Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Cu–Co nanoalloys

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 1785 KiB  
Proceeding Paper
Optimizing a Cu-Ni Nanoalloy-Coated Mesoporous Carbon for Efficient CO2 Electroreduction
by Manal B. Alhamdan, Ahmed Bahgat Radwan and Noora Al-Qahtani
Mater. Proc. 2025, 22(1), 2; https://doi.org/10.3390/materproc2025022002 - 16 Jul 2025
Viewed by 271
Abstract
Reducing atmospheric carbon dioxide is a critical global priority. This study investigates the influence of Cu-Ni nanoalloy loading on the CO2 electroreduction efficiency in the context of mesoporous carbon supports. Current methods struggle when it comes to catalyst efficiency, selectivity, and longevity. [...] Read more.
Reducing atmospheric carbon dioxide is a critical global priority. This study investigates the influence of Cu-Ni nanoalloy loading on the CO2 electroreduction efficiency in the context of mesoporous carbon supports. Current methods struggle when it comes to catalyst efficiency, selectivity, and longevity. By synthesizing copper–nickel nanoparticles through chemical reduction and depositing them on porous carbon, this research aimed to optimize catalyst loading and understand the structure–activity relationships. Catalyst performance was evaluated using chronoamperometry and linear sweep voltammetry (LSV). The results showed that 12 wt% catalyst loading achieved optimal CO2 reduction, outperforming its 36 wt% counterpart by balancing the catalyst quantity. This study reveals that 12 wt% Cu-Ni loading provides a higher CO2 reduction current density and greater long-term stability than 36 wt% loading, owing to better nanoparticle dispersion and reduced aggregation. Unlike previous Cu-Ni/mesoporous carbon studies, this work uniquely compares different loadings to directly correlate the structure, electrochemical performance, and catalyst durability. Full article
Show Figures

Figure 1

21 pages, 3651 KiB  
Article
Graphene Oxide-Anchored Cu–Co Catalysts for Efficient Electrochemical Nitrate Reduction
by Haosheng Lan, Yi Zhang, Le Ding, Xin Li, Zhanhong Zhao, Yansen Qu, Yingjie Xia and Xinghua Chang
Materials 2025, 18(11), 2495; https://doi.org/10.3390/ma18112495 - 26 May 2025
Viewed by 579
Abstract
Electrocatalytic nitrate reduction to ammonia (ENRA) presents a promising strategy for simultaneous environmental remediation and sustainable ammonia synthesis. In this work, a Cu–Co bimetallic catalyst supported on functionalized reduced graphene oxide (RGO) was systematically designed to achieve efficient and selective ammonia production. Surface [...] Read more.
Electrocatalytic nitrate reduction to ammonia (ENRA) presents a promising strategy for simultaneous environmental remediation and sustainable ammonia synthesis. In this work, a Cu–Co bimetallic catalyst supported on functionalized reduced graphene oxide (RGO) was systematically designed to achieve efficient and selective ammonia production. Surface oxygen functional groups on graphene oxide (GO) were optimized through alkaline hydrothermal treatments, enhancing the anchoring capacity for metal active sites. Characterization indicated the successful formation of uniform Cu–Co bimetallic heterointerfaces comprising metallic and oxide phases, which significantly improved catalyst stability and performance. Among the studied compositions, Cu6Co4/RGO exhibited superior catalytic activity, achieving a remarkable ammonia selectivity of 99.86% and a Faradaic efficiency of 96.54% at −0.6 V (vs. RHE). Long-term electrocatalysis demonstrated excellent durability, with over 90% Faradaic efficiency maintained for ammonia production after 20 h of operation. In situ FTIR analysis revealed that introducing Co effectively promoted water dissociation, facilitating hydrogen generation (*H) and accelerating the transformation of nitrate intermediates. This work offers valuable mechanistic insights and paves the way for the design of highly efficient bimetallic electrocatalysts for nitrate reduction and ammonia electrosynthesis. Full article
(This article belongs to the Special Issue Eco-Nanotechnology in Materials)
Show Figures

Graphical abstract

15 pages, 2144 KiB  
Article
Improving Catalytic Activity towards the Direct Synthesis of H2O2 through Cu Incorporation into AuPd Catalysts
by Alexandra Barnes, Richard J. Lewis, David J. Morgan, Thomas E. Davies and Graham J. Hutchings
Catalysts 2022, 12(11), 1396; https://doi.org/10.3390/catal12111396 - 9 Nov 2022
Cited by 9 | Viewed by 3651
Abstract
With a focus on catalysts prepared by an excess-chloride wet impregnation procedure and supported on the zeolite ZSM-5(30), the introduction of low concentrations of tertiary base metals, in particular Cu, into supported AuPd nanoparticles can be observed to enhance catalytic activity towards the [...] Read more.
With a focus on catalysts prepared by an excess-chloride wet impregnation procedure and supported on the zeolite ZSM-5(30), the introduction of low concentrations of tertiary base metals, in particular Cu, into supported AuPd nanoparticles can be observed to enhance catalytic activity towards the direct synthesis of H2O2. Indeed the optimal catalyst formulation (1%AuPd(0.975)Cu(0.025)/ZSM-5) is able to achieve rates of H2O2 synthesis (115 molH2O2kgcat−1h−1) approximately 1.7 times that of the bi-metallic analogue (69 molH2O2kgcat−1h−1) and rival that previously reported over comparable materials which use Pt as a dopant. Notably, the introduction of Cu at higher loadings results in an inhibition of performance. Detailed analysis by CO-DRFITS and XPS reveals that the improved performance observed over the optimal catalyst can be attributed to the electronic modification of the Pd species and the formation of domains of a mixed Pd2+/Pd0 oxidation state as well as structural changed within the nanoalloy. Full article
(This article belongs to the Special Issue State of the Art in Molecular Catalysis in Europe)
Show Figures

Graphical abstract

11 pages, 5136 KiB  
Article
Strained Lattice Gold-Copper Alloy Nanoparticles for Efficient Carbon Dioxide Electroreduction
by Fangfang Chang, Chenguang Wang, Xueli Wu, Yongpeng Liu, Juncai Wei, Zhengyu Bai and Lin Yang
Materials 2022, 15(14), 5064; https://doi.org/10.3390/ma15145064 - 20 Jul 2022
Cited by 6 | Viewed by 2622
Abstract
Electrocatalytic conversion of carbon dioxide (CO2) into specific renewable fuels is an attractive way to mitigate the greenhouse effect and solve the energy crisis. AunCu100-n/C alloy nanoparticles (AunCu100−n/C NPs) with tunable compositions, a [...] Read more.
Electrocatalytic conversion of carbon dioxide (CO2) into specific renewable fuels is an attractive way to mitigate the greenhouse effect and solve the energy crisis. AunCu100-n/C alloy nanoparticles (AunCu100−n/C NPs) with tunable compositions, a highly active crystal plane and a strained lattice were synthesized by the thermal solvent co-reduction method. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) results show that AunCu100−n/C catalysts display a subtle lattice strain and dominant (111) crystal plane, which can be adjusted by the alloy composition. Electrochemical results show that AunCu100−n/C alloy catalysts for CO2 reduction display high catalytic activity; in particular, the Faradaic efficiency of Au75Cu25/C is up to 92.6% for CO at −0.7 V (vs. the reversible hydrogen electrode), which is related to lattice shrinkage and the active facet. This research provides a new strategy with which to design strong and active nanoalloy catalysts with lattice mismatch and main active surfaces for CO2 reduction reaction. Full article
(This article belongs to the Special Issue Properties of Interfaced Materials and Films)
Show Figures

Figure 1

Back to TopTop