Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = Chilean offshore

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 12804 KiB  
Article
An Early-Stage Structural Design of a Semi-Submersible Platform for Floating Offshore Wind Turbines in Chilean Waters
by Yordan Gallardo, Gonzalo Tampier, Víctor Palma, Cristian Cifuentes, José Miguel Ahumada, Claudio Troncoso and Michael Y. Mendoza
J. Mar. Sci. Eng. 2024, 12(11), 1951; https://doi.org/10.3390/jmse12111951 - 31 Oct 2024
Viewed by 2700
Abstract
To advance offshore wind energy technologies in South America, this study addresses the early-stage design challenges of a floating support structure for a 5 MW wind turbine. The aim is to develop a robust and efficient floating structure capable of withstanding the diverse [...] Read more.
To advance offshore wind energy technologies in South America, this study addresses the early-stage design challenges of a floating support structure for a 5 MW wind turbine. The aim is to develop a robust and efficient floating structure capable of withstanding the diverse forces imposed by the Valdivian environment. Utilizing SolidWorks, a 3D model based on a comprehensive review of semi-submersible structures with three columns is proposed. The structural model is subjected to a rigorous evaluation using the finite element method, with which linear static and buckling analyses are performed in compliance with the Det Norske Veritas (DNV) classification society. The proposed tri-floater platform design shows a 30% weight reduction when compared with other proposed models. The finite element analysis includes an extreme condition of 13 m waves that suggests the adequate performance of the proposed platform in Chilean waters, and offers a conceptual preliminary step for floating support structure designs in Chile. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

24 pages, 24628 KiB  
Article
An Unprecedented Bloom of Oceanic Dinoflagellates (Karenia spp.) Inside a Fjord within a Highly Dynamic Multifrontal Ecosystem in Chilean Patagonia
by Ángela M. Baldrich, Patricio A. Díaz, Sergio A. Rosales, Camilo Rodríguez-Villegas, Gonzalo Álvarez, Iván Pérez-Santos, Manuel Díaz, Camila Schwerter, Michael Araya and Beatriz Reguera
Toxins 2024, 16(2), 77; https://doi.org/10.3390/toxins16020077 - 2 Feb 2024
Cited by 9 | Viewed by 3040
Abstract
At the end of summer 2020, a moderate (~105 cells L−1) bloom of potential fish-killing Karenia spp. was detected in samples from a 24 h study focused on Dinophysis spp. in the outer reaches of the Pitipalena-Añihue Marine Protected Area. [...] Read more.
At the end of summer 2020, a moderate (~105 cells L−1) bloom of potential fish-killing Karenia spp. was detected in samples from a 24 h study focused on Dinophysis spp. in the outer reaches of the Pitipalena-Añihue Marine Protected Area. Previous Karenia events with devastating effects on caged salmon and the wild fauna of Chilean Patagonia had been restricted to offshore waters, eventually reaching the southern coasts of Chiloé Island through the channel connecting the Chiloé Inland Sea to the Pacific Ocean. This event occurred at the onset of the COVID-19 lockdown when monitoring activities were slackened. A few salmon mortalities were related to other fish-killing species (e.g., Margalefidinium polykrikoides). As in the major Karenia event in 1999, the austral summer of 2020 was characterised by negative anomalies in rainfall and river outflow and a severe drought in March. Karenia spp. appeared to have been advected in a warm (14–15 °C) surface layer of estuarine saline water (S > 21). A lack of daily vertical migration patterns and cells dispersed through the whole water column suggested a declining population. Satellite images confirmed the decline, but gave evidence of dynamic multifrontal patterns of temperature and chl a distribution. A conceptual circulation model is proposed to explain the hypothetical retention of the Karenia bloom by a coastally generated eddy coupled with the semidiurnal tides at the mouth of Pitipalena Fjord. Thermal fronts generated by (topographically induced) upwelling around the Tic Toc Seamount are proposed as hot spots for the accumulation of swimming dinoflagellates in summer in the southern Chiloé Inland Sea. The results here provide helpful information on the environmental conditions and water column structure favouring Karenia occurrence. Thermohaline properties in the surface layer in summer can be used to develop a risk index (positive if the EFW layer is thin or absent). Full article
Show Figures

Figure 1

23 pages, 4714 KiB  
Article
Projections of Beach Erosion and Associated Costs in Chile
by Patricio Winckler, Roberto Agredano Martín, César Esparza, Oscar Melo, María Isabel Sactic and Carolina Martínez
Sustainability 2023, 15(7), 5883; https://doi.org/10.3390/su15075883 - 28 Mar 2023
Cited by 9 | Viewed by 3731
Abstract
Economic costs associated to coastal erosion are projected in 45 sandy beaches in Chilean coasts. We compare mid-century (2026–2045) and end-of-century projections (2081–2100) of wave climate and sea-level rise (SLR) with a historical period (1985–2004) using several General Circulation Models for the RCP [...] Read more.
Economic costs associated to coastal erosion are projected in 45 sandy beaches in Chilean coasts. We compare mid-century (2026–2045) and end-of-century projections (2081–2100) of wave climate and sea-level rise (SLR) with a historical period (1985–2004) using several General Circulation Models for the RCP 8.5 scenario. Offshore wave data are then downscaled to each site, where shoreline retreat is assessed with Bruun rule for various berm heights and sediment diameters. Results indicate that mid-century retreat would be moderate (>13 m) while larger end-of-century projections (>53 m) are explained by SLR (0.58 ± 0.25 m). A small counterclockwise rotation of long beaches is also expected. To assess the costs of shoreline retreat, we use the benefit transfer methodology by using adjusted values from a previous study to the sites of interest. Results show that, by mid-century, beach width reduction would be between 2.0% and 68.2%, implying a total annual loss of USD 5.6 [5.1–6.1] million. For end-the-century projections, beach width reduction is more significant (8.4–100%), involving a total annual loss of USD 10.5 [8.1–11.8] million. Additionally, by the end-of-century, 13–25 beaches could disappear. These costs should be reduced with coastal management practices which are nevertheless inexistent in the country. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

22 pages, 11554 KiB  
Article
Mineralogy and Geochemistry of Seabed Sediments of the Chiloé–Taitao Area, Southern Chile, and Implications for Ore Deposits
by Marisol Pérez, Marcelo García, Brian Townley and Katja Deckart
Minerals 2021, 11(8), 903; https://doi.org/10.3390/min11080903 - 21 Aug 2021
Cited by 2 | Viewed by 4244
Abstract
The oceanic seabed contains a variety of mineral resources related exclusively to submarine environments. Limited information has been documented for the seabed offshore of Chile, which is particularly interesting due to its geodynamic context and large area. Mineralogical and geochemical analyses of 16 [...] Read more.
The oceanic seabed contains a variety of mineral resources related exclusively to submarine environments. Limited information has been documented for the seabed offshore of Chile, which is particularly interesting due to its geodynamic context and large area. Mineralogical and geochemical analyses of 16 sites within the Chiloé–Taitao area, from 83 to 3388 m in depth, were carried out. The most abundant minerals are quartz, feldspars, pyroxenes, amphiboles, epidote, and biotite, with lower quantities of zircon, white mica, olivine, pyrite, magnetite, ilmenite, and hematite. Framboidal pyrites are mainly present at >900 m depth, and could be associated with methane hydrates, which have been reported in the area and its surroundings. Tenorite, sphalerite, tennantite, cordierite, birnessite, and tellurobismuthite were revealed by XRD analysis at low concentrations but at many sites. Birnessite, a Fe–Mn nodule-forming mineral, was widely detected, and Pearson correlations showed elemental associations related to the presence of Mn oxides. Samples did not evidence Fe–Mn nodules, probably due to the redox and depth conditions. Nonetheless, it is probable that to the west, polymetallic nodules are present in deeper zones. In the southern part of the area, reflective grains were identified, with up to 58.3 wt.% Cu; these grains might be derived from the continent or formed by in situ diagenetic precipitation. Full article
Show Figures

Figure 1

16 pages, 3956 KiB  
Article
Towards a Future Scenario for Offshore Wind Energy in Chile: Breaking the Paradigm
by Cristian Mattar, Felipe Cabello-Españon and Nicolas G. Alonso-de-Linaje
Sustainability 2021, 13(13), 7013; https://doi.org/10.3390/su13137013 - 22 Jun 2021
Cited by 15 | Viewed by 10789
Abstract
Offshore wind energy continues to be a potential candidate for meeting the electricity consumption needs of the Chilean population for decades to come. However, the Chilean energy market is skeptical about exploiting offshore marine energy. At present, there are no offshore marine energy [...] Read more.
Offshore wind energy continues to be a potential candidate for meeting the electricity consumption needs of the Chilean population for decades to come. However, the Chilean energy market is skeptical about exploiting offshore marine energy. At present, there are no offshore marine energy farms. This is probably attributable to the current legal framework, payback period, initial costs of inversions, and future wind speed trends. This work aims to break this paradigm by advancing knowledge regarding the main issues concerning offshore marine energy in Chile. To this end, we estimated the Levelized Cost of Energy (LCOE) from 2000 to 2054 using the CMIP RCP 4.5 and 8.5 climate projections. These projections were based on the estimations for a 608 MW offshore wind project located along the Chilean coast. A comprehensive analysis of the legal framework for implementing offshore marine energy is also presented. The results show that the LCOE ranges between 24 USD/MWh and 2000 USD/MWh. Up to 80% of the study area presents favorable results. Future climate scenarios did not affect the project’s economic viability and notably indicated two major zones with low interannual variability. In terms of legal frameworks, there is a gap in a Chilean trans-ministerial law that ends up causing several processes to be duplicated. Further research is needed to reduce the uncertainties associated with offshore wind energy generation on the Chilean coast. This study aims to further knowledge related to both the opportunities and challenges associated with offshore wind. Full article
Show Figures

Figure 1

14 pages, 6795 KiB  
Article
Potential Instability of Gas Hydrates along the Chilean Margin Due to Ocean Warming
by Giulia Alessandrini, Umberta Tinivella, Michela Giustiniani, Iván de la Cruz Vargas-Cordero and Silvia Castellaro
Geosciences 2019, 9(5), 234; https://doi.org/10.3390/geosciences9050234 - 21 May 2019
Cited by 10 | Viewed by 4272
Abstract
In the last few years, interest in the offshore Chilean margin has increased rapidly due to the presence of gas hydrates. We have modelled the gas hydrate stability zone off Chilean shores (from 33° S to 46° S) using a steady state approach [...] Read more.
In the last few years, interest in the offshore Chilean margin has increased rapidly due to the presence of gas hydrates. We have modelled the gas hydrate stability zone off Chilean shores (from 33° S to 46° S) using a steady state approach to evaluate the effects of climate change on gas hydrate stability. Present day conditions were modelled using published literature and compared with available measurements. Then, we simulated the effects of climate change on gas hydrate stability in 50 and 100 years on the basis of Intergovernmental Panel on Climate Change and National Aeronautics and Space Administration forecasts. An increase in temperature might cause the dissociation of gas hydrate that could strongly affect gas hydrate stability. Moreover, we found that the high seismicity of this area could have a strong effect on gas hydrate stability. Clearly, the Chilean margin should be considered as a natural laboratory for understanding the relationship between gas hydrate systems and complex natural phenomena, such as climate change, slope stability and earthquakes. Full article
(This article belongs to the Special Issue Gas Hydrate: Environmental and Climate Impacts)
Show Figures

Figure 1

13 pages, 5043 KiB  
Article
High Gas Hydrate and Free Gas Concentrations: An Explanation for Seeps Offshore South Mocha Island
by Iván Vargas-Cordero, Umberta Tinivella, Lucía Villar-Muñoz and Joaquim P. Bento
Energies 2018, 11(11), 3062; https://doi.org/10.3390/en11113062 - 7 Nov 2018
Cited by 16 | Viewed by 5901
Abstract
Recent studies have reported cold seeps offshore of Mocha Island. Gas hydrate occurrences along the Chilean margin could explain seeps presence. Gas-phase (gas hydrate and free gas) and geothermal gradients were estimated analysing two seismic sections. Close to Mocha Island (up to 20 [...] Read more.
Recent studies have reported cold seeps offshore of Mocha Island. Gas hydrate occurrences along the Chilean margin could explain seeps presence. Gas-phase (gas hydrate and free gas) and geothermal gradients were estimated analysing two seismic sections. Close to Mocha Island (up to 20 km) were detected high (up to 1900 m/s) and low (1260 m/s) velocities associated with high gas hydrate (up to 20% of total volume) and free gas (up to 1.1% of total volume) concentrations, respectively. A variable and high geothermal gradient (65–110 °C/km) was obtained. These results are related to high supply of deep fluids canalised by faults and fractures. Faraway from Mocha Island (>60 km), free gas concentrations decrease to 0.3% of total volume and low geothermal gradient (from 35 to 60 °C/km) are associated with low fluids supply. Finally, we propose gas hydrate dissociation processes as the main supply source for seeps in the vicinity of Mocha Island. These processes can be caused by: (a) active faults and seismic activity; and (b) warm fluid expulsion from deeper zones altering hydrate stability conditions. In both cases, gas hydrate dissociation could generate slope instability and landslides, as occurred in the past in this region and reported in the literature. Full article
(This article belongs to the Section L: Energy Sources)
Show Figures

Graphical abstract

11 pages, 1846 KiB  
Article
Gas Hydrate and Free Gas Concentrations in Two Sites inside the Chilean Margin (Itata and Valdivia Offshores)
by Vargas-Cordero Iván, Tinivella Umberta and Villar-Muñoz Lucía
Energies 2017, 10(12), 2154; https://doi.org/10.3390/en10122154 - 16 Dec 2017
Cited by 20 | Viewed by 4847
Abstract
Two sectors, Itata and Valdivia, which are located in the Chilean margin were analysed by using seismic data with the main purpose to characterize the gas hydrate concentration. Strong lateral velocity variations are recognised, showing a maximum value in Valdivia offshore (2380 ms [...] Read more.
Two sectors, Itata and Valdivia, which are located in the Chilean margin were analysed by using seismic data with the main purpose to characterize the gas hydrate concentration. Strong lateral velocity variations are recognised, showing a maximum value in Valdivia offshore (2380 ms−1 above the BSR) and a minimum value in the Itata offshore (1380 m·s−1 below the BSR). In both of the sectors, the maximum hydrate concentration reaches 17% of total volume, while the maximum free gas concentration is located Valdivia offshore (0.6% of total volume) in correspondence of an uplift sector. In the Itata offshore, the geothermal gradient that is estimated is variable and ranges from 32 °C·km−1 to 87 °C·km−1, while in Valdivia offshore it is uniform and about 35 °C·km−1. When considering both sites, the highest hydrate concentration is located in the accretionary prism (Valdivia offshore) and highest free gas concentration is distributed upwards, which may be considered as a natural pathway for lateral fluid migration. The results that are presented here contribute to the global knowledge of the relationship between hydrate/free gas presence and tectonic features, such as faults and folds, and furnishes a piece of the regional hydrate potentiality Chile offshore. Full article
(This article belongs to the Section L: Energy Sources)
Show Figures

Figure 1

Back to TopTop