Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = Columbia River basin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1856 KB  
Article
Convergence Research for Microplastic Pollution at the Watershed Scale
by Heejun Chang, Elise Granek, Amanda Gannon, Jordyn M. Wolfand and Janice Brahney
Environments 2025, 12(6), 187; https://doi.org/10.3390/environments12060187 - 3 Jun 2025
Cited by 1 | Viewed by 1283
Abstract
Microplastics are found in Earth’s atmosphere, lithosphere, hydrosphere, pedosphere, and ecosphere. While there is a growing interest and need to solve this grand challenge in both the academic and policy realms, few have engaged with academics, policymakers, and community partners to co-identify the [...] Read more.
Microplastics are found in Earth’s atmosphere, lithosphere, hydrosphere, pedosphere, and ecosphere. While there is a growing interest and need to solve this grand challenge in both the academic and policy realms, few have engaged with academics, policymakers, and community partners to co-identify the problem, co-design research, and co-produce knowledge in tackling this issue. Using a convergence research framework, we investigated the perception of microplastic pollution among different end users, delivered educational materials to K-12 teachers and practitioners, and identified key sampling points for assessing environmental microplastic concentrations in the Columbia River Basin, United States. Three community partner workshops identified regional issues and concerns associated with microplastic pollution and explored potential policy intervention strategies. The stakeholder survey, co-designed with community partners, identified varying perceptions around microplastic pollution across educators, government employees, non-profit employees, and industry practitioners. Pre- and post-test results of teacher workshops show increases in participants’ knowledge after taking a four-week summer class with the knowledge being translated to their students. Community partners also helped develop a unique passive sampling plan for atmospheric deposition of microplastics using synoptic moss samples and provided freshwater samples for microplastic quantification across the basin. Our study drew three major lessons for successfully conducting convergence environmental research—(1) communication and trust building, supported by the use of key-informants to expand networks; (2) co-creation through collaboration, where partners and students shaped research and education to enhance impact; and (3) change-making, as project insights were translated into policy discussions, community outreach, and classrooms. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Plastic Contamination)
Show Figures

Figure 1

17 pages, 1248 KB  
Review
Best Practices in Scenario Planning and Mapping for Salmon Recovery in the Columbia River Basin
by Gregory M. Hill and Steven A. Kolmes
Environments 2025, 12(2), 61; https://doi.org/10.3390/environments12020061 - 10 Feb 2025
Viewed by 1159
Abstract
Salmon recovery planning in the Columbia River Basin depends upon what we argue are best practices of scenario planning in social–ecological systems. We examine how resilience science informs the concepts of stability landscapes and scenario mapping, and how this fits into the current [...] Read more.
Salmon recovery planning in the Columbia River Basin depends upon what we argue are best practices of scenario planning in social–ecological systems. We examine how resilience science informs the concepts of stability landscapes and scenario mapping, and how this fits into the current state of salmonid recovery planning. We analyze proposed “scenarios” and “perspectives” that reflect the current state of the U.S. federal planning process for salmonid recovery. We argue that only proposed “scenarios” that adhere to best practices, employ the resilience perspective, and adopt holistic social–ecological thought can be mapped onto a stability landscape. We demonstrate how such scenarios have the potential to increase insight into the viability of proposed recovery actions and avoid self-contradictory efforts stemming from a failure to see the basin-wide social–ecological system as a whole. We discuss and illustrate the potential of employing backcasting and post-normal science in terms of indigenous perspectives on salmon recovery. Full article
Show Figures

Figure 1

15 pages, 7178 KB  
Article
Assessing Zebra Mussels’ Impact on Fishway Efficiency: McNary Lock and Dam Case Study
by Avery Schemmel, David L. Smith, Marcela Politano, Damian Walter and Jeremy Crossland
Water 2024, 16(12), 1671; https://doi.org/10.3390/w16121671 - 12 Jun 2024
Viewed by 1373
Abstract
The Columbia River Basin faces a threat from the potential invasion of zebra mussels (Dreissena polymorpha), notorious for their ability to attach to various substrates, including concrete, which is common in fishway construction. Extensive mussel colonization within fishways may affect fish [...] Read more.
The Columbia River Basin faces a threat from the potential invasion of zebra mussels (Dreissena polymorpha), notorious for their ability to attach to various substrates, including concrete, which is common in fishway construction. Extensive mussel colonization within fishways may affect fish passage by altering flow patterns or creating physical barriers, leading to increased travel times, or potentially preventing passage altogether. Many factors affect mussel habitat suitability including vectors of dispersal, water parameters, and various hydrodynamic quantities, such as water depth, velocity, and turbulence. The objective of this study is to assess the potential for zebra mussels to attach to fishway surfaces and form colonies in the McNary Lock and Dam Oregon-shore fishway and evaluate the potential impact of this infestation on the fishway’s efficiency. A computational fluid dynamics (CFD) model of the McNary Oregon-shore fishway was developed using the open-source code OpenFOAM, with the two-phase solver interFoam. Mesh quality is critical to obtain a reliable solution, so the numerical mesh was refined near the free surface and all solid surfaces to properly capture the complex flow patterns and free surface location. The simulation results for the 6-year average flow rate showed good agreement with the measured water column depth over each weir. Regions susceptible to mussel infestation were identified, and an analysis was performed to determine the mussel’s preference to colonize as a function of the depth-averaged velocity, water depth, and wall shear stress. Habitat suitability criteria were applied to the output of the hydraulic variables from the CFD solution and provided insight into the potential impact on the fishway efficiency. Details on the mesh construction, model setup, and numerical results are presented and discussed. Full article
Show Figures

Figure 1

18 pages, 3461 KB  
Review
A Review of the Multi-Stakeholder Process for Salmon Recovery and Scenario Mapping onto Stability Landscapes
by Gregory M. Hill and Steven A. Kolmes
Environments 2024, 11(6), 120; https://doi.org/10.3390/environments11060120 - 6 Jun 2024
Cited by 2 | Viewed by 1581
Abstract
We review and draw distinctions between positions held by various federal agencies, tribal agencies, and civil society organizations to identify distinct stakeholder scenarios for salmonid recovery in the Columbia River Basin. We view the Columbia River Basin through a resilience lens from the [...] Read more.
We review and draw distinctions between positions held by various federal agencies, tribal agencies, and civil society organizations to identify distinct stakeholder scenarios for salmonid recovery in the Columbia River Basin. We view the Columbia River Basin through a resilience lens from the point of view of the resident endangered salmonid populations. Using the resilience concept of multiple stable states we describe a stability landscape for the basin as a social–ecological system. We use a shared stability landscape as a common locus for mapping and comparing multiple scenarios representing distinct stakeholder perspectives of pathways towards salmon recovery. We found that the potential of using this approach goes well beyond the specifics of the Columbia River Basin. Full article
(This article belongs to the Special Issue Environments: 10 Years of Science Together)
Show Figures

Figure 1

23 pages, 9623 KB  
Article
Semi-Analytical Reservoir Modeling of Non-Linear Gas Diffusion with Gas Desorption Applied to the Horn River Basin Shale Gas Play, British Columbia (Canada)
by Wanju Yuan, Zhuoheng Chen, Gang Zhao, Chang Su and Bing Kong
Energies 2024, 17(3), 676; https://doi.org/10.3390/en17030676 - 31 Jan 2024
Viewed by 1166
Abstract
Adsorbed gas may account for a significant part of the gas resources in shale gas and coalbed methane plays. Understanding gas sorption behaviors and integrating gas desorption into analytical reservoir modeling and an associated transient performance analysis are important for evaluating a system’s [...] Read more.
Adsorbed gas may account for a significant part of the gas resources in shale gas and coalbed methane plays. Understanding gas sorption behaviors and integrating gas desorption into analytical reservoir modeling and an associated transient performance analysis are important for evaluating a system’s gas desorption ability and further analyzing its CO2 injectability, utilization, and storage capacity. However, gas desorption, along with other pressure-dominated gas properties, increases a system’s non-linearity in theoretical studies. Few studies on analytical modeling have integrated the gas desorption feature into a non-linear system and validated the model’s accuracy. In this study, the desorbed gas due to pressure decay was treated as an additional source/sink term in the source-and-sink function methods. This method was combined with the integral image method in a semi-analytical manner to determine the amount of gas desorption. Fundamental reservoir and gas properties from the Horn River Basin shale gas play were chosen to evaluate the methodology and the performance of the associated production well. The results were compared with the commercial fine-gridding numerical simulation software, and good matches were achieved. The results showed that the desorbed gas released from rock will supply free-gas flow when the pressure significantly decreases due to gas production. The production wellbore pressure can be maintained at a higher level, and the production rate was higher than in cases where gas desorption was not considered, depending on the operating conditions. Full article
(This article belongs to the Special Issue New Challenges in Unconventional Oil and Gas Reservoirs)
Show Figures

Figure 1

11 pages, 1860 KB  
Article
Morphological Comparison of the Chesapeake Logperch Percina bimaculata with the Logperch Percina c. caprodes and Percina c. semifasciata in Pennsylvania
by Jay R. Stauffer, Jonathan A. Freedman, Douglas P. Fischer and Robert W. Criswell
Fishes 2023, 8(6), 288; https://doi.org/10.3390/fishes8060288 - 27 May 2023
Cited by 2 | Viewed by 9700
Abstract
The Chesapeake logperch, Percina bimaculata (Halderman) has a disjunct distribution when compared to other species in the subgenus Percina. Members of this subgenus in Pennsylvania include Percina caprodes caprodes (Rafinesque), Percina caprodes semifasciata (DeKay), and P. bimaculata. Historically the Chesapeake logperch [...] Read more.
The Chesapeake logperch, Percina bimaculata (Halderman) has a disjunct distribution when compared to other species in the subgenus Percina. Members of this subgenus in Pennsylvania include Percina caprodes caprodes (Rafinesque), Percina caprodes semifasciata (DeKay), and P. bimaculata. Historically the Chesapeake logperch was known only from the Susquehanna River and Potomac River basins. Its range is now restricted to the Susquehanna River below Holtwood Dam and upper Chesapeake Bay. It has been extirpated from the Potomac River and the type locality near Columbia, PA. Attempts are being made to reintroduce it into tributaries of the Susquehanna River near Columbia, PA. We postulate that P. bimaculata diverged from a population of Percina caprodes semifasciata. A naked nape and the fact that both of these species do not occur above the fall line in Pennsylvania support such a relationship. Full article
Show Figures

Figure 1

25 pages, 4585 KB  
Review
A Resilience History of the Columbia River Basin and Salmonid Species: Regimes and Policies
by Gregory M. Hill and Steven A. Kolmes
Environments 2023, 10(5), 76; https://doi.org/10.3390/environments10050076 - 2 May 2023
Cited by 4 | Viewed by 5351
Abstract
We view the history of the Columbia River Basin through a resilience lens from the point of view of salmonids, as keystone species for the river basin ecosystems and social systems. We rely on the concept of multiple stable states as depicted in [...] Read more.
We view the history of the Columbia River Basin through a resilience lens from the point of view of salmonids, as keystone species for the river basin ecosystems and social systems. We rely on the concept of multiple stable states as depicted in a stability landscape, as a scientific theory, but equally as a metaphor and a mental model. Using evidence-based plausibility arguments concerning the existence, creation, and potential critical transitions between regimes, we describe change over centuries. We argue that a critical transition occurred taking the state of the system from its historic regime into a novel regime stabilized by new social feedbacks and institutional configurations. By using a state space defined by four variables used in policy deliberations for salmon recovery we tie our results to historical and contemporary management issues. Knowledge of (a) which regime is currently occupied and (b) which critical transitions between regimes are possible are both crucial to effective policy formation. We draw distinctions between positions held by federal agencies, tribal agencies, and civil society organizations as to the current state of affairs and policy recommendations, raising questions about the appropriate use of decision support systems in the public process for decision making. Full article
Show Figures

Figure 1

25 pages, 11167 KB  
Article
Fluvial Response to Climate Change in the Pacific Northwest: Skeena River Discharge and Sediment Yield
by Amanda Lily Wild, Eva Kwoll, D. Gwyn Lintern and Shannon Fargey
Water 2023, 15(1), 167; https://doi.org/10.3390/w15010167 - 31 Dec 2022
Cited by 4 | Viewed by 4214
Abstract
Changes in climate affect the hydrological regime of rivers worldwide and differ with geographic location and basin characteristics. Such changes within a basin are captured in the flux of water and sediment at river mouths, which can impact coastal productivity and development. Here, [...] Read more.
Changes in climate affect the hydrological regime of rivers worldwide and differ with geographic location and basin characteristics. Such changes within a basin are captured in the flux of water and sediment at river mouths, which can impact coastal productivity and development. Here, we model discharge and sediment yield of the Skeena River, a significant river in British Columbia, Canada. We use HydroTrend 3.0, two global climate models (GCMs), and two representative concentration pathways (RCPs) to model changes in fluvial fluxes related to climate change until the end of the century. Contributions of sediment to the river from glaciers decreases throughout the century, while basin-wide overland and instream contributions driven by precipitation increase. Bedload, though increased compared to the period (1981–2010), is on a decreasing trajectory by the end of the century. For overall yield, the model simulations suggest conflicting results, with those GCMs that predict higher increases in precipitation and temperature predicting an increase in total (suspended and bedload) sediment yield by up to 10% in some scenarios, and those predicting more moderate increases predicting a decrease in yield by as much as 20%. The model results highlight the complexity of sediment conveyance in rivers within British Columbia and present the first comprehensive investigation into the sediment fluxes of this understudied river system. Full article
Show Figures

Figure 1

17 pages, 1536 KB  
Article
Population Structure of White Sturgeon (Acipenser transmontanus) in the Columbia River Inferred from Single-Nucleotide Polymorphisms
by Stuart C. Willis, Blaine Parker, Andrea D. Schreier, Ray Beamesderfer, Donella Miller, Shawn Young and Shawn R. Narum
Diversity 2022, 14(12), 1045; https://doi.org/10.3390/d14121045 - 29 Nov 2022
Cited by 3 | Viewed by 2734
Abstract
White sturgeon (Acipenser transmontanus) are the largest freshwater fish in North America, with reproducing populations in the Sacramento-San Joaquin, Fraser, and Columbia River Basins. Of these, the Columbia River is the largest, but it is also highly fragmented by hydroelectric dams, [...] Read more.
White sturgeon (Acipenser transmontanus) are the largest freshwater fish in North America, with reproducing populations in the Sacramento-San Joaquin, Fraser, and Columbia River Basins. Of these, the Columbia River is the largest, but it is also highly fragmented by hydroelectric dams, and many segments are characterized by declining abundance and persistent recruitment failure. Efforts to conserve and supplement these fish requires an understanding of their spatial genetic structure. Here, we assembled a large set of samples from throughout the Columbia River Basin, along with representative collections from adjacent basins, and genotyped them using a panel of 325 single-nucleotide markers. Results from individual- and group-based analyses of these data indicate that white sturgeon in the uppermost Columbia River Basin, in the Kootenai and upper Snake Rivers, are the most distinct, while the remaining populations downstream in the basin can be described as a genetic gradient consistent with an isolation-by-distance effect. Notably, the population in the lowest reaches of the Columbia River is more distinct from the middle or upper reaches than from outside basins, and suggests historically a higher or more recent gene exchange through coastal routes than with populations in the interior Columbia Basin. Nonetheless, proximal reaches were generally only marginally or non-significantly divergent, suggesting that transplanting larvae or juveniles from nearby sources poses relatively little risk of outbreeding depression. Indeed, we inferred examples of dispersal between reaches via close-kin mark-recapture and genetic mark-recapture that indicate movement between nearby reaches is not unusual. Samples from the Kootenai and upper Snake Rivers exhibited notably lower genetic diversity than the remaining samples as a result of population bottlenecks, genetic drift, and/or historical divergence. Conservation actions, such as supplementation, are underway to maintain population viability and will require balanced efforts to increase demographic abundance while maintaining genetic diversity. Full article
(This article belongs to the Special Issue Conservation Genetics of Sturgeons)
Show Figures

Figure 1

15 pages, 7313 KB  
Review
Pathways and Estimate of Aquifer Recharge in a Flood Basalt Terrain; A Review from the South Fork Palouse River Basin (Columbia River Plateau, USA)
by Giacomo Medici and Jeff B. Langman
Sustainability 2022, 14(18), 11349; https://doi.org/10.3390/su141811349 - 9 Sep 2022
Cited by 31 | Viewed by 3897
Abstract
Aquifer recharge is one of the most important hydrologic parameters for understanding available groundwater volumes and making sustainable the use of natural water by minimizing groundwater mining. In this framework, we reviewed and evaluated the efficacy of multiple methods to determine recharge in [...] Read more.
Aquifer recharge is one of the most important hydrologic parameters for understanding available groundwater volumes and making sustainable the use of natural water by minimizing groundwater mining. In this framework, we reviewed and evaluated the efficacy of multiple methods to determine recharge in a flood basalt terrain that is restrictive to infiltration and percolation. In the South Fork of the Columbia River Plateau, recent research involving hydrologic tracers and groundwater modeling has revealed a snowmelt-dominated system. Here, recharge is occurring along the intersection of mountain-front alluvial systems and the extensive Miocene flood basalt layers that form a fractured basalt and interbedded sediment aquifer system. The most recent groundwater flow model of the basin was based on a large physio-chemical dataset acquired in laterally and vertically distinctive locations that refined the understanding of the intersection of the margin alluvium and the spatially variable basalt flows that filled the basin. Modelled effective recharge of 25 and 105 mm/year appears appropriate for the basin’s plain and the mountain front, respectively. These values refine previous efforts on quantifying aquifer recharge based on Darcy’s law, one-dimensional infiltration, zero-flux plane, chloride, storage, and mass-balance methods. Overall, the combination of isotopic hydrochemical data acquired in three dimensions and flow modelling efforts were needed to simultaneously determine groundwater dynamics, recharge pathways, and appropriate model parameter values in a primarily basalt terrain. This holistic approach to understanding recharge has assisted in conceptualizing the aquifer for resource managers that have struggled to understand aquifer dynamics and sustainable withdrawals. Full article
(This article belongs to the Special Issue Groundwater Recharge and Sustainable Use of Groundwater)
Show Figures

Figure 1

18 pages, 1253 KB  
Article
Genetics Reveal Long-Distance Virus Transmission Links in Pacific Salmon
by Rachel B. Breyta, William N. Batts and Gael Kurath
Animals 2022, 12(16), 2120; https://doi.org/10.3390/ani12162120 - 18 Aug 2022
Cited by 2 | Viewed by 1961
Abstract
In the coastal region of Washington State, a major pathogen emergence event occurred between 2007 and 2011 in which steelhead trout (Oncorhynchus mykiss) experienced a high incidence of infection and disease outbreaks due to the rhabdovirus infectious hematopoietic necrosis virus (IHNV). [...] Read more.
In the coastal region of Washington State, a major pathogen emergence event occurred between 2007 and 2011 in which steelhead trout (Oncorhynchus mykiss) experienced a high incidence of infection and disease outbreaks due to the rhabdovirus infectious hematopoietic necrosis virus (IHNV). Genetic typing showed that the introduced viruses were in the steelhead-specific MD subgroup of IHNV and indicated the most likely source was a virus from the nearby Columbia River Basin. In the current study, full-length viral glycoprotein (G) gene sequences were determined for 55 IHNV isolates from both coastal and Columbia fish populations to identify specific source populations and infer mechanisms of transmission to coastal steelhead. We identified three transmission links based on exact fullG genotype matches between Columbia and coastal fish. In all cases, the likely source population was infected juvenile fish, and sink populations were adult fish returning to coastal rivers to spawn. The time intervals between detection in source and sink populations varied from 6 months to nearly 4 years, suggesting different transmission pathways. Surprisingly, distances between source and sink populations varied between 140 and 1000 km. These results confirm repeated introductions of virus from Columbia River Basin fish as the cause of emergence of MD virus on the Washington coast from 2007 to 2011. Full article
Show Figures

Figure 1

18 pages, 2600 KB  
Article
Shedding Kinetics of Infectious Hematopoietic Necrosis Virus (IHNV) in Juvenile Spring- and Fall-Run Chinook Salmon of the Columbia River Basin
by Daniel G. Hernandez and Gael Kurath
Animals 2022, 12(15), 1887; https://doi.org/10.3390/ani12151887 - 24 Jul 2022
Viewed by 2227
Abstract
This investigation sought to characterize the shedding of infectious hematopoietic necrosis virus (IHNV) in two populations of Columbia River Basin (CRB) Chinook salmon (Oncorhynchus tshawytscha). Juvenile spring- and fall-run Chinook salmon were exposed by immersion to each of three IHN virus [...] Read more.
This investigation sought to characterize the shedding of infectious hematopoietic necrosis virus (IHNV) in two populations of Columbia River Basin (CRB) Chinook salmon (Oncorhynchus tshawytscha). Juvenile spring- and fall-run Chinook salmon were exposed by immersion to each of three IHN virus strains from the UC, MD, and L subgroups, and then monitored for viral shedding from individual fish for 30 days. Detectable quantities of UC, MD and L IHN virus were shed by a subset of fish from each host population (1–9 out of 10 fish total in each treatment group). Viral shedding kinetics were consistent, with a rapid onset of shedding, peak shedding by 2–3 days, and then a rapid decline to below detectable levels by 7 days’ post-exposure to IHNV. Intraspecies variation was observed as spring Chinook salmon shed more UC virus than fall fish: spring Chinook salmon shed UC virus in greater numbers of fish, with 22-fold higher mean peak shedding magnitude, 33-fold higher mean total virus shed per fish, and 900-fold higher total virus shed per treatment group. The L and MD viruses had comparable shedding at intermediate levels in each host population. All viral shedding occurred well before host mortality began, and shedding magnitude did not correlate with virulence differences. Overall, the greater shedding of UC virus from spring Chinook salmon, combined with low virulence, indicates a uniquely high transmission potential that may explain the predominance of UC viruses in CRB Chinook salmon. This also suggests that spring-run fish may contribute more to the ecology of IHNV in the CRB than fall-run Chinook salmon. Full article
Show Figures

Figure 1

11 pages, 268 KB  
Article
Rapid Diagnostic Test to Detect and Discriminate Infectious Hematopoietic Necrosis Virus (IHNV) Genogroups U and M to Aid Management of Pacific Northwest Salmonid Populations
by William N. Batts, Tony R. Capps, Lisa M. Crosson, Rachel L. Powers, Rachel Breyta and Maureen K. Purcell
Animals 2022, 12(14), 1761; https://doi.org/10.3390/ani12141761 - 9 Jul 2022
Cited by 3 | Viewed by 2237
Abstract
Infectious hematopoietic necrosis virus (IHNV) is an acute pathogen of salmonids in North America, Europe, and Asia that is phylogenetically classified into five major virus genogroups (U, M, L, E, and J). The geographic range of the U and M genogroup isolates overlap [...] Read more.
Infectious hematopoietic necrosis virus (IHNV) is an acute pathogen of salmonids in North America, Europe, and Asia that is phylogenetically classified into five major virus genogroups (U, M, L, E, and J). The geographic range of the U and M genogroup isolates overlap in the North American Columbia River Basin and Washington Coast region, where these genogroups pose different risks depending on the species of Pacific salmon (Oncorhynchus spp.). For certain management decisions, there is a need to both test for IHNV presence and rapidly determine the genogroup. Herein, we report the development and validation of a U/M multiplex reverse transcription, real-time PCR (RT-rPCR) assay targeting the IHNV nucleocapsid (N) protein gene. The new U/M RT-rPCR is a rapid, sensitive, and repeatable assay capable of specifically discriminating between North American U and M genogroup IHNV isolates. However, one M genogroup isolate obtained from commercially cultured Idaho rainbow trout (O. mykiss) showed reduced sensitivity with the RT-rPCR test, suggesting caution may be warranted before applying RT-rPCR as the sole surveillance test in areas associated with the Idaho trout industry. The new U/M assay had high diagnostic sensitivity (DSe > 94%) and specificity (DSp > 97%) in free-ranging adult Pacific salmon, when assessed relative to cell culture, the widely accepted reference standard, as well as the previously validated universal N RT-rPCR test. The high diagnostic performance of the new U/M assay indicates the test is suitable for surveillance, diagnosis, and confirmation of IHNV in Pacific salmon from the Pacific Northwest regions where the U and M genogroups overlap. Full article
26 pages, 32984 KB  
Article
Multitemporal Total Coliforms and Escherichia coli Analysis in the Middle Bogotá River Basin, 2007–2019
by Mario Fernando Castro Fernández, Ileana Romea Cárdenas Manosalva, Ramón Fernando Colmenares Quintero, Carlos Enrique Montenegro Marín, Yeffer Edilberto Diaz Cuesta, Daniela Escobar Mahecha and Paula Andrea Pérez Vásquez
Sustainability 2022, 14(3), 1769; https://doi.org/10.3390/su14031769 - 3 Feb 2022
Cited by 15 | Viewed by 6832
Abstract
Currently, one of the main environmental problems that need to be addressed is the pollution inflicted upon different ecosystems by anthropic activities. One example of this problem can be seen in the Bogotá River, a major river in the Cundinamarca department of Columbia [...] Read more.
Currently, one of the main environmental problems that need to be addressed is the pollution inflicted upon different ecosystems by anthropic activities. One example of this problem can be seen in the Bogotá River, a major river in the Cundinamarca department of Columbia and the main water source supplying the Bogotá savannah, which reaches the Colombian capital city. The Bogotá River is highly affected by effluents and wastewater of domestic and industrial origin, among others. These pollutants are generated and accumulated throughout the entire basin, without ever receiving any type of treatment. The pollution levels to which the Bogotá River is subjected can be determined with the calculation of environmental indices, including microbiological contamination indicators such as total coliforms (TC) and fecal coliforms, which include Escherichia coli, Enterobacter, Klebsiella, Serratia, Edwardsiella, and Citrobacter bacteria, living as independent saprophytes. This paper assesses the quality of the water in the Bogotá River, using microbiological indicators and data provided by the Regional Autonomous Corporation (CAR) of Cundinamarca to assess water samples, extracted based on the climatic bimodality exhibited in the basin in dry and wet seasons. The scope of this study was limited to the 35 monitoring Regional Autonomous Corporation of Cundinamarca (CAR) stations located throughout the middle basin. For these purposes, a multitemporal analysis of the TC and Escherichia coli variables was conducted for the 2007–2019 period, which evidenced the contamination levels in this section of the water body. In broad terms, the current state of the middle section of the Bogotá River basin is unacceptable, due to the different activities occurring within its riparian buffer zone, such as uncontrolled domestic, industrial, and/or commercial wastewater discharges. To optimize water treatability, the continuous improvement of existing treatment plants is expected, as well as the implementation of new sustainable treatment alternatives aimed at improving water quality. Full article
Show Figures

Figure 1

23 pages, 11756 KB  
Article
Detection of Multidecadal Changes in Vegetation Dynamics and Association with Intra-Annual Climate Variability in the Columbia River Basin
by Andrew B. Whetten and Hannah J. Demler
Remote Sens. 2022, 14(3), 569; https://doi.org/10.3390/rs14030569 - 25 Jan 2022
Cited by 4 | Viewed by 3291
Abstract
Remotely-sensed Leaf Area Index (LAI) is a useful metric for assessing changes in vegetation cover and greeness over time and space. Satellite-derived LAI measurements can be used to assess these intra- and inter-annual vegetation dynamics and how they correlate with changing regional and [...] Read more.
Remotely-sensed Leaf Area Index (LAI) is a useful metric for assessing changes in vegetation cover and greeness over time and space. Satellite-derived LAI measurements can be used to assess these intra- and inter-annual vegetation dynamics and how they correlate with changing regional and local climate conditions. The detection of such changes at local and regional levels is challenged by the underlying continuity and extensive missing values of high-resolution spatio-temporal vegetation data. Here, the feasibility of functional data analysis methods was evaluated to improve the exploration of such data. In this paper, an investigation of multidecadal variation in LAI is conducted in the Columbia River Watershed, as detected by NOAA Advanced Very High-Resolution Radiometer (AVHRR) satellite imaging. The inter- and intra-annual correlation of LAI with temperature and precipitation were then investigated using data from the European Centre for Medium-Range Weather Forecasts global atmospheric re-analysis (ERA-Interim) in the period 1996–2017. A functional cluster analysis model was implemented to identify regions in the Columbia River Watershed that exhibit similar long-term greening trends. Across this region, a multidecadal trend toward earlier and higher annual LAI peaks was detected, and strong correlations were found between earlier and higher LAI peaks and warmer temperatures in late winter and early spring. Although strongly correlated to LAI, maximum temperature and precipitation do not demonstrate a similar strong multidecadal trend over the studied time period. The modeling approach is proficient for analyzing tens or hundreds of thousands of sampled sites without parallel processing or high-performance computing (HPC). Full article
Show Figures

Figure 1

Back to TopTop