Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = Cornus officinalis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2404 KiB  
Article
Network Pharmacology-Guided Evaluation of Ginger and Cornelian Cherry Extracts Against Depression and Metabolic Dysfunction in Estrogen-Deficient Chronic Stressed Rats
by Nara Lee, Ting Zhang, Hanbin Joe and Sunmin Park
Int. J. Mol. Sci. 2025, 26(10), 4829; https://doi.org/10.3390/ijms26104829 - 18 May 2025
Viewed by 887
Abstract
This study investigated the therapeutic effects of water extracts from Zingiber officinale Roscoe (ginger) and Cornus officinalis Siebold and Zucc. fruits (COF) water extracts on depression-like behavior and metabolic dysfunction in estrogen-deficient rats exposed to chronic mild stress (CMS). Network pharmacology analysis identified [...] Read more.
This study investigated the therapeutic effects of water extracts from Zingiber officinale Roscoe (ginger) and Cornus officinalis Siebold and Zucc. fruits (COF) water extracts on depression-like behavior and metabolic dysfunction in estrogen-deficient rats exposed to chronic mild stress (CMS). Network pharmacology analysis identified three bioactive compounds in ginger and four in COF, with 11 overlapping targets linked to both depression and metabolic pathways, primarily involving NR3C1, HTR2A, MAOA, and SLC6A4 genes associated with hypothalamic–pituitary–adrenal (HPA) axis regulation and neurotransmitter modulation. Ovariectomized rats received 200 mg/kg/day of ginger or COF extracts for 7 weeks, with a 4-week CMS protocol initiated at week 3. Both extracts significantly improved depression-like behaviors, memory performance, glucose tolerance, lipid profiles, and bone mineral density, normalized HPA axis markers (corticosterone and ACTH), and increased hippocampal serotonin and dopamine levels. Ginger demonstrated greater efficacy in improving memory and metabolic outcomes compared to COF. Molecular docking further validated these findings, revealing strong and stable interactions between key phytochemicals—such as hydroxygenkwanin and telocinobufagin—and target proteins MAOA, HTR2A, and NR3C1, supporting their mechanistic role in stress and mood regulation. These results support supplementing ginger and COF extracts as promising botanical interventions for estrogen-deficiency-related mood and metabolic disorders, with potential clinical application at a human-equivalent dose of 1.5 g/day. Full article
(This article belongs to the Special Issue Medicinal Plants and Bioactive Compounds in Health and Disease)
Show Figures

Figure 1

25 pages, 6460 KiB  
Article
Effects of Different Fermentation and Clarification Methods on the Color, Physicochemical Characteristics, and Aroma Profile of Healthcare Cornus–Kiwifruit Composite Wine
by Cuiyan Zeng, Xueru Zhang, Junxia Zhang, Shuiyan Pan, Keqin Chen and Yulin Fang
Foods 2025, 14(10), 1705; https://doi.org/10.3390/foods14101705 - 11 May 2025
Viewed by 746
Abstract
A lack of distinctive features has become a significant factor limiting the development of kiwi wine. However, the rapidly growing trend of healthcare-oriented composite fruit wine with health functions and diverse flavors presents a way to address this issue. A kiwi wine fermentation [...] Read more.
A lack of distinctive features has become a significant factor limiting the development of kiwi wine. However, the rapidly growing trend of healthcare-oriented composite fruit wine with health functions and diverse flavors presents a way to address this issue. A kiwi wine fermentation method was investigated by incorporating the medicinal and edible fruits of Cornus officinalis. The results indicate that adding Cornus officinalis introduced a unique component known as iridoid glycosides to the wine. Additionally, the concentrations of phenols, total iridoid glycosides, and most aroma compounds in the wine increased after the addition of crushed Cornus officinalis following alcoholic fermentation. As the proportion of Cornus officinalis in the kiwi wine rose, so did polyphenolic substances and total iridoid glycosides; however, this diminished the wine’s clarity. Additionally, a yeast addition of 200 mg/L demonstrated optimal fermentation capabilities, and a bentonite addition of 1.1 g/L exhibited an outstanding clarifying effect. These results not only enhance nutritional value and quality but also provide a theoretical foundation for the production of high-quality Cornus–kiwifruit composite wine. Full article
(This article belongs to the Special Issue Nutritional and Flavor Compounds in Fruit Wines)
Show Figures

Figure 1

15 pages, 2033 KiB  
Article
Skin Anti-Aging Properties of the Glycopeptide- and Glycoprotein-Enriched Fraction from a Cosmetic Variation of the Longevity Medicine, Gongjin-Dan
by Gwang Jin Lee, Jiwon Park, Hyeon Jun Jeon, Tae Heon Kim, Hyejin Lee, Seongsu Kang, Seung Jin Hwang, Nam Seo Son and Nae-Gyu Kang
Cosmetics 2025, 12(3), 91; https://doi.org/10.3390/cosmetics12030091 - 1 May 2025
Viewed by 951
Abstract
This study deals with the extraction of active compounds for a formula (Angelica gigas, Cornus officinalis, Ganoderma lucidum, Thymus vulgaris, and Asparagus cochinchinensis) and the evaluation of its skin anti-aging properties. This formulation was inspired by the [...] Read more.
This study deals with the extraction of active compounds for a formula (Angelica gigas, Cornus officinalis, Ganoderma lucidum, Thymus vulgaris, and Asparagus cochinchinensis) and the evaluation of its skin anti-aging properties. This formulation was inspired by the oriental medicine Gongjin-dan (Angelica gigas, Cornus officinalis, deer antler, and musk), which has been used as a restorative drug for longevity. Enzyme-based extraction and chemical purification were used to obtain a mixed fraction (GEF) enriched in glycopeptides and glycoproteins from the five herbal materials. The chemical characteristics of GEF, including the carbohydrate groups attached to the peptides and proteins, the total carbohydrate and protein contents, and the composition of monosaccharides and amino acids were determined. The chemical characteristics that were significantly different from those of the extract, generally prepared in the same ratio, were the abundance of glycopeptides and glycoproteins and the high proportions of conditionally essential amino acids (51.0%) and acidic/basic amino acids (67.7%). These are necessary components for strengthening the skin layers against aging. The in vitro skin anti-aging properties of GEF on human fibroblasts (HS68), keratinocytes (HaCaT), and adipose-derived mesenchymal stem cells (ADMSCs) were evaluated. It was found that MMP-1 gene expression was inhibited (18–28%) and fibrillin-1 protein (23–37%) was restored contrary to the effect of UV irradiation. COL1A1 and COL4A1 gene expression (25–35%), HAS2 gene expression (22–213%), and adipogenesis (15%) were facilitated. These results demonstrate the potential of GEF as a raw material for skin anti-aging and reinforce the scientific evidence supporting a traditional medicine with a long history. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

21 pages, 3811 KiB  
Review
Recent Advances in Polysaccharides from Cornus officinalis: Extraction, Purification, Structural Features, and Bioactivities
by Shengfang Wang, Baotang Zhao, Xuemei Ma, Jing Zhang, Guofeng Li, Mingze Li and Qi Liang
Foods 2025, 14(8), 1415; https://doi.org/10.3390/foods14081415 - 19 Apr 2025
Viewed by 566
Abstract
Cornus officinalis, as a medicinal plant, is rich in biologically active components, including polysaccharides, flavonoids, triterpenoids, and organic acids, which offer a variety of health benefits and significant potential for development in the food and pharmaceutical industries. Cornus officinalis polysaccharides (COPs) are [...] Read more.
Cornus officinalis, as a medicinal plant, is rich in biologically active components, including polysaccharides, flavonoids, triterpenoids, and organic acids, which offer a variety of health benefits and significant potential for development in the food and pharmaceutical industries. Cornus officinalis polysaccharides (COPs) are considered among the primarily functional ingredients of the plant and are abundant in bioactivities. The present paper reviews the research conducted on the extraction, purification, structural properties, and biological activities of COPs. It also provides an overview of future development prospects, with a view to offering reference material for further development and research on COPs. In addition, the paper makes recommendations regarding theoretical preparations for the exploration of the application potential of COPs in the food industry and various other industrial fields. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

12 pages, 560 KiB  
Article
Development and Validation of an HPLC–PDA Method for Quality Control of Jwagwieum, an Herbal Medicine Prescription: Simultaneous Analysis of Nine Marker Compounds
by Chang-Seob Seo, Jeeyoun Jung and Sarah Shin
Pharmaceuticals 2025, 18(4), 481; https://doi.org/10.3390/ph18040481 - 27 Mar 2025
Viewed by 716
Abstract
Background/Objectives: Jwagwieum (or Joa-Gui Em; JGE) consists of six herbal medicines, Rehmannia glutinosa (Gaertn.) DC., Dioscorea japonica Thunb., Lycium chinense Mill., Cornus officinalis Siebold & Zucc., Poria cocos Wolf, and Glycyrrhiza uralensis Fisch., and has been widely used to treat kidney-yin deficiency [...] Read more.
Background/Objectives: Jwagwieum (or Joa-Gui Em; JGE) consists of six herbal medicines, Rehmannia glutinosa (Gaertn.) DC., Dioscorea japonica Thunb., Lycium chinense Mill., Cornus officinalis Siebold & Zucc., Poria cocos Wolf, and Glycyrrhiza uralensis Fisch., and has been widely used to treat kidney-yin deficiency syndrome. In the present study, a high-performance liquid chromatography with photodiode array detector (HPLC–PDA) method for the simultaneous quantification of the nine components, i.e., gallic acid, 5-(hydroxymethyl)furfural, morroniside, loganin, liquiritin apioside, liquiritin, ononin, glycyrrhizin, and allantoin, was developed. Methods: The developed HPLC–PDA assay for quality control of JGE was validated with respect to linearity, limit of detection (LOD), limit of quantification (LOQ), recovery, and precision. Results: In the regression equation of the calibration curve, the coefficient of determination was ≥0.9980, and LOD and LOQ were 0.003–0.071 μg/mL and 0.010–0.216 μg/mL, respectively. Recovery and precision (relative standard deviation) were 96.36–106.95% and <1.20%, respectively. In this analytical method, nine compounds were detected at concentrations of 0.15–3.69 mg/lyophilized gram. Conclusions: The developed and validated analytical method could be used to obtain basic data for the quality control of JGE and related herbal prescriptions. Full article
(This article belongs to the Special Issue Natural Pharmaceutical Component Analysis)
Show Figures

Figure 1

25 pages, 11667 KiB  
Article
Integrated Metabolomic and Transcriptomic Analyses Reveal the Regulatory Mechanism Underlying the Accumulation of Anthocyanins in Cornus officinalis pericarp
by Yue Qin, Xuanmeng Chen, Jiahui Yang, Jing Gao, Gang Zhang, Yonggang Yan, Xinjie Yang, Xiaofei Zhang and Ying Chen
Horticulturae 2024, 10(6), 651; https://doi.org/10.3390/horticulturae10060651 - 19 Jun 2024
Viewed by 1450
Abstract
The mature flesh of Cornus officinalis exhibits a vibrant red color, attributed to its rich anthocyanin content, imparting significant edible and medicinal value. Vibrant colors not only enhance the visual allure of medicinal materials but also maintain a close association with their intrinsic [...] Read more.
The mature flesh of Cornus officinalis exhibits a vibrant red color, attributed to its rich anthocyanin content, imparting significant edible and medicinal value. Vibrant colors not only enhance the visual allure of medicinal materials but also maintain a close association with their intrinsic quality. However, the intricate process of pigment formation governing the anthocyanin accumulation in the pericarp of Cornus officinalis remains poorly understood. In this study, we conducted the comprehensive sampling and analysis of pericarp tissues at three distinct developmental stages, employing morphological-structure observation and metabolomic and transcriptomic techniques. Our findings reveal a substantial increase in the anthocyanin accumulation during the transition to the red stage of Cornus officinalis fruit maturation. Metabolomic profiling identified the highest expression levels of Cyanidin-3-O-glucoside and Pelargonidin-3-O-rutinoside during the mature stage, suggesting their association with the red coloration of the fruit. Through RNA sequencing, we identified 25,740 differentially expressed genes (DEGs), including 41 DEGs associated with anthocyanin biosynthesis. The correlation between the DEG expression levels and anthocyanin content was explored, further elucidating the regulatory network. Additionally, we validated the pivotal role of the candidate gene BZ1 in the synthesis of Cyanidin-3-O-glucoside through qRT-PCR, confirming its crucial impact on anthocyanin accumulation. This study provides preliminary insights into anthocyanin accumulation in Cornus officinalis, laying the foundation for the future development of new cultivars with enhanced anthocyanin contents. Full article
(This article belongs to the Collection Advances in Fruit Quality Formation and Regulation)
Show Figures

Graphical abstract

16 pages, 2365 KiB  
Article
Cornus officinalis Extract Enriched with Ursolic Acid Ameliorates UVB-Induced Photoaging in Caenorhabditis elegans
by Zengwang Yue, Han Liu, Manqiu Liu, Ning Wang, Lin Ye, Chaowan Guo and Bisheng Zheng
Molecules 2024, 29(12), 2718; https://doi.org/10.3390/molecules29122718 - 7 Jun 2024
Cited by 3 | Viewed by 1759
Abstract
Ultraviolet B (UVB) exposure can contribute to photoaging of skin. Cornus officinalis is rich in ursolic acid (UA), which is beneficial to the prevention of photoaging. Because UA is hardly soluble in water, the Cornus officinalis extract (COE) was obtained using water as [...] Read more.
Ultraviolet B (UVB) exposure can contribute to photoaging of skin. Cornus officinalis is rich in ursolic acid (UA), which is beneficial to the prevention of photoaging. Because UA is hardly soluble in water, the Cornus officinalis extract (COE) was obtained using water as the antisolvent to separate the components containing UA from the crude extract of Cornus officinalis. The effect of COE on UVB damage was assessed using Caenorhabditis elegans. The results showed that COE could increase the lifespan and enhance the antioxidant enzyme activity of C. elegans exposed to UVB while decreasing the reactive oxygen species (ROS) level. At the same time, COE upregulated the expression of antioxidant-related genes and promoted the migration of SKN-1 to the nucleus. Moreover, COE inhibited the expression of the skn-1 downstream gene and the extension of the lifespan in skn-1 mutants exposed to UVB, indicating that SKN-1 was required for COE to function. Our findings indicate that COE mainly ameliorates the oxidative stress caused by UVB in C. elegans via the SKN-1/Nrf2 pathway. Full article
Show Figures

Graphical abstract

19 pages, 50336 KiB  
Article
Prediction of Potential Distribution of Carposina coreana in China under the Current and Future Climate Change
by Guolei Zhang, Sai Liu, Changqing Xu, Hongshuang Wei, Kun Guo, Rong Xu, Haili Qiao and Pengfei Lu
Insects 2024, 15(6), 411; https://doi.org/10.3390/insects15060411 - 3 Jun 2024
Cited by 3 | Viewed by 1444
Abstract
Carposina coreana is an important pest of Cornus officinalis, distributed in China, Korea, and Japan. In recent years, its damage to C. officinalis has become increasingly serious, causing enormous economic losses in China. This study and prediction of current and future suitable [...] Read more.
Carposina coreana is an important pest of Cornus officinalis, distributed in China, Korea, and Japan. In recent years, its damage to C. officinalis has become increasingly serious, causing enormous economic losses in China. This study and prediction of current and future suitable habitats for C. coreana in China can provide an important reference for the monitoring, early warning, prevention, and control of the pest. In this study, the potential distributions of C. coreana in China under current climate and future climate models were predicted using the maximum entropy (MaxEnt) model with ArcGIS software. The distribution point data of C. coreana were screened using the buffer screening method. Nineteen environmental variables were screened using the knife-cut method and variable correlation analysis. The parameters of the MaxEnt model were optimized using the kuenm package in R software. The MaxEnt model, combined with key environmental variables, was used to predict the distribution range of the suitable area for C. coreana under the current (1971–2000) and four future scenarios. The buffer screening method screened data from 41 distribution points that could be used for modeling. The main factors affecting the distribution of C. coreana were precipitation in the driest month (Bio14), precipitation in the warmest quarter (Bio18), precipitation in the coldest quarter (Bio19), the standard deviation of seasonal variation of temperature (Bio4), minimum temperature in the coldest month (Bio6), and average temperature in the coldest quarter (Bio11). The feature class (FC) after the kuenm package optimization was a Q-quadratic T-threshold combination, and the regularization multiplier (RM) was 0.8. The suitable areas for C. coreana under the current climate model were mainly distributed in central China, and the highly suitable areas were distributed in southern Shaanxi, southwestern Henan, and northwestern Hubei. The lowest temperature in the coldest month (Bio6), the average temperature in the coldest quarter (Bio11), and the precipitation in the warmest quarter (Bio18) all had good predictive ability. In future climate scenarios, the boundary of the suitable area for C. coreana in China is expected to shift northward, and thus, most of the future climate scenarios would shift northward. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

13 pages, 3871 KiB  
Article
Phytochemical Profiling and Biological Activities of Pericarps and Seeds Reveal the Controversy on “Enucleation” or “Nucleus-Retaining” of Cornus officinalis Fruits
by Jinyi Zhang, Po Niu, Mingjie Li, Yuan Wang, Yao Ma and Pan Wang
Molecules 2024, 29(7), 1473; https://doi.org/10.3390/molecules29071473 - 26 Mar 2024
Viewed by 1442
Abstract
The fruits of Cornus officinalis are used not only as a popular health food to tonify the liver and kidney, but also as staple materials to treat dementia and other age-related diseases. The pharmacological function of C. officinalis fruits with or without seeds [...] Read more.
The fruits of Cornus officinalis are used not only as a popular health food to tonify the liver and kidney, but also as staple materials to treat dementia and other age-related diseases. The pharmacological function of C. officinalis fruits with or without seeds is controversial for treating some symptoms in a few herbal prescriptions. However, the related metabolite and pharmacological information between its pericarps and seeds are largely deficient. Here, comparative metabolomics analysis between C. officinalis pericarps and seeds were conducted using an ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry, and therapeutic effects were also evaluated using several in vitro bioactivity arrays (antioxidant activity, α-glucosidase and cholinesterase inhibitory activities, and cell inhibitory properties). A total of 499 secondary metabolites were identified. Thereinto, 77 metabolites were determined as key differential metabolites between C. officinalis pericarps and seeds, and the flavonoid biosynthesis pathway was identified as the most significantly different pathway. Further, 47 metabolites were determined as potential bioactive constituents. In summary, C. officinalis seeds, which demonstrated higher contents in total phenolics, stronger in vitro antioxidant activities, better α-glucosidase and butyrylcholinesterase inhibitory activities, and stronger anticancer activities, exhibited considerable potential for food and health fields. This work provided insight into the metabolites and bioactivities of C. officinalis pericarps and seeds, contributing to their precise development and utilization. Full article
Show Figures

Figure 1

12 pages, 2725 KiB  
Article
Seasonal Changes in the Soil Microbial Community Structure in Urban Forests
by Xin Wan, Runyang Zhou, Sian Liu, Wei Xing and Yingdan Yuan
Biology 2024, 13(1), 31; https://doi.org/10.3390/biology13010031 - 5 Jan 2024
Cited by 4 | Viewed by 2956
Abstract
Urban forests play a crucial role in the overall health and stability of urban ecosystems. Soil microorganisms are vital to the functioning of urban forest ecosystems as they facilitate material cycling and contribute to environmental stability. This study utilized high-throughput sequencing technology to [...] Read more.
Urban forests play a crucial role in the overall health and stability of urban ecosystems. Soil microorganisms are vital to the functioning of urban forest ecosystems as they facilitate material cycling and contribute to environmental stability. This study utilized high-throughput sequencing technology to examine the structural characteristics of bacterial and fungal communities in the bulk soil of six different forest stands: Phyllostachys pubescens (ZL), Metasequoia glyptostroboides (SSL), Cornus officinalis (SZY), mixed broad-leaved shrub forest (ZKG), mixed pine and cypress forest (SBL), and mixed broad-leaved tree forest (ZKQ). Soil samples were collected from each forest stand, including the corners, center, and edges of each plot, and a combined sample was created from the first five samples. The results revealed that among the bacterial communities, ZKG exhibited the highest alpha diversity in spring, while ZL demonstrated the highest alpha diversity in both summer and autumn. Proteobacteria was the most abundant bacterial phylum in all six forest stand soils. The dominant fungal phylum across the six forest stands was identified as Ascomycota. Notably, the microbial community diversity of SBL bulk soil exhibited significant seasonal changes. Although ZL exhibited lower bacterial community diversity in spring, its fungal community diversity was the highest. The bulk soil microbial diversity of ZL and SSL surpassed that of the other forest stands, suggesting their importance in maintaining the stability of the urban forest ecosystem in the Zhuyu Bay Scenic Area. Furthermore, the diversity of the bulk soil microbial communities was higher in all six stands during spring compared to summer and autumn. Overall, this study provides valuable insights into the seasonal variations of bulk soil microbial communities in urban forests and identifies dominant tree species, offering guidance for tree species’ selection and preservation in urban forest management. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

15 pages, 3671 KiB  
Article
Morroniside Inhibits Inflammatory Bone Loss through the TRAF6-Mediated NF-κB/MAPK Signalling Pathway
by Jirimutu Xiao, Qiuge Han, Ziceng Yu, Mengmin Liu, Jie Sun, Mao Wu, Heng Yin, Jingyue Fu, Yang Guo, Lining Wang and Yong Ma
Pharmaceuticals 2023, 16(10), 1438; https://doi.org/10.3390/ph16101438 - 10 Oct 2023
Cited by 14 | Viewed by 1943
Abstract
Osteoporosis is a chronic inflammatory disease that severely affects quality of life. Cornus officinalis is a Chinese herbal medicine with various bioactive ingredients, among which morroniside is its signature ingredient. Although anti-bone resorption drugs are the main treatment for bone loss, promoting bone [...] Read more.
Osteoporosis is a chronic inflammatory disease that severely affects quality of life. Cornus officinalis is a Chinese herbal medicine with various bioactive ingredients, among which morroniside is its signature ingredient. Although anti-bone resorption drugs are the main treatment for bone loss, promoting bone anabolism is more suitable for increasing bone mass. Therefore, identifying changes in bone formation induced by morroniside may be conducive to developing effective intervention methods. In this study, morroniside was found to promote the osteogenic differentiation of bone marrow stem cells (BMSCs) and inhibit inflammation-induced bone loss in an in vivo mouse model of inflammatory bone loss. Morroniside enhanced bone density and bone microstructure, and inhibited the expression of IL6, IL1β, and ALP in serum (p < 0.05). Furthermore, in in vitro experiments, BMSCs exposed to 0–256 μM morroniside did not show cytotoxicity. Morroniside inhibited the expression of IL6 and IL1β and promoted the expression of the osteogenic transcription factors Runx2 and OCN. Furthermore, morroniside promoted osteocalcin and Runx2 expression and inhibited TRAF6-mediated NF-κB and MAPK signaling, as well as osteoblast growth and NF-κB nuclear transposition. Thus, morroniside promoted osteogenic differentiation of BMSCs, slowed the occurrence of the inflammatory response, and inhibited bone loss in mice with inflammatory bone loss. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

16 pages, 4602 KiB  
Article
Cornus officinalis Seed Extract Inhibits AIM2-Inflammasome Activation and Attenuates Imiquimod-Induced Psoriasis-like Skin Inflammation
by Se-Bin Lee, Ju-Hui Kang, Eun-Jung Sim, Ye-Rin Jung, Jeong-Hyeon Kim, Prima F. Hillman, Sang-Jip Nam and Tae-Bong Kang
Int. J. Mol. Sci. 2023, 24(6), 5653; https://doi.org/10.3390/ijms24065653 - 15 Mar 2023
Cited by 8 | Viewed by 3346
Abstract
The AIM2 inflammasome is an innate immune system component that defends against cytosolic bacteria and DNA viruses, but its aberrant activation can lead to the progression of various inflammatory diseases, including psoriasis. However, there have been few reports of specific inhibitors of AIM2 [...] Read more.
The AIM2 inflammasome is an innate immune system component that defends against cytosolic bacteria and DNA viruses, but its aberrant activation can lead to the progression of various inflammatory diseases, including psoriasis. However, there have been few reports of specific inhibitors of AIM2 inflammasome activation. In this study, we aimed to investigate the inhibitory activity of ethanolic extracts of seeds of Cornus officinalis (CO), a herb and food plant used in traditional medicine, on AIM2-inflammasome activation. We found that CO inhibited the release of IL-1β induced by dsDNA in both BMDMs and HaCaT cells, but that it showed no effect on the release of IL-1β induced by NLRP3 inflammasome triggers, such as nigericin and silica, or the NLRC4 inflammasome trigger flagellin. Furthermore, we demonstrated that CO inhibited the cleavage of caspase-1, an inflammasome activation marker, and an upstream event, the translocation and speck formation of ASC. In addition, further experiments and mechanistic investigations revealed that CO can inhibit AIM2 speck formation induced by dsDNA in AIM2-overexpressing HEK293T cells. To verify the correlation in vivo, we investigated the efficacy of CO in an imiquimod (IMQ)-induced psoriasis model, which has reported associations with the AIM2 inflammasome. We found that topical application of CO alleviated psoriasis-like symptoms, such as erythema, scaling, and epidermal thickening, in a dose-dependent manner. Moreover, CO also significantly decreased IMQ-induced expression of AIM2 inflammasome components, including AIM2, ASC, and caspase-1, and led to the elevation of serum IL-17A. In conclusion, our results suggest that CO may be a valuable candidate for the discovery of AIM2 inhibitors and the regulation of AIM2-related diseases. Full article
Show Figures

Figure 1

11 pages, 2142 KiB  
Article
Therapeutic Effects of Cornuside on Particulate Matter–Induced Lung Injury
by Go Oun Kim, Eui Kyun Park, Dong Ho Park, Gyu Yong Song and Jong-Sup Bae
Int. J. Mol. Sci. 2023, 24(5), 4979; https://doi.org/10.3390/ijms24054979 - 4 Mar 2023
Cited by 2 | Viewed by 2302
Abstract
Particulate matter (PM) is a mixture comprising both organic and inorganic particles, both of which are hazardous to health. The inhalation of airborne PM with a diameter of ≤2.5 μm (PM2.5) can cause considerable lung damage. Cornuside (CN), a natural bisiridoid [...] Read more.
Particulate matter (PM) is a mixture comprising both organic and inorganic particles, both of which are hazardous to health. The inhalation of airborne PM with a diameter of ≤2.5 μm (PM2.5) can cause considerable lung damage. Cornuside (CN), a natural bisiridoid glucoside derived from the fruit of Cornus officinalis Sieb, exerts protective properties against tissue damage via controlling the immunological response and reducing inflammation. However, information regarding the therapeutic potential of CN in patients with PM2.5-induced lung injury is limited. Thus, herein, we examined the protective properties of CN against PM2.5-induced lung damage. Mice were categorized into eight groups (n = 10): a mock control group, a CN control group (0.8 mg/kg mouse body weight), four PM2.5+CN groups (0.2, 0.4, 0.6, and 0.8 mg/kg mouse body weight), and a PM2.5+CN group (0.2, 0.4, 0.6, and 0.8 mg/kg mouse body weight). The mice were administered with CN 30 min following intratracheal tail vein injection of PM2.5. In mice exposed to PM2.5, different parameters including changes in lung tissue wet/dry (W/D) lung weight ratio, total protein/total cell ratio, lymphocyte counts, inflammatory cytokine levels in the bronchoalveolar lavage fluid (BALF), vascular permeability, and histology were examined. Our findings revealed that CN reduced lung damage, the W/D weight ratio, and hyperpermeability caused by PM2.5. Moreover, CN reduced the plasma levels of inflammatory cytokines produced because of PM2.5 exposure, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and nitric oxide, as well as the total protein concentration in the BALF, and successfully attenuated PM2.5-associated lymphocytosis. In addition, CN substantially reduced the expression levels of Toll-like receptors 4 (TLR4), MyD88, and autophagy-related proteins LC3 II and Beclin 1, and increased protein phosphorylation of the mammalian target of rapamycin (mTOR). Thus, the anti-inflammatory property of CN renders it a potential therapeutic agent for treating PM2.5-induced lung injury by controlling the TLR4–MyD88 and mTOR–autophagy pathways. Full article
(This article belongs to the Special Issue Multi-Omics Analysis and Application of Plant Natural Products)
Show Figures

Graphical abstract

22 pages, 2338 KiB  
Article
New Type of Tannins Identified from the Seeds of Cornus officinalis Sieb. et Zucc. by HPLC-ESI-MS/MS
by Jun Li, Lin Chen, Hua Jiang, Min Li, Lu Wang, Jia-Xing Li, Yue-Yue Wang and Qing-Xia Guo
Molecules 2023, 28(5), 2027; https://doi.org/10.3390/molecules28052027 - 21 Feb 2023
Cited by 7 | Viewed by 2398
Abstract
There is a lack of information on the compound profile of Cornus officinalis Sieb. et Zucc. seeds. This greatly affects their optimal utilization. In our preliminary study, we found that the extract of the seeds displayed a strong positive reaction to the FeCl [...] Read more.
There is a lack of information on the compound profile of Cornus officinalis Sieb. et Zucc. seeds. This greatly affects their optimal utilization. In our preliminary study, we found that the extract of the seeds displayed a strong positive reaction to the FeCl3 solution, indicating the presence of polyphenols. However, to date, only nine polyphenols have been isolated. In this study, HPLC-ESI-MS/MS was employed to fully reveal the polyphenol profile of the seed extracts. A total of 90 polyphenols were identified. They were classified into nine brevifolincarboxyl tannins and their derivatives, 34 ellagitannins, 21 gallotannins, and 26 phenolic acids and their derivatives. Most of these were first identified from the seeds of C. officinalis. More importantly, five new types of tannins were reported for the first time: brevifolincarboxyl-trigalloyl-hexoside, digalloyl-dehydrohexahydroxydiphenoyl (DHHDP)-hexdside, galloyl-DHHDP-hexoside, DHHDP-hexahydroxydiphenoyl(HHDP)-galloyl-gluconic acid, and peroxide product of DHHDP-trigalloylhexoside. Moreover, the total phenolic content was as high as 79,157 ± 563 mg gallic acid equivalent per 100 g in the seeds extract. The results of this study not only enrich the structure database of tannins, but also provide invaluable aid to its further utilization in industries. Full article
(This article belongs to the Special Issue Identification and Characterization of Phenolic Compounds)
Show Figures

Graphical abstract

11 pages, 2357 KiB  
Article
Bacillus subtilis and Bifidobacteria bifidum Fermentation Effects on Various Active Ingredient Contents in Cornus officinalis Fruit
by Xiuren Zhou, Yimin Zhao, Lei Dai and Guifang Xu
Molecules 2023, 28(3), 1032; https://doi.org/10.3390/molecules28031032 - 19 Jan 2023
Cited by 8 | Viewed by 2734
Abstract
Microbial fermentation has been widely used to improve the quality and functional composition of food and edibles; however, the approach has rarely been applied to traditional Chinese medicines. In this study, to understand the effect of microbial fermentation on the active ingredients of [...] Read more.
Microbial fermentation has been widely used to improve the quality and functional composition of food and edibles; however, the approach has rarely been applied to traditional Chinese medicines. In this study, to understand the effect of microbial fermentation on the active ingredients of traditional Chinese medicines, we used Bifidobacterium bifidum and Bacillus subtilis to ferment the traditional Chinese medicine, Cornus officinalis fruit (COF), and determined the levels of active ingredients using HPLC (high-performance liquid chromatography). According to the results, both B. subtilis and B. bifidum substantially increased the amount of gallic acid in the COF culture broth after fermentation; however, the two species of bacteria had no effect on the loganin content. Moreover, the B. subtilis fermentation reduced the contents of ursolic acid and oleanolic acid in the COF broth, whereas the B. bifidum fermentation did not. This study contributes to a better understanding of the mechanism by which microbial fermentation alters the active ingredient levels of traditional Chinese medicines, and suggests that fermentation may potentially improve their functional ingredients. Full article
Show Figures

Figure 1

Back to TopTop