Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = Cu/ZIF-8

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4501 KB  
Article
An Electrochemical Aptamer Sensor with ZIF-8 Loaded CuNPs Composites for Aflatoxin B1 Determination
by Juncheng Chen, Caizhang Wu, Zhike Zhao and Ruihao Xue
Chemosensors 2025, 13(9), 342; https://doi.org/10.3390/chemosensors13090342 - 6 Sep 2025
Cited by 1 | Viewed by 701
Abstract
An electrochemical aptamer sensor for the sensitive detection of aflatoxin B1 (AFB1) in corn samples was developed using nanocomposites loaded with copper nanoparticles (CuNPs) on zeolitic imidazolate framework-8 (ZIF-8), which were modified on a glassy carbon electrode (GCE). The CuNPs@ZIF-8 [...] Read more.
An electrochemical aptamer sensor for the sensitive detection of aflatoxin B1 (AFB1) in corn samples was developed using nanocomposites loaded with copper nanoparticles (CuNPs) on zeolitic imidazolate framework-8 (ZIF-8), which were modified on a glassy carbon electrode (GCE). The CuNPs@ZIF-8 nanocomposites served as modifying materials for electrodes, exhibiting a high specific surface area and excellent compatibility with aptamers, thereby enhancing the electron transfer rate and increasing the aptamer loading and immobilization efficiency. The electrochemical properties before and after modification were investigated and validated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques, while the sensor’s performance was analyzed through quantitative detection via differential pulse voltammetry (DPV). Furthermore, various conditions, including the volume of ZIF-8 dispersion, electrodeposition time of copper nanoparticles, aptamer concentration, and AFB1 incubation time, were optimized. The results indicated that the sensor exhibited a wide linear range (10.0 to 1.0 × 106 pg/mL), with a lower limit of detection (LOD) of 1.13 pg/mL under optimized conditions, outperforming other reported aptamer sensors. The spiked recoveries in corn samples ranged from 96.663% to 105.72%. In conclusion, this sensor presents a novel solution for low-cost and high-sensitivity detection of AFB1. Full article
(This article belongs to the Section (Bio)chemical Sensing)
Show Figures

Figure 1

11 pages, 2972 KB  
Article
ZnCu Metal–Organic Framework Electrocatalysts for Efficient Ammonia Decomposition to Hydrogen
by Mingguang Ouyang, Geng Chen, Weitao Ning, Xiaoyang Wang, Xiaojiang Mu and Lei Miao
Energies 2025, 18(14), 3871; https://doi.org/10.3390/en18143871 - 21 Jul 2025
Cited by 1 | Viewed by 709
Abstract
The electrocatalytic decomposition of ammonia represents a promising route for sustainable hydrogen production, yet current systems rely heavily on noble metal catalysts with prohibitive costs and limited durability. A critical challenge lies in developing non-noble electrocatalysts that simultaneously achieve high active site exposure, [...] Read more.
The electrocatalytic decomposition of ammonia represents a promising route for sustainable hydrogen production, yet current systems rely heavily on noble metal catalysts with prohibitive costs and limited durability. A critical challenge lies in developing non-noble electrocatalysts that simultaneously achieve high active site exposure, optimized electronic configurations, and robust structural stability. Addressing these requirements, this study strategically engineered Cu-doped ZIF-8 architectures via in situ growth on nickel foam (NF) substrates through a facile room-temperature hydrothermal synthesis approach. Systematic optimization of the Cu/Zn molar ratio revealed that Cu0.7Zn0.3-ZIF/NF achieved optimal performance, exhibiting a distinctive nanoflower-like architecture that substantially increased accessible active sites. The hybrid catalyst demonstrated superior electrocatalytic performance with a current density of 124 mA cm−2 at 1.6 V vs. RHE and a notably low Tafel slope of 30.94 mV dec−1, outperforming both Zn-ZIF/NF (39.45 mV dec−1) and Cu-ZIF/NF (31.39 mV dec−1). Combined XPS and EDS analyses unveiled a synergistic electronic structure modulation between Zn and Cu, which facilitated charge transfer and enhanced catalytic efficiency. A gas chromatography product analysis identified H2 and N2 as the primary gaseous products, confirming the predominant occurrence of the ammonia oxidation reaction (AOR). This study not only presents a noble metal-free electrocatalyst with exceptional efficiency and durability for ammonia decomposition but also demonstrates the significant potential of MOF-derived materials in sustainable hydrogen production technologies. Full article
(This article belongs to the Special Issue Advanced Energy Conversion Technologies Based on Energy Physics)
Show Figures

Figure 1

15 pages, 4882 KB  
Article
Combination of Cu-BTC- and FeCo-MOF-Derived Carbon Enhanced Molecularly Imprinted Electrochemical Sensor for Highly Sensitive and Selective Detection of Benomyl in Fruits and Vegetables
by Lili Chen, Shuya Xue, Xin Li, Linbo Deng, Jiapeng Li, Jing Zhou, Yansha Gao, Xuemin Duan and Limin Lu
Molecules 2025, 30(9), 1869; https://doi.org/10.3390/molecules30091869 - 22 Apr 2025
Cited by 1 | Viewed by 917
Abstract
The development of sensitive and selective methods for detecting pesticide residues has become paramount for ensuring food safety. In this work, a high-performance molecularly imprinted electrochemical sensor based on the composite of Cu-BTC- and FeCo-ZIF-derived N-doped carbon (FeCo@NC), synthesized by pyrolysis and electrodeposition, [...] Read more.
The development of sensitive and selective methods for detecting pesticide residues has become paramount for ensuring food safety. In this work, a high-performance molecularly imprinted electrochemical sensor based on the composite of Cu-BTC- and FeCo-ZIF-derived N-doped carbon (FeCo@NC), synthesized by pyrolysis and electrodeposition, was developed for Benomyl (BN) detection. The materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In this sensing system, the Cu-BTC/FeCo@NC composite used as the electrode substrate displayed a large specific surface area, high electronic conductivity, and rich active catalytic sites, demonstrating excellent electrocatalytic ability toward BN oxidation. Meanwhile, Cu-BTC, with its abundant surface functional groups, facilitated strong hydrogen bonding interactions with the imprinted template molecule of 3,4-ethylenedioxythiophene (EDOT), promoting the formation of a uniform molecularly imprinted membrane on the substrate material surface. The introduced MIP-PEDOT could enhance the selective recognition and enrichment of the target BN, leading to an amplified detection signal. Thanks to the synergistic effects between Cu-BTC/FeCo@NC and MIP-PEDOT, the proposed sensor achieved a low detection limit of 1.67 nM. Furthermore, the fabricated sensor exhibited high selectivity, reproducibility, and interference resistance in detecting BN. The method has been successfully applied to the determination of BN in vegetable and fruit samples, indicating its potential for use in practical applications. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

15 pages, 5041 KB  
Article
MOF-Derived N-Doped Carbon Nanotube-Confined Ni Nanoparticles for the Simultaneous Electrochemical Detection of Cu²⁺ and Hg²⁺ with High Sensitivity and Stability
by Jiapeng Li, Lili Chen, Yiming Qiao, Li Li, Xin Li, Linbo Deng, Xuemin Duan, Hui Chen and Yansha Gao
Molecules 2025, 30(5), 1078; https://doi.org/10.3390/molecules30051078 - 26 Feb 2025
Viewed by 1434
Abstract
Heavy metal pollution has posed a serious threat to the ecological environment and human health. Thus, the development of accurate and effective methods for their detection is crucial. In this study, a novel electrochemical sensor was fabricated to detect Cu2+ and Hg [...] Read more.
Heavy metal pollution has posed a serious threat to the ecological environment and human health. Thus, the development of accurate and effective methods for their detection is crucial. In this study, a novel electrochemical sensor was fabricated to detect Cu2+ and Hg2+, based on N-doped carbon nanotube-wrapped Ni nanoparticle (Ni@N-CNT) sensing material, which was derived from the pyrolysis of Ni2+ doped ZIF-8. For electrode material design, the packaging structure not only protected the encapsulated Ni nanoparticles from electrochemical corrosion in the acid electrolyte but also provided excellent electro-catalytic activity and electrical conductivity by controlling their size. Thanks to the overall performance of the Ni@N-CNT composite, the proposed sensor exhibited excellent analytical performance for Cu2+ and Hg2+ detection, with ultra-low detection limits of 33.3 ng⋅L−1 and 33.3 ng⋅L−1, respectively. The sensor also demonstrated good repeatability, reproducibility and selectivity. In addition, the method was successfully applied to the electrochemical analysis of Cu2+ and Hg2+ in actual Chinese cabbage samples with satisfactory recovery, confirming its practical applicability. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

17 pages, 3924 KB  
Article
Green Fabrication of Zinc-Based Metal–Organic Frameworks@Bacterial Cellulose Aerogels via In Situ Mineralization for Wastewater Treatment
by Xinru Liu, Jie Gu, Yongqi Cao, Liping Tan and Tongjun Liu
Molecules 2025, 30(5), 982; https://doi.org/10.3390/molecules30050982 - 20 Feb 2025
Cited by 2 | Viewed by 1255
Abstract
Compared to conventional adsorbents, zinc-based metal–organic frameworks (MOFs) such as zeolite imidazolium skeleton-8 (ZIF-8) exhibit enhanced thermal, chemical, and structural stability. Nonetheless, their powdered form results in limited dispersibility in aqueous solutions and a tendency to aggregate, which significantly restricts their utility in [...] Read more.
Compared to conventional adsorbents, zinc-based metal–organic frameworks (MOFs) such as zeolite imidazolium skeleton-8 (ZIF-8) exhibit enhanced thermal, chemical, and structural stability. Nonetheless, their powdered form results in limited dispersibility in aqueous solutions and a tendency to aggregate, which significantly restricts their utility in adsorption applications. This study reports a green composite aerogel through the in situ mineralization of ZIF-8 onto bacterial cellulose (BC) for the effective removal of toxic metal ions (Cu2+) and Congo red (CR) from wastewater. The ZIF@BC composite aerogel was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and specific surface area analysis. The findings indicated that the ZIF-8 produced were evenly distributed across the BC nanonetwork, facilitating effective adsorption of CR and Cu2+. The maximum adsorption capacities of the ZIF@BC aerogels were determined to be 397.55 mg/g for CR and 424.80 mg/g for Cu2+, as per the Langmuir isotherm. Furthermore, the ZIF-8@BC aerogels demonstrated excellent selectivity and reusability, particularly for CR adsorption. The proposed mechanism for the interaction between the composite aerogel and CR and Cu2+ involves electrostatic interactions, hydrogen bonding, π-π bonding, coordination bonding, ion exchange, microchemical precipitation, and pore diffusion. This research offers significant promise for the utilization of MOF powders and highlights substantial industrial potential. Full article
Show Figures

Figure 1

32 pages, 6334 KB  
Review
Recent Developments in Heavy Metals Detection: Modified Electrodes, Pretreatment Methods, Prediction Models and Algorithms
by Yujie Shi, Shijie Zhang, Hang Zhou, Yue Dong, Gang Liu, Wenshuai Ye, Renjie He and Guo Zhao
Metals 2025, 15(1), 80; https://doi.org/10.3390/met15010080 - 17 Jan 2025
Cited by 13 | Viewed by 6481
Abstract
Heavy metal pollution has become an increasingly serious environmental issue, making the detection of heavy metals essential for safeguarding public health and the environment. This review aims to highlight the commonly used methods for detecting heavy metals (such as atomic absorption spectroscopy (AAS), [...] Read more.
Heavy metal pollution has become an increasingly serious environmental issue, making the detection of heavy metals essential for safeguarding public health and the environment. This review aims to highlight the commonly used methods for detecting heavy metals (such as atomic absorption spectroscopy (AAS), atomic emission spectroscopy (AES), inductively coupled plasma–mass spectrometry (ICP-MS), square-wave anodic stripping voltammetry (SWASV), etc.), with a particular focus on electrochemical detection and electrode modification materials. Metal nanomaterials (such as titanium dioxide (TiO2), copper oxide (CuO), ZIF-8, MXene, etc.) are emphasized as promising candidates for enhancing the performance of sensors due to their high surface area and excellent catalytic properties. However, challenges such as interference from non-target heavy metal ions and the formation of organometallic complexes with organic compounds can complicate the detection process. To address these issues, two potential solutions have been proposed: the development of advanced algorithms (such as machine learning (ML), back-propagation neural network (BPNN), support vector machines (SVM), random forests (RF), etc.) for signal processing and the use of pretreatment methods (such as Fenton oxidation (FO), ozone oxidation, and photochemical oxidation) to suppress such interferences. This paper aims to review commonly used methods for detecting heavy metals, with a particular emphasis on electrochemical techniques. It will also highlight the challenges faced in these methods, such as interference and sensitivity limitations, and propose innovative solutions, including the use of metal nanomaterials for improved sensor performance and the integration of advanced algorithms and pretreatment techniques to address interference and enhance detection accuracy. Full article
Show Figures

Figure 1

18 pages, 9211 KB  
Article
Cu0-Functionalized, ZIF-8-Derived, Nitrogen-Doped Carbon Composites for Efficient Iodine Elimination in Solution
by Jiuyu Chen, Chensheng Gao, Jingwen Chen, Fei Liu and Zhiwen Liu
Nanomaterials 2025, 15(2), 105; https://doi.org/10.3390/nano15020105 - 12 Jan 2025
Cited by 3 | Viewed by 1653
Abstract
The development of copper-based materials with a high efficiency and low cost is desirable for use in iodine (I2) remediation. Herein, Cu0-nanoparticles-functionalized, ZIF-8 (Zeolite Imidazole Framework-8)-derived, nitrogen-doped carbon composites (Cu@Zn-NC) were synthesized by ball milling and pyrolysis processes. The [...] Read more.
The development of copper-based materials with a high efficiency and low cost is desirable for use in iodine (I2) remediation. Herein, Cu0-nanoparticles-functionalized, ZIF-8 (Zeolite Imidazole Framework-8)-derived, nitrogen-doped carbon composites (Cu@Zn-NC) were synthesized by ball milling and pyrolysis processes. The as-prepared composites were characterized using SEM, BET, XRD, XPS, and FT-IR analyses. The results showed that the morphology of ZIF-8 changed from a leaf-like structure into an irregular structure after the introduction of a copper salt and carbonization. The copper in the pyrolysis samples was mainly in the form of Cu0 particles. The presence of an appropriate amount of Cu0 particles could increase the specific surface area of Cu@Zn-NC. The subsequent batch adsorption results demonstrated that the as-fabricated composites showed high I2 adsorption amounts (1204.9 mg/g) and relatively fast dynamics in an iodine–cyclohexane solution when the Cu content was 30% and the pyrolysis temperature was 600 °C, outperforming the other Cu-based materials. The isothermal adsorption followed both Langmuir and Dubinin–Radushkevich isotherm models, while the kinetics of I2 adsorption followed a pseudo-second-order kinetic model. The activation energy (Eα) of the adsorbent was determined to be 47.2 kJ/mol, according to the Arrhenius equation. According to the experimental and DFT analyses, I2-Zn interactions and I2-Cu0 chemisorption jointly promoted the elimination of iodine. In general, this study provided an operative adsorbent for the highly effective capture of iodine in solution, which might be worth applying on a large scale. Full article
Show Figures

Figure 1

12 pages, 3618 KB  
Article
Integrating L-Cys-AuNCs in ZIF-8 with Enhanced Fluorescence and Strengthened Stability for Sensitive Detection of Copper Ions
by Ting Zhou, Luyao Zang, Xia Zhang, Xia Liu, Zijie Qu, Guodong Zhang, Xiufeng Wang, Fang Wang and Zhiqing Zhang
Molecules 2024, 29(24), 6011; https://doi.org/10.3390/molecules29246011 - 20 Dec 2024
Cited by 1 | Viewed by 1391
Abstract
Gold nanoclusters (AuNCs) have been widely investigated because of their unique photoluminescence properties. However, the applications of AuNCs are limited by their poor stability and relatively low fluorescence. In the present work, we developed nanocomposites (L-Cys-AuNCs@ZIF-8) with high fluorescence and stability, which were [...] Read more.
Gold nanoclusters (AuNCs) have been widely investigated because of their unique photoluminescence properties. However, the applications of AuNCs are limited by their poor stability and relatively low fluorescence. In the present work, we developed nanocomposites (L-Cys-AuNCs@ZIF-8) with high fluorescence and stability, which were constructed by encapsulating the water-dispersible L-Cys-AuNCs into a ZIF-8 via Zn2+-triggered growth strategy without high temperature and pressure. The maximum emission wavelength of the L-Cys-AuNCs@ZIF-8 composite was at 868 nm, and the fluorescence intensity of L-Cys-AuNCs@ZIF-8 was nearly nine-fold compared with L-Cys-AuNCs without the ZIF-8 package. The mechanism investigation by fluorescence spectroscopy and X-ray photoelectron spectroscopy showed that L-Cys-AuNCs@ZIF-8 impeded ligand rotation, induced energy dissipation, and diminished the self-quenching effect, attributing to the spatial distribution of L-Cys-AuNCs. Based on the high fluorescence efficiency of L-Cys-AuNCs@ZIF-8, a “signal off” detective platform was proposed with copper ions as a model analyte, achieving a sensitive detection limit of Cu2+ at 16.7 nM. The quenching mechanism was confirmed, showing that the structure of the L-Cys-AuNCs@ZIF-8 nanocomposites was collapsed by the addition of Cu2+. Attributing to the strong adsorption ability between copper ions and pyridyl nitrogen, the as-prepared L-Cys-AuNCs@ZIF-8 was shown to accumulate Cu2+, and the Zn2+ in ZIF-8 was replaced by Cu2+. Full article
Show Figures

Figure 1

13 pages, 5139 KB  
Article
Preparation and Electrocatalytic Properties of One-Dimensional Nanorod-Shaped N, S Co-Doped Bimetallic Catalysts of FeCuS-N-C
by Hong Shi, Lina Wu, Qi Zhang, Yizhou Zhang, Wentao Sun, Chunbo Liu and Rongxian Zhang
Catalysts 2024, 14(12), 849; https://doi.org/10.3390/catal14120849 - 23 Nov 2024
Cited by 1 | Viewed by 1025
Abstract
Metal air batteries have gradually attracted public attention due to their advantages such as high power density, high energy density, high energy conversion efficiency, and clean and green products. Reasonable design of oxygen reduction reaction (ORR) catalysts with high cost-effectiveness, high activity, and [...] Read more.
Metal air batteries have gradually attracted public attention due to their advantages such as high power density, high energy density, high energy conversion efficiency, and clean and green products. Reasonable design of oxygen reduction reaction (ORR) catalysts with high cost-effectiveness, high activity, and high stability is of great significance. Metal organic frameworks (MOFs) have the advantages of large specific surface area, high porosity, and designability, which make them widely used in many fields, especially in catalysis. This paper starts with regulating and optimizing the composition and structure of MOFs. A series of N, S co-doped electrocatalysts FeCuS-N-C were prepared by two high-temperature pyrolysis processes using N-doped carbon hollow nanorods derived from ZIF-8 as the substrate. The one-dimensional nanorod material derived from this MOF exhibits excellent electrocatalytic ORR performance (Eonset = 0.998 V, E1/2 = 0.874 V). When used as the air cathode catalyst for zinc air batteries and assembled into liquid ZABs, the battery discharge curve was calculated and found to have a maximum power density of 142.7 mW cm−2, a specific capacity of 817.1 mAh gZn−1, and a cycling stability test of over 400 h. This study provides an innovative approach for designing and optimizing non-precious metal catalysts for zinc air batteries. Full article
Show Figures

Graphical abstract

14 pages, 17183 KB  
Article
Experimental Investigation into Atmospheric Microwave Plasma-Driven Nitrogen Fixation Using Metal–Organic Frameworks
by Fang Zheng, Kai Feng, Shaokun Wu and Wei Xiao
Processes 2024, 12(12), 2633; https://doi.org/10.3390/pr12122633 - 22 Nov 2024
Cited by 2 | Viewed by 1685
Abstract
Microwave plasma-driven nitrogen fixation can occur at atmospheric pressure without complex processing conditions. However, this method still faces the challenge of high energy consumption and low production. Combined plasma–catalyst systems are widely used to increase production and reduce energy consumption in nitrogen fixation. [...] Read more.
Microwave plasma-driven nitrogen fixation can occur at atmospheric pressure without complex processing conditions. However, this method still faces the challenge of high energy consumption and low production. Combined plasma–catalyst systems are widely used to increase production and reduce energy consumption in nitrogen fixation. However, the efficacy of currently used catalysts remains limited. In this paper, the metal–organic framework materials (MOFs) copper benzene-1,3,5-tricarboxylate (Cu-BTC) and zeolitic imidazolate framework-8 (ZIF-8) are combined with atmospheric microwave plasma for nitrogen fixation. The experimental results show that they have a better catalytic effect than the ordinary catalyst zeolite socony mobil-5 (ZSM-5). The maximum nitrogen oxide concentration reaches 33,400 ppm, and the lowest energy consumption is 2.05 MJ/mol. Compared to no catalyst, the production of nitrogen oxides (NOx) can be increased by 17.1%, and the energy consumption can be reduced by 14.6%. The stability test carried out these catalysts demonstrates that they have a stable performance within one hour. To the knowledge of the authors, this is the first effort to study the synergistic effects of atmospheric microwave plasma and MOFs on nitrogen fixation. This study also introduces a potentially eco-friendly approach to nitrogen fixation, characterized by its low energy consumption and emissions. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

14 pages, 3449 KB  
Article
Development of Recoverable Magnetic Bimetallic ZIF-67 (Co/Cu) Adsorbent and Its Enhanced Selective Adsorption of Organic Dyes in Wastewater
by Fuyan Zhang, Miaomiao Ma, Shuang Li, Yuting Zhou, Jian Zeng, Meiqi Huang, Qi Sun and Tao Le
Molecules 2024, 29(20), 4860; https://doi.org/10.3390/molecules29204860 - 14 Oct 2024
Cited by 7 | Viewed by 2373
Abstract
In the critical domain of wastewater treatment, the development of cost-effective, durable, and recyclable adsorbents with high adsorption capacities remains a significant challenge. This study introduces a novel magnetic bimetallic Metal–Organic Framework (MOF) adsorbent, MZIF-67-Co/Cu, doped with copper ions. The MZIF-67-Co/Cu adsorbent was [...] Read more.
In the critical domain of wastewater treatment, the development of cost-effective, durable, and recyclable adsorbents with high adsorption capacities remains a significant challenge. This study introduces a novel magnetic bimetallic Metal–Organic Framework (MOF) adsorbent, MZIF-67-Co/Cu, doped with copper ions. The MZIF-67-Co/Cu adsorbent was successfully synthesized and structurally characterized, demonstrating remarkable selectivity for removing methyl orange (MO) from water. This high selectivity is attributed to the adsorbent’s high porosity and Lewis base properties at the coordinating metal ion center. The incorporation of Cu ions significantly enhances the porous architecture and increases the number of metal adsorption sites, leading to an impressive maximum MO adsorption capacity of 39.02 mg/g under optimized conditions (0.5 g/L adsorbent concentration, pH 3.0, 250 rpm agitation speed, adsorption time > 10 min). The adsorption kinetics closely follow the pseudo-second-order model, and the isotherm data fit well with the Langmuir model. The primary adsorption mechanisms involve electrostatic attraction and mesoporous interaction. This study highlights MZIF-67-Co/Cu as a highly efficient adsorbent with magnetic recovery capabilities, positioning it as a promising candidate for addressing critical issues in wastewater treatment. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

14 pages, 4527 KB  
Article
ZIF-8-Based Nitrogen and Monoatomic Metal Co-Doped Pyrolytic Porous Carbon for High-Performance Supercapacitor Applications
by Xiaobo Han, Yihao Geng, Jieni Wang, Shuqin Zhang, Chenlin Wei, Leichang Cao and Shicheng Zhang
Nanomaterials 2024, 14(16), 1367; https://doi.org/10.3390/nano14161367 - 21 Aug 2024
Cited by 2 | Viewed by 2245
Abstract
Metal–organic frameworks (MOFs) receive wide attention owing to their high specific surface area, porosity, and structural designability. In this paper, ZC-Ru and ZC-Cu electrodes loaded with monatomic Ru and Cu doped with nitrogen were prepared by pyrolysis, ion impregnation, and carbonization process using [...] Read more.
Metal–organic frameworks (MOFs) receive wide attention owing to their high specific surface area, porosity, and structural designability. In this paper, ZC-Ru and ZC-Cu electrodes loaded with monatomic Ru and Cu doped with nitrogen were prepared by pyrolysis, ion impregnation, and carbonization process using ZIF-8 synthesized by static precipitation as a precursor. ZC-Cu has a high specific surface area of 859.78 m2 g−1 and abundant heteroatoms O (10.04%) and N (13.9%), showing the specific capacitance of 222.21 F g−1 at 0.1 A g−1 in three-electrode system, and low equivalent series resistance (Rct: 0.13 Ω), indicating excellent energy storage capacity and electrical conductivity. After 10,000 cycles at 1 A g−1 in 6 M KOH electrolyte, it still has an outstanding capacitance retention of 99.42%. Notably, symmetric supercapacitors ZC-Cu//ZC-Cu achieved the maximum power density and energy density of 485.12 W·kg−1 and 1.61 Wh·kg−1, respectively, positioning ZC-Cu among the forefront of previously known MOF-based electrode materials. This work demonstrates the enormous potential of ZC-Cu in the supercapacitor industry and provides a facile approach to the treatment of transition metal. Full article
(This article belongs to the Special Issue Nanomaterials for Energy Conversion and Storage (2nd Edition))
Show Figures

Figure 1

17 pages, 5103 KB  
Article
Degradation of Bisphenol A by Nitrogen-Rich ZIF-8-Derived Carbon Materials-Activated Peroxymonosulfate
by Xiaofeng Tang, Hanqing Xue, Jiawen Li, Shengnan Wang, Jie Yu and Tao Zeng
Toxics 2024, 12(5), 359; https://doi.org/10.3390/toxics12050359 - 12 May 2024
Cited by 2 | Viewed by 2214
Abstract
Bisphenol A (BPA), representing a class of organic pollutants, finds extensive applications in the pharmaceutical industry. However, its widespread use poses a significant hazard to both ecosystem integrity and human health. Advanced oxidation processes (AOPs) based on peroxymonosulfate (PMS) via heterogeneous catalysts are [...] Read more.
Bisphenol A (BPA), representing a class of organic pollutants, finds extensive applications in the pharmaceutical industry. However, its widespread use poses a significant hazard to both ecosystem integrity and human health. Advanced oxidation processes (AOPs) based on peroxymonosulfate (PMS) via heterogeneous catalysts are frequently proposed for treating persistent pollutants. In this study, the degradation performance of BPA in an oxidation system of PMS activated by transition metal sites anchored nitrogen-doped carbonaceous substrate (M-N-C) materials was investigated. As heterogeneous catalysts targeting the activation of peroxymonosulfate (PMS), M-N-C materials emerge as promising contenders poised to overcome the limitations encountered with traditional carbon materials, which often exhibit insufficient activity in the PMS activation process. Nevertheless, the amalgamation of metal sites during the synthesis process presents a formidable challenge to the structural design of M-N-C. Herein, employing ZIF-8 as the precursor of carbonaceous support, metal ions can readily penetrate the cage structure of the substrate, and the N-rich linkers serve as effective ligands for anchoring metal cations, thereby overcoming the awkward limitation. The research results of this study indicate BPA in water matrix can be effectively removed in the M-N-C/PMS system, in which the obtained nitrogen-rich ZIF-8-derived Cu-N-C presented excellent activity and stability on the PMS activation, as well as the outstanding resistance towards the variation of environmental factors. Moreover, the biological toxicity of BPA and its degradation intermediates were investigated via the Toxicity Estimation Software Tool (T.E.S.T.) based on the ECOSAR system. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

13 pages, 8702 KB  
Communication
Surface Modification of Hydroxyapatite Coating for Enhanced Antibiotic Therapy
by Rongrong Jia, Kai Li, Jieping Li, Deliang Yi, Yi Ding, Guangzhi Yang and Xuebin Zheng
Coatings 2024, 14(4), 477; https://doi.org/10.3390/coatings14040477 - 13 Apr 2024
Cited by 3 | Viewed by 2176
Abstract
A major strategy to combat implant-associated infections is to develop implant coatings with intrinsic antibacterial activity. Since hydroxyapatite (HAp) coatings and antibiotic administration are commonly used in clinical settings, developing HAp-coated implants with localized antibiotic-releasing properties has attracted popularity. Considering the antibacterial metal [...] Read more.
A major strategy to combat implant-associated infections is to develop implant coatings with intrinsic antibacterial activity. Since hydroxyapatite (HAp) coatings and antibiotic administration are commonly used in clinical settings, developing HAp-coated implants with localized antibiotic-releasing properties has attracted popularity. Considering the antibacterial metal species (Ag, Zn, Cu, etc.) in metal–organic frameworks and their drug delivery capacity, in this study, a gentamicin-loaded zeolitic imidazolate framework-8 nanolayer was deposited on a plasma-sprayed HAp coating (HAp/ZIF-8@Gent), which served as a Gent and Zn2+ reservoir. The investigation on the binding interaction between ZIF-8 and HAp indicated that the growth of ZIF-8 was through a Zn2+ seed layer on the HAp coating via an adsorption–replacement mechanism, instead of simple physical adsorption. The HAp/ZIF-8@Gent coating exhibited a sustained drug-release property, and the cumulative concentration of released Gent reached 239.8 ± 7.1 μg/mL on day 8. Compared to the HAp-Zn and HAp/ZIF-8 coatings, the HAp/ZIF-8@Gent coating exhibited significantly higher antibacterial activity against E. coli. This was ascribed to the combined antibacterial effects of Zn2+ and Gent. The cytocompatibility of the HAp/ZIF-8@Gent coating was confirmed via cell proliferation. Above all, the ZIF-8-modified HAp coating with localized delivery of Gent and Zn2+ possessed excellent antibacterial activity and acceptable cytocompatibility, showing potential in mitigating implant-associated infections. Full article
(This article belongs to the Section Bioactive Coatings and Biointerfaces)
Show Figures

Figure 1

20 pages, 10580 KB  
Article
Enhancing Solid-Phase Extraction of Tamoxifen and Its Metabolites from Human Plasma Using MOF-Integrated Polyacrylonitrile Composites: A Study on CuBTC and ZIF-8 Efficacy
by Domingo R. Flores-Hernandez, Héctor Manuel Leija Gutiérrez, Jose A. Hernandez-Hernandez, José Antonio Sánchez-Fernández and Jaime Bonilla-Rios
Nanomaterials 2024, 14(1), 73; https://doi.org/10.3390/nano14010073 - 26 Dec 2023
Cited by 3 | Viewed by 2064
Abstract
This study investigates electrospun fibers of metal-organic frameworks (MOFs), particularly CuBTC and ZIF-8, in polyacrylonitrile (PAN) for the solid-phase extraction (SPE) of Tamoxifen (TAM) and its metabolites (NDTAM, ENDO, and 4OHT) from human blood plasma. The focus is on the isolation, pre-concentration, and [...] Read more.
This study investigates electrospun fibers of metal-organic frameworks (MOFs), particularly CuBTC and ZIF-8, in polyacrylonitrile (PAN) for the solid-phase extraction (SPE) of Tamoxifen (TAM) and its metabolites (NDTAM, ENDO, and 4OHT) from human blood plasma. The focus is on the isolation, pre-concentration, and extraction of the analytes, aiming to provide a more accessible and affordable breast cancer patient-monitoring technology. The unique physicochemical properties of MOFs, such as high porosity and surface area, combined with PAN’s stability and low density, are leveraged to improve SPE efficiency. The study meticulously examines the interactions of these MOFs with the analytes under various conditions, including elution solvents and protein precipitators. Results reveal that ZIF-8/PAN composites outperform CuBTC/PAN and PAN alone, especially when methanol is used as the protein precipitator. This superior performance is attributed to the physicochemical compatibility between the analytes’ properties, like solubility and polarity, and the MOFs’ structural features, including pore flexibility, active site availability, surface polarity, and surface area. The findings underscore MOFs’ potential in SPE applications and provide valuable insights into the selectivity and sensitivity of different MOFs towards specific analytes, advancing more efficient targeted extraction methods in biomedical analysis. Full article
Show Figures

Figure 1

Back to TopTop