Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (99)

Search Parameters:
Keywords = Cu-Ti intermetallics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 19537 KiB  
Article
Microstructure, Mechanical Properties, Deformation Behavior, and Crystallographic Texture of the Al-Gd-Cr-Ti Quaternary Alloy for Thermal Neutron Absorption
by Sayed M. Amer, Dmitry I. Nikolayev, Tatiana A. Lychagina, Abdelmoneim El-Khouly, Ruslan Yu. Barkov, Alexey S. Prosviryakov, Anastasia V. Mikhaylovskaya, Maria V. Glavatskikh and Andrey V. Pozdniakov
Crystals 2025, 15(7), 616; https://doi.org/10.3390/cryst15070616 - 30 Jun 2025
Viewed by 262
Abstract
In this work, we report the identification of a novel quaternary intermetallic phase (Al21GdCrTi) formed during the solidification of a novel Al-Gd-Cr-Ti alloy, which has not been previously documented in the literature to the best of our knowledge. The study also [...] Read more.
In this work, we report the identification of a novel quaternary intermetallic phase (Al21GdCrTi) formed during the solidification of a novel Al-Gd-Cr-Ti alloy, which has not been previously documented in the literature to the best of our knowledge. The study also provides a detailed analysis of microstructure evolution, texture behavior, and the mechanical strengthening effect of rolling processes, along with neutron absorption performance. XRD analysis reveals that the intensity of (022), (113) planes of the as-hot-cold-rolled sample is higher than that of the as-cast due to the change in the direction of some grains in these planes during rolling. The results indicate that the studied alloys scatter neutrons about 100 times less than a nearly pure aluminum alloy. The hardness of the as-cast alloy increased from 36 to 53 HV after cold rolling and to 50 HV after hot rolling-cold rolling. Hot-cold-rolled alloy has a yield strength of 160 MPa and an ultimate tensile strength of 181 MPa, while maintaining an elongation of 11.3%. The studied alloys, containing 4.2 wt.% of the alloying elements 3.8Gd, 0.2Cr, and 0.2Ti (Al-3.8Gd-0.2Cr-0.2Ti), exhibited a yield strength 28 MPa higher than those containing 21 wt.% of the alloying elements 5Cu, 6Gd, and 8Bi (Al-5Cu-6Gd-8Bi). The studied alloys form the basis for the development of high-technology Al-Gd alloys for neutron shielding. Full article
(This article belongs to the Special Issue Development of Light Alloys and Their Applications)
Show Figures

Figure 1

13 pages, 9354 KiB  
Article
Dissimilar Joining of Aluminum to High-Melting-Point Alloys by Hot Dipping
by Zhaoxian Liu, Qingjia Su, Pu Wang, Wenzhen Zhao, Ao Fu and Huan He
Coatings 2025, 15(5), 541; https://doi.org/10.3390/coatings15050541 - 30 Apr 2025
Viewed by 403
Abstract
In this study, the dissimilar joining of aluminum to high-melting-point alloys, including steel, titanium, and copper, was successfully achieved through hot-dipping. By precisely controlling the dipping temperature at 670 °C and maintaining a dipping time of 5 s, uniform aluminum layers with a [...] Read more.
In this study, the dissimilar joining of aluminum to high-melting-point alloys, including steel, titanium, and copper, was successfully achieved through hot-dipping. By precisely controlling the dipping temperature at 670 °C and maintaining a dipping time of 5 s, uniform aluminum layers with a thickness of 3–4 mm were successfully formed on the surfaces of high-melting-point alloys. This process enabled effective dissimilar metal joining between Al/steel, Al/Ti, and Al/Cu. Metallurgical bonding at the joining interfaces was achieved through the formation of uniform intermetallic compounds, specifically Fe4Al13, TiAl3, Al2Cu, and Al3Cu4, respectively. The different joints exhibited varying mechanical properties: the Al/Cu joint demonstrated the highest shear strength at 79.1 MPa, while the Fe4Al13-containing joint exhibited the highest hardness, reaching 604.4 HV. Numerical simulations revealed that an obvious decrease in interfacial temperature triggered the solidification and growth of the aluminum layer. Additionally, the specific heat and thermal conductivity of the high-melting-point alloys were found to significantly influence the thickness of the aluminum layer. The hot-dip joining technology is well suited for dissimilar metal bonding involving large contact areas and significant differences in melting points. Full article
Show Figures

Graphical abstract

18 pages, 7231 KiB  
Article
Electron Beam Welding of Dissimilar Ti6Al4V and Al6082-T6 Alloys Using Magnetron-Sputtered Cu Interlayers
by Georgi Kotlarski, Darina Kaisheva, Maria Ormanova, Milka Atanasova, Angel Anchev, Vladimir Dunchev, Borislav Stoyanov and Stefan Valkov
Crystals 2025, 15(4), 373; https://doi.org/10.3390/cryst15040373 - 18 Apr 2025
Viewed by 494
Abstract
In the present work, the influence of a magnetron-sputtered copper interlayer on the process of electron beam welding of Ti6Al4V and Al6082-T6 plates was investigated. A sample without a filler was also prepared as a control. The microstructure, microhardness, and tensile properties of [...] Read more.
In the present work, the influence of a magnetron-sputtered copper interlayer on the process of electron beam welding of Ti6Al4V and Al6082-T6 plates was investigated. A sample without a filler was also prepared as a control. The microstructure, microhardness, and tensile properties of both samples were determined. Applying a copper interlayer resulted in the formation of an additional CuAl2 intermetallic compound in the form of a eutectic structure along the boundary of the aluminum crystal grains. A noticeable shift in the preferred crystallographic orientation of the aluminum phase from the denser {111} family of crystallographic planes in the case of the sample prepared without a filler towards less-dense ones such as {110}, {100}, and {311} in the case of applying a copper filler was observed. This was most probably caused by the lower free surface energy of the crystals oriented towards the {111} family of crystal planes, which favored the chemical bonding between the aluminum solid solution and the CuAl2 intermetallics. As a result of applying the copper interlayer, a noticeable increase in the microhardness of the weld seam was observed from 78 ± 2 HV0.05 to 136 ± 3 HV0.05. Applying a copper interlayer also led to an improved energy absorption capacity of the weld seam, as suggested by the increase in the UTS/YS ratio from 1.03 to 1.44. This could be explained by the smooth transition between the highly dissimilar Ti6Al4V and Al6082-T6 alloys. The UTS of the sample with the copper filler reached 208 MPa, which was about 60% of that of the base Al6082-T6 alloy. Full article
(This article belongs to the Special Issue Advanced Welding and Additive Manufacturing)
Show Figures

Figure 1

25 pages, 17504 KiB  
Article
The Influence of Rare Earth Metals on the Microstructure and Mechanical Properties of 220 and 356.1 Alloys for Automotive Industry
by Herbert W. Doty, Shimaa El-Hadad, Ehab Samuel, Agnes M. Samuel and Fawzy H. Samuel
Materials 2025, 18(5), 941; https://doi.org/10.3390/ma18050941 - 21 Feb 2025
Cited by 1 | Viewed by 601
Abstract
Application of rare earths (RE) as grain refiners is well-known in the technology of aluminum alloys for the automotive industry. In the current study, Al-2.4%Cu-0.4%Mg alloy (coded 220) and Al-7.5%Si-0.35%Mg alloy (coded 356.1), were prepared by melting each alloy in a resistance furnace. [...] Read more.
Application of rare earths (RE) as grain refiners is well-known in the technology of aluminum alloys for the automotive industry. In the current study, Al-2.4%Cu-0.4%Mg alloy (coded 220) and Al-7.5%Si-0.35%Mg alloy (coded 356.1), were prepared by melting each alloy in a resistance furnace. Strontium (Sr) was used as a modifier, while titanium boride (TiB2) was added as a grain refiner. Measured amounts of Ce and La were added to both alloys (max. 1 wt.%). The alloy melts were poured in a preheated metallic mold. The main part of the study was conducted on tensile testing at room temperature. The results show that although RE would cause grain refining to be about 30–40% through the constitutional undercooling mechanism, grain refining with TiB2 would lead to approximately 90% refining (heterogenous nucleation mechanism). The addition of high purity Ce or La (99.9% purity) has no modification effect regardless of the alloy composition or the concentration of RE. Depending on the alloy ductility, the addition of 0.2 wt.%RE has a hardening effect that causes precipitation of RE in the form of dispersoids (300–700 nm). However, this increase vanishes with the decrease in alloy ductility, i.e., with T6 treatment, due to intensive precipitation of ultra-fine coherent Mg2Si-phase particles. There is no definite distinction in the behavior of Ce or La in terms of their high affinity to interact with other transition elements in the matrix, particularly Ti, Fe, Cu, and Sr. When the melt was properly degassed using high-purity argon and filtered using a 20 ppi ceramic foam filter, prior to pouring the liquid metal into the mold sprue, no measurable number of RE oxides was observed. In conclusion, the application of RE to aluminum castings would only lead to formation of a significant volume fraction of brittle intermetallics. In Ti-free alloys, identification of Ce- or La-intermetallics is doubtful due to the fairly thin thickness of the precipitated platelets (about 1 µm) and the possibility that most of the reported Al, Si, and other elements make the reported values for RE rather ambiguous. Full article
Show Figures

Figure 1

10 pages, 2749 KiB  
Article
Titanium Nitride as an Intermetallic Diffusion Barrier for Hydrogen Permeation in Palladium–Vanadium Composite Membranes
by Cameron M. Burst, Chao Li, Douglas Way and Colin A. Wolden
Membranes 2025, 15(3), 68; https://doi.org/10.3390/membranes15030068 - 21 Feb 2025
Viewed by 1682
Abstract
Hydrogen purification is a critical industrial process, and there are ongoing efforts to develop low-cost alternatives to palladium foil membranes. Titanium nitride (TiN) is studied as an interdiffusion barrier to enable hydrogen permeation in composite palladium–vanadium membranes. TiN was deposited via reactive sputtering, [...] Read more.
Hydrogen purification is a critical industrial process, and there are ongoing efforts to develop low-cost alternatives to palladium foil membranes. Titanium nitride (TiN) is studied as an interdiffusion barrier to enable hydrogen permeation in composite palladium–vanadium membranes. TiN was deposited via reactive sputtering, and films with the desired (200) orientation were obtained in the metallic regime at 400 °C under a 200 V bias to the substrate. The permeability of thin-film TiN was determined with palladium-based sandwich structures. TiN layers up to 10 nm resulted in a minimal decrease in flux (~20%) relative to a freestanding PdCu foil, which was attributed to the interfacial resistance. At greater thicknesses, the TiN layer was rate-limiting, and it was found that the effective permeability of the sputtered TiN thin films was ~6 × 10−12 mol s−1 m−1 Pa−0.5. Composite Pd|TiN|V|TiN|Pd membranes exhibited permeability values up to three times greater than pure palladium, exhibiting stability at 450 °C for over 100 h, with the lack of intermetallic diffusion and alloy formation being confirmed with XRD. The membranes were unstable at 500 °C, which was attributed to the instability of the thin Pd layer and loss of catalytic activity. Full article
(This article belongs to the Special Issue A Commemorative Special Issue in Honor of Dr. Moises Carreon)
Show Figures

Figure 1

11 pages, 2783 KiB  
Article
Optimization of the Microstructure and Mechanical Properties of a TC4 Alloy Joint Brazed with a Zr-Based Filler Containing a Co Element
by Zhan Sun, Deshui Yu, Lixia Zhang, Mingjia Sun, Boyu Zhang, Weimin Long and Sujuan Zhong
Materials 2024, 17(19), 4861; https://doi.org/10.3390/ma17194861 - 2 Oct 2024
Viewed by 951
Abstract
Herein, we fabricated a low-melting-point Zr-16Ti-6Cu-8Ni-6Co eutectic filler based on a Zr-Ti-Cu-Ni filler to achieve effective joining of a Ti6Al4V (TC4) titanium alloy. The temperature at which the brittle intermetallic compound (IMC) layer in the seam completely disappeared was reduced from 920 °C [...] Read more.
Herein, we fabricated a low-melting-point Zr-16Ti-6Cu-8Ni-6Co eutectic filler based on a Zr-Ti-Cu-Ni filler to achieve effective joining of a Ti6Al4V (TC4) titanium alloy. The temperature at which the brittle intermetallic compound (IMC) layer in the seam completely disappeared was reduced from 920 °C to 900 °C, which broadened the temperature range of the Zr-based filler, brazing the TC4 without a brittle IMC layer. The shear strength of the Zr-16Ti-6Cu-8Ni-6Co brazed joint increased by 113% more than that of the Zr-16Ti-9Cu-11Ni brazed joint at 900 °C. The proportion of β-Ti in the seam of the Zr-16Ti-6Cu-8Ni-6Co brazed joint increased by 21.31% compared with that of the Zr-16Ti-9Cu-11Ni brazed joint. The nano-indentation results show that the elastic modulus of the β-Ti (143 GPa) in the interface is lower than that of the α-Ti (169 GPa) and (Ti,Zr)2(Ni,Cu,Co) (203 GPa). As a result, the β-Ti is subjected to a greater strain under the same stress state compared with the α-Ti and (Ti,Zr)2(Ni,Cu,Co), and the Zr-16Ti-6Cu-8Ni-6Co brazed joint can maintain a higher strength than the Zr-16Ti-9Cu-11Ni brazed joint under a middle–low erosion area of the TC4 base metal. This provides valuable insights into the use of high-strength, fatigue-resistant TC4 brazed joints in engineering applications. Full article
(This article belongs to the Special Issue Research on Laser Welding and Laser Additive Manufacturing)
Show Figures

Figure 1

14 pages, 7071 KiB  
Article
Electron Beam Welding of Copper and Aluminum Alloy with Magnetron Sputtered Titanium Filler
by Darina Kaisheva, Georgi Kotlarski, Maria Ormanova, Angel Anchev, Vladimir Dunchev, Borislav Stoyanov and Stefan Valkov
Crystals 2024, 14(9), 752; https://doi.org/10.3390/cryst14090752 - 24 Aug 2024
Cited by 1 | Viewed by 1733
Abstract
In this work, the results from the electron beam welding of copper and Al6082T6 aluminum alloy with a titanium filler are presented. The influence of the filler on the structure and mechanical properties of the welded joint is studied in comparison with one [...] Read more.
In this work, the results from the electron beam welding of copper and Al6082T6 aluminum alloy with a titanium filler are presented. The influence of the filler on the structure and mechanical properties of the welded joint is studied in comparison with one without filler. The X-ray diffraction (XRD) method was used to obtain the phase composition of the welded joints. Scanning electron microscopy (SEM) was used for the study of the microstructure of the welds. Energy-dispersive X-ray spectroscopy (EDX) was applied to investigate the chemical composition. The mechanical properties were studied by means of microhardness measurements and tensile tests. A three-phase structure was obtained in the fusion zone consisting of an aluminum matrix, an intermetallic compound CuAl2, and pure copper. The application of Ti filler significantly decreased the amount of molten copper introduced in the molten pool and the number of intermetallic compounds (IMCs). This improved the strength of the joint; however, some quantity of IMCs was still present in the zone of fusion (FZ), which reflected the microhardness of the samples. The application of a titanium filler resulted in refining the electron beam weld’s structure. The finer structure and the reduced amount of the brittle intermetallic phases has led to an increase in the strength of the joint. Full article
(This article belongs to the Special Issue Modern Technologies in the Manufacturing of Metal Matrix Composites)
Show Figures

Figure 1

13 pages, 22619 KiB  
Article
Improving the Mechanical Properties of Al-Si Composites through the Synergistic Strengthening of TiB2 Particles and BN Nanosheets
by Yiren Wang, Jian Wang, Zunyan Xu, Baoqiang Xu, Bingheng Yu, Jianwu Dong and Caiju Li
Metals 2024, 14(9), 957; https://doi.org/10.3390/met14090957 - 23 Aug 2024
Cited by 3 | Viewed by 1388
Abstract
The size and distribution of the silicon phase and intermetallic phase are important factors affecting the properties of Al11Si3Cu2NiMg alloy (M142). In this study, BNNS and micro-TiB2 were used to synergistically refine and reinforce M142 composites [...] Read more.
The size and distribution of the silicon phase and intermetallic phase are important factors affecting the properties of Al11Si3Cu2NiMg alloy (M142). In this study, BNNS and micro-TiB2 were used to synergistically refine and reinforce M142 composites (M142-BNNS-TiB2). After T6 heat treatment, the comprehensive mechanical properties of M142-BN-TiB2 composites were excellent, with an ultimate tensile strength of 463 MPa and an elongation of 2.6%. In addition, the introduction of BNNS and micro-TiB2 changed the fracture mode of M142 from brittle fracture to quasi-cleavage fracture, and the introduction of BNNS and micro-TiB2 refined the Si phase and intermetallic phase, which could change the origin of the crack in the composite, thus improving the ductility of the composite. Full article
Show Figures

Figure 1

13 pages, 7973 KiB  
Article
Brazing of TC4 Alloy Using Ti-Zr-Ni-Cu-Sn Amorphous Braze Fillers
by Zhan Sun, Boyu Zhang, Degang Li, Xinxin Zhu, Qing Chang, Bo Zhang, Lixia Zhang, Weimin Long and Sujuan Zhong
Materials 2024, 17(15), 3745; https://doi.org/10.3390/ma17153745 - 29 Jul 2024
Cited by 5 | Viewed by 1301
Abstract
In order to address the issues of excessive brittle intermetallic compounds (IMC) formation in the TC4 brazed joints, two types of novel Ti-Zr-Cu-Ni-Sn amorphous braze fillers were designed. The microstructure and shear strength of the TC4/Ti-Zr-Ni-Cu-Sn/TC4 brazed joints were studied by scanning electron [...] Read more.
In order to address the issues of excessive brittle intermetallic compounds (IMC) formation in the TC4 brazed joints, two types of novel Ti-Zr-Cu-Ni-Sn amorphous braze fillers were designed. The microstructure and shear strength of the TC4/Ti-Zr-Ni-Cu-Sn/TC4 brazed joints were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometer (XRD) and electronic universal materials testing machine. The results show that the optimized Ti35Zr25Ni15Cu20Sn5 braze filler whose chemical composition is closer to the eutectic point possesses a lower melting point compared with the equiatomic Ti23.75Zr23.75Ni23.75Cu23.75Sn5. This was beneficial to the sufficient diffusion of Cu and Ni elements with the base metal during brazing and reduces the residual (Ti,Zr)2(Ni,Cu) content in the joint, which helps to improve the joint performance. The room-temperature and high-temperature shear strength of the TC4 brazed joints using the near eutectic component Ti35Zr25Ni15Cu20Sn5 filler reached a maximum of 472 MPa and 389 MPa at 970 °C/10 min, which was 66% and 48% higher than that of the TC4 joints brazed with the equiatomic Ti23.75Zr23.75Ni23.75Cu23.75Sn5 braze filler. Microstructural evolution and the corresponding mechanical response were in-depth discussed. Full article
(This article belongs to the Special Issue Research on Laser Welding and Laser Additive Manufacturing)
Show Figures

Figure 1

15 pages, 3590 KiB  
Article
First-Principles Study of the Structural, Mechanical, Electronic, and Thermodynamic Properties of AlCu2M (M = Ti, Cr, Zr, Sc, Hf, Mn, Pa, Lu, Pm) Ternary Intermetallic Compounds
by Yu Guo, Bo Jiang, Xun Zhang and Shikang Li
Materials 2024, 17(14), 3441; https://doi.org/10.3390/ma17143441 - 11 Jul 2024
Cited by 2 | Viewed by 975
Abstract
Based on the first principles, the structural stability, mechanical characteristics, electronic structure, and thermodynamic properties of AlCu2M (M = Ti, Cr, Zr, Sc, Hf, Mn, Pa, Lu, Pm) are investigated. The calculated results indicate that the AlCu2Pa crystal structure [...] Read more.
Based on the first principles, the structural stability, mechanical characteristics, electronic structure, and thermodynamic properties of AlCu2M (M = Ti, Cr, Zr, Sc, Hf, Mn, Pa, Lu, Pm) are investigated. The calculated results indicate that the AlCu2Pa crystal structure is more stable and that AlCu2Pa should be easier to form. All of the AlCu2M compounds have structural stability in the ground state. Elastic constants are used to characterize the mechanical stability and elastic modulus, while the B/G values and Poisson ratio demonstrate the brittleness and ductility of AlCu2M compounds. It is demonstrated that all computed AlCu2M compounds are ductile and mechanically stable, with AlCu2Hf having the highest bulk modulus and AlCu2Mn having the highest Young’s modulus. AlCu2Mn has the highest intrinsic hardness among AlCu2M compounds, according to calculations of their intrinsic hardness. The electronic densities of states are discussed in detail; it was discovered that all AlCu2M compounds form Al-Cu and Al-M covalent bonds. Additionally, we observe that the Debye temperature and minimum thermal conductivity of AlCu2Mn and AlCu2Sc are both larger than those of others, indicating stronger chemical bonds and higher thermal conductivities, which is consistent with the elastic modulus results. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

21 pages, 12514 KiB  
Article
Analysis of the Microstructure and Mechanical Performance of Resistance Spot-Welding of Ti6Al4V to DP600 Steel Using Copper/Gold Cold-Sprayed Interlayers
by Krzysztof Szwajka, Joanna Zielińska-Szwajka, Marek Szewczyk, Marwan T. Mezher and Tomasz Trzepieciński
Materials 2024, 17(13), 3251; https://doi.org/10.3390/ma17133251 - 2 Jul 2024
Cited by 3 | Viewed by 1520
Abstract
In this article, an attempt was made to join DP600 steel and Ti6Al4V titanium alloy sheets by resistance spot-welding (RSW) using an interlayer in the form of Cu and Au layers fabricated through the cold-spraying process. The welded joints obtained by RSW without [...] Read more.
In this article, an attempt was made to join DP600 steel and Ti6Al4V titanium alloy sheets by resistance spot-welding (RSW) using an interlayer in the form of Cu and Au layers fabricated through the cold-spraying process. The welded joints obtained by RSW without an interlayer were also considered. The influence of Cu and Au as an interlayer on the resulting microstructure as well as mechanical properties (shear force and microhardness) of the joints were determined. A typical type of failure of Ti6Al4V/DP600 joints produced without the use of an interlayer is brittle fracture. The microstructure of the resulting joint consisted mainly of the intermetallic phases FeTi and Fe2Ti. The microstructure of the Ti6Al4V/Au/DP600 joint contained the intermetallic phases Ti3Au, TiAu, and TiAu4. The intermetallic phases TiCu and FeCu were found in the microstructure of the Ti6Al4V/Cu/DP600 joint. The maximum tensile/shear stress was 109.46 MPa, which is more than three times higher than for a welded joint fabricated without the use of Cu or Au interlayers. It has been observed that some alloying elements, such as Fe, can lower the martensitic transformation temperature, and some, such as Au, can increase the martensitic transformation temperature. Full article
Show Figures

Figure 1

12 pages, 29069 KiB  
Article
Zr as an Alternative Grain Refiner in the Novel AlSi5Cu2Mg Alloy
by Dana Bolibruchová, Marek Matejka, Lukáš Širanec and Martin Švec
Metals 2024, 14(5), 581; https://doi.org/10.3390/met14050581 - 15 May 2024
Cited by 5 | Viewed by 1836
Abstract
Al-Si-Cu-Mg alloys are among the most significant types of aluminum alloys, accounting for 85–90% of all castings used in the automotive sector. These alloys are used, for example, in the manufacturing of engine blocks and cylinder heads due to their excellent specific strength [...] Read more.
Al-Si-Cu-Mg alloys are among the most significant types of aluminum alloys, accounting for 85–90% of all castings used in the automotive sector. These alloys are used, for example, in the manufacturing of engine blocks and cylinder heads due to their excellent specific strength (ratio of strength to specific weight) and superior castability and thermal conductivity. This study investigated the effect of using Zr as an alternative grain refiner in the novel AlSi5Cu2Mg cylinder head alloy. The microstructure of this alloy could not be refined via common Al-Ti-B grain refiners due to its specifically designed chemical composition, which limits the maximum Ti content to 0.03 wt.%. The results showed that the addition of Zr via the AlZr20 master alloy led to a gradual increase in the solidus temperature and to the grain refinement of the microstructure with the addition of as little as 0.05 wt.% Zr. The addition of more Zr (0.10, 0.15, and 0.20 wt.%) led to a gradual grain refinement effect for the alloy. The presence of Zr in the AlSi5Cu2Mg alloy was reflected in the formation of Zr-rich intermetallic phases with acicular morphology. Such phases acted as potent nucleants for the α-Al grain. Full article
(This article belongs to the Special Issue Grain Refinement and Mechanical Properties of Cast Alloys)
Show Figures

Graphical abstract

18 pages, 14266 KiB  
Article
Microstructure and Phase Composition of Novel Crossover Al-Zn-Mg-Cu-Zr-Y(Er) Alloys with Equal Zn/Mg/Cu Ratio and Cr Addition
by Maria V. Glavatskikh, Ruslan Yu. Barkov, Leonid E. Gorlov, Maxim G. Khomutov and Andrey V. Pozdniakov
Metals 2024, 14(5), 547; https://doi.org/10.3390/met14050547 - 6 May 2024
Cited by 10 | Viewed by 2442
Abstract
The effect of 0.2%Cr addition on the structure, phase composition, and mechanical properties of the novel cast and wrought Al-2.5Zn-2.5Mg-2.5Cu-0.2Zr-Er(Y) alloys were investigated in detail. Chromium is distributed between primary crystals (5.7–6.8%) of the intermetallic phase and the aluminum solid solution (0.2%) (Al). [...] Read more.
The effect of 0.2%Cr addition on the structure, phase composition, and mechanical properties of the novel cast and wrought Al-2.5Zn-2.5Mg-2.5Cu-0.2Zr-Er(Y) alloys were investigated in detail. Chromium is distributed between primary crystals (5.7–6.8%) of the intermetallic phase and the aluminum solid solution (0.2%) (Al). The primary crystals contain for the main part Cr, Ti, Er(Y). The experimental phase composition is in good correlation with the thermodynamic computation data. The micron-sized solidification origin phases (Al8Cu4Er(or Y) and Mg2Si) and supersaturated (Al) with nano-sized Al3(Zr,Ti) and E (Al18Mg3Cr2) precipitates are presented in the microstructure of the novel alloys after solution treatment. The nucleation of η (MgZn2) (0.5%), S (Al2CuMg) (0.4%), and T (Al,Zn,Mg,Cu) (8.8%) phase precipitates at 180 °C, providing the achievement of a maximum hardness of 135 HV in the Al2.5Zn2.5Mg2.5CuYCr alloy. The corrosion potential of the novel alloy is similar to the Ecor of the referenced alloy, but the corrosion current density (0.68–0.98 µA/sm2) is still significantly lower due to the formation of E (Al18Mg3Cr2) precipitates and S phase precipitates of the aging origin, in addition to the T phase. The formation of E (Al18Mg3Cr2) precipitates under the solution treatment provides a lower proportion of recrystallized grains (2.5–5% vs. 22.4–25.1%) and higher hardness (110 HV vs. 85–95 HV) in the Cr-rich alloys compared to the referenced alloys. Solution treated, hot and cold rolled, recrystallized, water quenched and aged at 210 °C alloys demonstrate an excellent microstructure stability and tensile properties: YS = 299–300 MPa, UTS = 406–414 MPa, and El. = 9–12.3%. Full article
Show Figures

Figure 1

14 pages, 3201 KiB  
Article
First-Principles Study on Thermodynamic, Structural, Mechanical, Electronic, and Phonon Properties of tP16 Ru-Based Alloys
by Bhila Oliver Mnisi, Moseti Evans Benecha and Malebo Meriam Tibane
Alloys 2024, 3(2), 126-139; https://doi.org/10.3390/alloys3020007 - 15 Apr 2024
Cited by 4 | Viewed by 2046
Abstract
Transition metal-ruthenium alloys are promising candidates for ultra-high-temperature structural applications. However, the mechanical and electronic characteristics of these alloys are not well understood in the literature. This study uses first-principles density functional theory calculations to explore the structural, electronic, mechanical, and phonon properties [...] Read more.
Transition metal-ruthenium alloys are promising candidates for ultra-high-temperature structural applications. However, the mechanical and electronic characteristics of these alloys are not well understood in the literature. This study uses first-principles density functional theory calculations to explore the structural, electronic, mechanical, and phonon properties of X3Ru (X = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) binary alloys in the tP16 crystallographic phase. We find that Mn3Ru, Sc3Ru, Ti3Ru, V3Ru, and Zn3Ru have negative heats of formation and hence are thermodynamically stable. Mechanical analysis (Cij) indicates that all tP16-X3Ru alloys are mechanically stable except, Fe3Ru and Cr3Ru. Moreover, these compounds exhibit ductility and possess high melting temperatures. Furthermore, phonon dispersion curves indicate that Cr3Ru, Co3Ru, Ni3Ru, and Cu3Ru are dynamically stable, while the electronic density of states reveals all the X3Ru alloys are metallic, with a significant overlap between the valence and conduction bands at the Fermi energy. These findings offer insights into the novel properties of the tP16 X3Ru intermetallic alloys for the exploration of high-temperature structural applications. Full article
Show Figures

Figure 1

14 pages, 9733 KiB  
Review
Effects of Interlayer on the Microstructure and Mechanical Properties of Resistance Spot Welded Titanium/Steel Joints: A Short Review
by Yibo Liu and Chaoqun Zhang
Metals 2024, 14(4), 429; https://doi.org/10.3390/met14040429 - 6 Apr 2024
Cited by 4 | Viewed by 2148
Abstract
In this paper, the influence of interlayer on titanium/steel dissimilar metal resistance spot welding is reviewed from the aspects of macroscopic characteristics, microstructure and interface bonding properties of the joint. Previous studies have demonstrated that TiC, FeTi and Fe2Ti intermetallic compounds [...] Read more.
In this paper, the influence of interlayer on titanium/steel dissimilar metal resistance spot welding is reviewed from the aspects of macroscopic characteristics, microstructure and interface bonding properties of the joint. Previous studies have demonstrated that TiC, FeTi and Fe2Ti intermetallic compounds with high brittleness are formed in the joint during titanium/steel welding, which reduces the strength of the welded joint. Researchers proposed different interlayer materials, including Cu, Ni, Nb, Ta, 60%Ni-Cu alloy and BAg45CuZn. Firstly, adding an interlayer can weaken the diffusion of Fe and Ti. Secondly, the interlayer elements can combine with Fe or Ti to form solid solutions or intermetallic compounds with lower brittleness than Fe–Ti compounds. Finally, Cu, Ni, Ag, etc. with excellent ductility can effectively decrease the generation of internal stress, which reduces the formation of defects to improve the strength of the joint. Full article
Show Figures

Figure 1

Back to TopTop