due to the lack of specific vaccines, management of the trypanosomatid-caused neglected tropical diseases (sleeping sickness, Chagas disease and leishmaniasis) relies exclusively on pharmacological treatments. Current drugs against them are scarce, old and exhibit disadvantages, such as adverse effects, parenteral administration, chemical instability and high costs which are often unaffordable for endemic low-income countries. Discoveries of new pharmacological entities for the treatment of these diseases are scarce, since most of the big pharmaceutical companies find this market unattractive. In order to fill the pipeline of compounds and replace existing ones, highly translatable drug screening platforms have been developed in the last two decades. Thousands of molecules have been tested, including nitroheterocyclic compounds, such as benznidazole and nifurtimox, which had already provided potent and effective effects against Chagas disease. More recently, fexinidazole has been added as a new drug against African trypanosomiasis. Despite the success of nitroheterocycles, they had been discarded from drug discovery campaigns due to their mutagenic potential, but now they represent a promising source of inspiration for oral drugs that can replace those currently on the market. The examples provided by the trypanocidal activity of fexinidazole and the promising efficacy of the derivative DNDi-0690 against leishmaniasis seem to open a new window of opportunity for these compounds that were discovered in the 1960s. In this review, we show the current uses of nitroheterocycles and the novel derived molecules that are being synthesized against these neglected diseases. Full article
Show Figures

Figure 1

11 pages, 3011 KiB  
Review
Fexinidazole for Human African Trypanosomiasis, the Fruit of a Successful Public-Private Partnership
by Sonja Bernhard, Marcel Kaiser, Christian Burri and Pascal Mäser
Diseases 2022, 10(4), 90; https://doi.org/10.3390/diseases10040090 - 17 Oct 2022
Cited by 33 | Viewed by 4814
Abstract
After 100 years of chemotherapy with impractical and toxic drugs, an oral cure for human African trypanosomiasis (HAT) is available: Fexinidazole. In this case, we review the history of drug discovery for HAT with special emphasis on the discovery, pre-clinical development, and operational [...] Read more.
After 100 years of chemotherapy with impractical and toxic drugs, an oral cure for human African trypanosomiasis (HAT) is available: Fexinidazole. In this case, we review the history of drug discovery for HAT with special emphasis on the discovery, pre-clinical development, and operational challenges of the clinical trials of fexinidazole. The screening of the Drugs for Neglected Diseases initiative (DNDi) HAT-library by the Swiss TPH had singled out fexinidazole, originally developed by Hoechst (now Sanofi), as the most promising of a series of over 800 nitroimidazoles and related molecules. In cell culture, fexinidazole has an IC50 of around 1 µM against Trypanosoma brucei and is more than 100-fold less toxic to mammalian cells. In the mouse model, fexinidazole cures both the first, haemolymphatic, and the second, meningoencephalitic stage of the infection, the latter at 100 mg/kg twice daily for 5 days. In patients, the clinical trials managed by DNDi and supported by Swiss TPH mainly conducted in the Democratic Republic of the Congo demonstrated that oral fexinidazole is safe and effective for use against first- and early second-stage sleeping sickness. Based on the positive opinion issued by the European Medicines Agency in 2018, the WHO has released new interim guidelines for the treatment of HAT including fexinidazole as the new therapy for first-stage and non-severe second-stage sleeping sickness caused by Trypanosoma brucei gambiense (gHAT). This greatly facilitates the diagnosis and treatment algorithm for gHAT, increasing the attainable coverage and paving the way towards the envisaged goal of zero transmission by 2030. Full article
(This article belongs to the Special Issue In Honour of Marcel Tanner, Parasitologist Extraordinaire)
Show Figures

Figure 1

12 pages, 1551 KiB  
Article
The Antifungal Itraconazole Is a Potent Inhibitor of Chikungunya Virus Replication
by Lucca R. Policastro, Isabela Dolci, Andre S. Godoy, José V. J. Silva Júnior, Uriel E. A. Ruiz, Igor A. Santos, Ana C. G. Jardim, Kirandeep Samby, Jeremy N. Burrows, Timothy N. C. Wells, Laura H. V. G. Gil, Glaucius Oliva and Rafaela S. Fernandes
Viruses 2022, 14(7), 1351; https://doi.org/10.3390/v14071351 - 21 Jun 2022
Cited by 9 | Viewed by 3621
Abstract
Chikungunya virus (CHIKV) is the causative agent of chikungunya fever, a disabling disease that can cause long-term severe arthritis. Since the last large CHIKV outbreak in 2015, the reemergence of the virus represents a serious public health concern. The morbidity associated with viral [...] Read more.
Chikungunya virus (CHIKV) is the causative agent of chikungunya fever, a disabling disease that can cause long-term severe arthritis. Since the last large CHIKV outbreak in 2015, the reemergence of the virus represents a serious public health concern. The morbidity associated with viral infection emphasizes the need for the development of specific anti-CHIKV drugs. Herein, we describe the development and characterization of a CHIKV reporter replicon cell line and its use in replicon-based screenings. We tested 960 compounds from MMV/DNDi Open Box libraries and identified four candidates with interesting antiviral activities, which were confirmed in viral infection assays employing CHIKV-nanoluc and BHK-21 cells. The most noteworthy compound identified was itraconazole (ITZ), an orally available, safe, and cheap antifungal, that showed high selectivity indexes of >312 and >294 in both replicon-based and viral infection assays, respectively. The antiviral activity of this molecule has been described against positive-sense single stranded RNA viruses (+ssRNA) and was related to cholesterol metabolism that could affect the formation of the replication organelles. Although its precise mechanism of action against CHIKV still needs to be elucidated, our results demonstrate that ITZ is a potent inhibitor of the viral replication that could be repurposed as a broad-spectrum antiviral. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

18 pages, 19636 KiB  
Article
Bipartite Consensus of Nonlinear Agents in the Presence of Communication Noise
by Sabyasachi Mondal and Antonios Tsourdos
Sensors 2022, 22(6), 2357; https://doi.org/10.3390/s22062357 - 18 Mar 2022
Cited by 3 | Viewed by 2228
Abstract
In this paper, a Distributed Nonlinear Dynamic Inversion (DNDI)-based consensus protocol is designed to achieve the bipartite consensus of nonlinear agents over a signed graph. DNDI inherits the advantage of nonlinear dynamic inversion theory, and the application to the bipartite problem is a [...] Read more.
In this paper, a Distributed Nonlinear Dynamic Inversion (DNDI)-based consensus protocol is designed to achieve the bipartite consensus of nonlinear agents over a signed graph. DNDI inherits the advantage of nonlinear dynamic inversion theory, and the application to the bipartite problem is a new idea. Moreover, communication noise is considered to make the scenario more realistic. The convergence study provides a solid theoretical base, and a realistic simulation study shows the effectiveness of the proposed protocol. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

15 pages, 1910 KiB  
Article
Identification of Resistance Determinants for a Promising Antileishmanial Oxaborole Series
by Magali Van den Kerkhof, Philippe Leprohon, Dorien Mabille, Sarah Hendrickx, Lindsay B. Tulloch, Richard J. Wall, Susan Wyllie, Eric Chatelain, Charles E. Mowbray, Stéphanie Braillard, Marc Ouellette, Louis Maes and Guy Caljon
Microorganisms 2021, 9(7), 1408; https://doi.org/10.3390/microorganisms9071408 - 29 Jun 2021
Cited by 10 | Viewed by 3181
Abstract
Current treatment options for visceral leishmaniasis have several drawbacks, and clinicians are confronted with an increasing number of treatment failures. To overcome this, the Drugs for Neglected Diseases initiative (DNDi) has invested in the development of novel antileishmanial leads, including a [...] Read more.
Current treatment options for visceral leishmaniasis have several drawbacks, and clinicians are confronted with an increasing number of treatment failures. To overcome this, the Drugs for Neglected Diseases initiative (DNDi) has invested in the development of novel antileishmanial leads, including a very promising class of oxaboroles. The mode of action/resistance of this series to Leishmania is still unknown and may be important for its further development and implementation. Repeated in vivo drug exposure and an in vitro selection procedure on both extracellular promastigote and intracellular amastigote stages were both unable to select for resistance. The use of specific inhibitors for ABC-transporters could not demonstrate the putative involvement of efflux pumps. Selection experiments and inhibitor studies, therefore, suggest that resistance to oxaboroles may not emerge readily in the field. The selection of a genome-wide cosmid library coupled to next-generation sequencing (Cos-seq) was used to identify resistance determinants and putative targets. This resulted in the identification of a highly enriched cosmid, harboring genes of chromosome 2 that confer a subtly increased resistance to the oxaboroles tested. Moderately enriched cosmids encompassing a region of chromosome 34 contained the cleavage and polyadenylation specificity factor (cpsf) gene, encoding the molecular target of several related benzoxaboroles in other organisms. Full article
(This article belongs to the Special Issue Leishmania and Leishmaniasis)
Show Figures

Figure 1

14 pages, 1676 KiB  
Article
Film-Forming Systems for the Delivery of DNDI-0690 to Treat Cutaneous Leishmaniasis
by Katrien Van Bocxlaer, Kerri-Nicola McArthur, Andy Harris, Mo Alavijeh, Stéphanie Braillard, Charles E. Mowbray and Simon L. Croft
Pharmaceutics 2021, 13(4), 516; https://doi.org/10.3390/pharmaceutics13040516 - 8 Apr 2021
Cited by 18 | Viewed by 3625
Abstract
In cutaneous leishmaniasis (CL), parasites reside in the dermis, creating an opportunity for local drug administration potentially reducing adverse effects and improving treatment adherence compared to current therapies. Polymeric film-forming systems (FFSs) are directly applied to the skin and form a thin film [...] Read more.
In cutaneous leishmaniasis (CL), parasites reside in the dermis, creating an opportunity for local drug administration potentially reducing adverse effects and improving treatment adherence compared to current therapies. Polymeric film-forming systems (FFSs) are directly applied to the skin and form a thin film as the solvent evaporates. In contrast to conventional topical dosage forms, FFSs strongly adhere to the skin, favouring sustained drug delivery to the affected site, reducing the need for frequent applications, and enhancing patient compliance. This study reports the first investigation of the use of film-forming systems for the delivery of DNDI-0690, a nitroimidazole compound with potent activity against CL-causing Leishmania species. A total of seven polymers with or without plasticiser were evaluated for drying time, stickiness, film-flexibility, and cosmetic attributes; three FFSs yielded a positive evaluation for all test parameters. The impact of each of these FFSs on the permeation of the model skin permeant hydrocortisone (hydrocortisone, 1% (w/v) across the Strat-M membrane was evaluated, and the formulations resulting in the highest and lowest permeation flux (Klucel LF with triethyl citrate and Eudragit RS with dibutyl sebacate, respectively) were selected as the FFS vehicle for DNDI-0690. The release and skin distribution of the drug upon application to Leishmania-infected and uninfected BALB/c mouse skin were examined using Franz diffusion cells followed by an evaluation of the efficacy of both DNDI-0690 FFSs (1% (w/v)) in an experimental CL model. Whereas the Eudragit film resulted in a higher permeation of DNDI-0690, the Klucel film was able to deposit four times more drug into the skin, where the parasite resides. Of the FFSs formulations, only the Eudragit system resulted in a reduced parasite load, but not reduced lesion size, when compared to the vehicle only control. Whereas drug delivery into the skin was successfully modulated using different FFS systems, the FFS systems selected were not effective for the topical application of DNDI-0690. The convenience and aesthetic of FFS systems alongside their ability to modulate drug delivery to and into the skin merit further investigation using other promising antileishmanial drugs. Full article
(This article belongs to the Special Issue Drug Delivery for Anti-Infective Agents)
Show Figures

Graphical abstract

15 pages, 1047 KiB  
Review
New Drugs for Human African Trypanosomiasis: A Twenty First Century Success Story
by Emily A. Dickie, Federica Giordani, Matthew K. Gould, Pascal Mäser, Christian Burri, Jeremy C. Mottram, Srinivasa P. S. Rao and Michael P. Barrett
Trop. Med. Infect. Dis. 2020, 5(1), 29; https://doi.org/10.3390/tropicalmed5010029 - 19 Feb 2020
Cited by 106 | Viewed by 10050
Abstract
The twentieth century ended with human African trypanosomiasis (HAT) epidemics raging across many parts of Africa. Resistance to existing drugs was emerging, and many programs aiming to contain the disease had ground to a halt, given previous success against HAT and the competing [...] Read more.
The twentieth century ended with human African trypanosomiasis (HAT) epidemics raging across many parts of Africa. Resistance to existing drugs was emerging, and many programs aiming to contain the disease had ground to a halt, given previous success against HAT and the competing priorities associated with other medical crises ravaging the continent. A series of dedicated interventions and the introduction of innovative routes to develop drugs, involving Product Development Partnerships, has led to a dramatic turnaround in the fight against HAT caused by Trypanosoma brucei gambiense. The World Health Organization have been able to optimize the use of existing tools to monitor and intervene in the disease. A promising new oral medication for stage 1 HAT, pafuramidine maleate, ultimately failed due to unforeseen toxicity issues. However, the clinical trials for this compound demonstrated the possibility of conducting such trials in the resource-poor settings of rural Africa. The Drugs for Neglected Disease initiative (DNDi), founded in 2003, has developed the first all oral therapy for both stage 1 and stage 2 HAT in fexinidazole. DNDi has also brought forward another oral therapy, acoziborole, potentially capable of curing both stage 1 and stage 2 disease in a single dosing. In this review article, we describe the remarkable successes in combating HAT through the twenty first century, bringing the prospect of the elimination of this disease into sight. Full article
Show Figures

Figure 1

18 pages, 444 KiB  
Article
Product Development Partnerships: Delivering Innovation for the Elimination of African Trypanosomiasis?
by Emma Michelle Taylor and James Smith
Trop. Med. Infect. Dis. 2020, 5(1), 11; https://doi.org/10.3390/tropicalmed5010011 - 15 Jan 2020
Cited by 6 | Viewed by 3562
Abstract
African trypanosomiasis has been labelled as a ‘tool-deficient’ disease. This article reflects on the role that Product Development Partnerships (PDPs) have played in delivering new tools and innovations for the control and elimination of the African trypanosomiases. We analysed three product development partnerships—DNDi, [...] Read more.
African trypanosomiasis has been labelled as a ‘tool-deficient’ disease. This article reflects on the role that Product Development Partnerships (PDPs) have played in delivering new tools and innovations for the control and elimination of the African trypanosomiases. We analysed three product development partnerships—DNDi, FIND and GALVmed—that focus on delivering new drugs, diagnostic tests, and animal health innovations, respectively. We interviewed key informants within each of the organisations to understand how they delivered new innovations. While it is too early (and beyond the scope of this article) to assess the role of these three organisations in accelerating the elimination of the African trypanosomiases, all three organisations have been responsible for delivering new innovations for diagnosis and treatment through brokering and incentivising innovation and private sector involvement. It is doubtful that these innovations would have been delivered without them. To varying degrees, all three organisations are evolving towards a greater brokering role, away from only product development, prompted by donors. On balance, PDPs have an important role to play in delivering health innovations, and donors need to reflect on how best to incentivise them to focus and continue to deliver new products. Full article
Show Figures

Figure 1

Back to TopTop