Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Cassia auriculata

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5200 KiB  
Article
Synergistic Antihyperglycemic and Antihyperlipidemic Effect of Polyherbal and Allopolyherbal Formulation
by Yahya Alhamhoom, Syed Sagheer Ahmed, Rupesh Kumar M., MD. Salahuddin, Bharathi D. R., Mohammed Muqtader Ahmed, Syeda Ayesha Farhana and Mohamed Rahamathulla
Pharmaceuticals 2023, 16(10), 1368; https://doi.org/10.3390/ph16101368 - 27 Sep 2023
Cited by 5 | Viewed by 2587
Abstract
Polyherbal formulation (PHF) enhances therapeutic efficacy and minimizes side effects by reducing individual herb dosages. Allopolyherbal formulation (APHF) combines polyherbal extracts with allopathic medication, effectively reducing the latter’s required dose and mitigating associated adverse effects. The current study intends to assess the anti-diabetic [...] Read more.
Polyherbal formulation (PHF) enhances therapeutic efficacy and minimizes side effects by reducing individual herb dosages. Allopolyherbal formulation (APHF) combines polyherbal extracts with allopathic medication, effectively reducing the latter’s required dose and mitigating associated adverse effects. The current study intends to assess the anti-diabetic effects of PHF and APHF in-vivo. Dried raw powders of Cassia auriculata leaf, Centella asiatica leaf, and Zingiber officinale rhizome were extracted by cold maceration process using 70% ethanol. These extracts were combined in three different ratios to make PHF. PHF was subjected to qualitative and quantitative phytochemical investigations. APHF has been prepared by combining a potent ratio of PHF with metformin in three different ratios. The compatibility of APHF has been confirmed by differential scanning calorimetry (DSC). In vivo activity was also evaluated in streptozotocin-induced diabetic albino rats. PHF (3 different ratios at a dose of 200–400 mg/kg b.w), APHF (combination of PHF and metformin in 3 different ratios, 200 + 22.5, 200 + 45, and 200 + 67.5 mg/kg b.w), and metformin (90 mg/kg b.w) were administered to albino rats for 21 consecutive days. Blood glucose levels were estimated on the 1st, 7th, 14th, and 21st days of treatment. On the 21st day, blood was collected by cardiac puncture for biochemical analysis. The liver and pancreas were isolated and subjected to histopathological analysis. PHF and APHF showed significant anti-diabetic and antihyperlipidemic efficacy. In comparison to PHF, APHF had the most promising action. The current study demonstrated that PHF and APHF are safe and efficacious drugs in the treatment of diabetes mellitus as they help to replace or lower the dose of metformin, thereby decreasing the risks of metformin. Full article
Show Figures

Figure 1

17 pages, 6418 KiB  
Article
Investigation on Centrifugally Spun Fibrous PCL/3-Methyl Mannoside Mats for Wound Healing Application
by Soloman Agnes Mary, Naisini Ariram, Arun Gopinath, Senthil Kumar Chinnaiyan, Iruthayapandi Selestin Raja, Bindia Sahu, Venkateshwarapuram Rengaswami Giri Dev, Dong-Wook Han and Balaraman Madhan
Polymers 2023, 15(5), 1293; https://doi.org/10.3390/polym15051293 - 3 Mar 2023
Cited by 5 | Viewed by 2312
Abstract
Fibrous structures, in general, have splendid advantages in different forms of micro- and nanomembranes in various fields, including tissue engineering, filtration, clothing, energy storage, etc. In the present work, we develop a fibrous mat by blending the bioactive extract of Cassia auriculata (CA) [...] Read more.
Fibrous structures, in general, have splendid advantages in different forms of micro- and nanomembranes in various fields, including tissue engineering, filtration, clothing, energy storage, etc. In the present work, we develop a fibrous mat by blending the bioactive extract of Cassia auriculata (CA) with polycaprolactone (PCL) using the centrifugal spinning (c-spinning) technique for tissue-engineered implantable material and wound dressing applications. The fibrous mats were developed at a centrifugal speed of 3500 rpm. The PCL concentration for centrifugal spinning with CA extract was optimized at 15% w/v of PCL to achieve better fiber formation. Increasing the extract concentration by more than 2% resulted in crimping of fibers with irregular morphology. The development of fibrous mats using a dual solvent combination resulted in fine pores on the fiber structure. Scanning electron microscope (SEM) images showed that the surface morphology of the fibers in the produced fiber mats (PCL and PCL-CA) was highly porous. Gas chromatography–mass spectrometry (GC-MS) analysis revealed that the CA extract contained 3-methyl mannoside as the predominant component. The in vitro cell line studies using NIH3T3 fibroblasts demonstrated that the CA-PCL nanofiber mat was highly biocompatible, supporting cell proliferation. Hence, we conclude that the c-spun, CA-incorporating nanofiber mat can be employed as a tissue-engineered construct for wound healing applications. Full article
(This article belongs to the Special Issue Advanced Functional Polymeric Materials for Biomedical Applications)
Show Figures

Graphical abstract

14 pages, 4452 KiB  
Article
Tumoricidal and Bactericidal Properties of ZnONPs Synthesized Using Cassia auriculata Leaf Extract
by Kollur Shiva Prasad, Shashanka K. Prasad, Mohammad Azam Ansari, Mohammad A. Alzohairy, Mohammad N. Alomary, Sami AlYahya, Chandrashekar Srinivasa, Mahadevamurthy Murali, Veena Malligere Ankegowda and Chandan Shivamallu
Biomolecules 2020, 10(7), 982; https://doi.org/10.3390/biom10070982 - 30 Jun 2020
Cited by 40 | Viewed by 3995
Abstract
In this work, we aimed to synthesize zinc oxide nanoparticles (ZnONPs) using an aqueous extract of Cassia auriculata leaves (CAE) at room temperature without the provision of additional surfactants or capping agents. The formation of as-obtained ZnONPs was analyzed by UV–visible (ultraviolet) absorption [...] Read more.
In this work, we aimed to synthesize zinc oxide nanoparticles (ZnONPs) using an aqueous extract of Cassia auriculata leaves (CAE) at room temperature without the provision of additional surfactants or capping agents. The formation of as-obtained ZnONPs was analyzed by UV–visible (ultraviolet) absorption and emission spectroscopy, X-ray photoemission spectroscopy (XPS), X-ray diffraction analysis (XRD), energy dispersive X-ray diffraction (EDX), thermogravimetric analysis/differential thermal analysis (TGA-DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The XRD results reflect the wurtzite structure of as-prepared ZnONPs, which produced diffraction patterns showing hexagonal phases. The SEM images indicate that the morphology of as-prepared ZnONPs is composed of hexagonal nanostructures with an average diameter of 20 nm. The HR-TEM result shows that the inter-planar distance between two lattice fringes is 0.260 nm, which coincides with the distance between the adjacent (d-spacing) of the (002) lattice plane of ZnO. The fluorescence emission spectrum of ZnONPs dispersed in ethanol shows an emission maximum at 569 nm, revealing the semiconductor nature of ZnO. As-obtained ZnONPs enhanced the tumoricidal property of CAE in MCF-7 breast cancer cells without significant inhibition of normal human breast cells, MCF-12A. Furthermore, we have studied the antibacterial effects of ZnONPs, which showed direct cell surface contact, resulting in the disturbance of bacterial cell integrity. Full article
Show Figures

Figure 1

34 pages, 8776 KiB  
Review
A Review on the Phytochemistry, Medicinal Properties and Pharmacological Activities of 15 Selected Myanmar Medicinal Plants
by Mya Mu Aye, Hnin Thanda Aung, Myint Myint Sein and Chabaco Armijos
Molecules 2019, 24(2), 293; https://doi.org/10.3390/molecules24020293 - 15 Jan 2019
Cited by 133 | Viewed by 12950
Abstract
Medicinal plants are a reservoir of biologically active compounds with therapeutic properties that over time have been reported and used by diverse groups of people for treatment of various diseases. This review covers 15 selected medicinal plants distributed in Myanmar, including Dalbergia cultrata [...] Read more.
Medicinal plants are a reservoir of biologically active compounds with therapeutic properties that over time have been reported and used by diverse groups of people for treatment of various diseases. This review covers 15 selected medicinal plants distributed in Myanmar, including Dalbergia cultrata, Eriosema chinense, Erythrina suberosa, Millettia pendula, Sesbania grandiflora, Tadehagi triquetrum, Andrographis echioides, Barleria cristata, Justicia gendarussa, Premna integrifolia, Vitex trifolia, Acacia pennata, Cassia auriculata, Croton oblongifolius and Glycomis pentaphylla. Investigation of the phytochemical constituents, biological and pharmacological activities of the selected medicinal plants is reported. This study aims at providing a collection of publications on the species of selected medicinal plants in Myanmar along with a critical review of the literature data. As a country, Myanmar appears to be a source of traditional drugs that have not yet been scientifically investigated. This review will be support for further investigations on the pharmacological activity of medicinal plant species in Myanmar. Full article
(This article belongs to the Collection Bioactive Compounds)
Show Figures

Graphical abstract

10 pages, 932 KiB  
Article
In Vitro Anti-Inflammatory Properties of Selected Green Leafy Vegetables
by K. D. P. P. Gunathilake, K. K. D. S. Ranaweera and H. P. Vasantha Rupasinghe
Biomedicines 2018, 6(4), 107; https://doi.org/10.3390/biomedicines6040107 - 19 Nov 2018
Cited by 212 | Viewed by 16164
Abstract
The study investigated the anti-inflammatory activity of the hydro methanolic extract of six leafy vegetables, namely Cassia auriculata, Passiflora edulis, Sesbania grandiflora, Olax zeylanica, Gymnema lactiferum, and Centella asiatica. The anti-inflammatory activity of methanolic extracts of leafy [...] Read more.
The study investigated the anti-inflammatory activity of the hydro methanolic extract of six leafy vegetables, namely Cassia auriculata, Passiflora edulis, Sesbania grandiflora, Olax zeylanica, Gymnema lactiferum, and Centella asiatica. The anti-inflammatory activity of methanolic extracts of leafy vegetables was evaluated using four in vitro-based assays: hemolysis inhibition, proteinase inhibition, protein denaturation inhibition, and lipoxygenase inhibition. Results showed that the percent inhibition of hemolysis from these leaf extracts (25–100 µg/mL dry weight basis (DW)) was within the range from 5.4% to 14.9%, and the leaves of P. edulis and O. zeylanica showed a significantly higher (p < 0.05) inhibition levels. Percent inhibition of protein denaturation of these leafy types was within the range of 36.0–61.0%, and the leaf extract of C. auriculata has exhibited a significantly higher (p < 0.05) inhibition level. Proteinase inhibitory activity of these leaf extracts was within the range of 20.2–25.9%. The lipoxygenase inhibition was within the range of 3.7–36.0%, and the leaf extract of G. lactiferum showed an improved ability to inhibit lipoxygenase activity. In conclusion, results revealed that all the studied leaves possess anti-inflammatory properties at different levels, and this could be due to the differences in the composition and concentration of bioactive compounds. Full article
(This article belongs to the Special Issue Anti-inflammatory Activity of Plant Polyphenols)
Show Figures

Graphical abstract

23 pages, 3771 KiB  
Review
Cytotoxicity of Plant-Mediated Synthesis of Metallic Nanoparticles: A Systematic Review
by Nurul Akma Hanan, Hock Ing Chiu, Muggundha Raoov Ramachandran, Wai Hau Tung, Nur Nadhirah Mohamad Zain, Noorfatimah Yahaya and Vuanghao Lim
Int. J. Mol. Sci. 2018, 19(6), 1725; https://doi.org/10.3390/ijms19061725 - 11 Jun 2018
Cited by 86 | Viewed by 8495
Abstract
In the field of medicine, nanomaterials, especially those derived using the green method, offer promise as anti-cancer agents and drug carriers. However, the biosafety of metallic nanoparticles used as anti-cancer agents remains a concern. The goal of this systematic review was to compare [...] Read more.
In the field of medicine, nanomaterials, especially those derived using the green method, offer promise as anti-cancer agents and drug carriers. However, the biosafety of metallic nanoparticles used as anti-cancer agents remains a concern. The goal of this systematic review was to compare the cytotoxicity of different plant-mediated syntheses of metallic nanoparticles based on their potency, therapeutic index, and cancer cell type susceptibility in the hopes of identifying the most promising anti-cancer agents. A literature search of electronic databases including Science Direct, PubMed, Springer Link, Google Scholar, and ResearchGate, was conducted to obtain research articles. Keywords such as biosynthesis, plant synthesis, plant-mediated, metallic nanoparticle, cytotoxicity, and anticancer were used in the literature search. All types of research materials that met the inclusion criteria were included in the study regardless of whether the results were positive, negative, or null. The therapeutic index was used as a safety measure for the studied compound of interest. Data from 76 selected articles were extracted and synthesised. Seventy-two studies reported that the cytotoxicity of plant-mediated synthesis of metallic nanoparticles was time and/or dose-dependent. Biosynthesised silver nanoparticles demonstrated higher cytotoxicity potency compared to gold nanoparticles synthesised by the same plants (Plumbago zeylanica, Commelina nudiflora, and Cassia auriculata) irrespective of the cancer cell type tested. This review also identified a correlation between the nanoparticle size and morphology with the potency of cytotoxicity. Cytotoxicity was found to be inversely proportional to nanoparticle size. The plant-mediated syntheses of metallic nanoparticles were predominantly spherical or quasi-spherical, with the median lethal dose of 1–20 µg/mL. Nanoparticles with other shapes (triangular, hexagonal, and rods) were less potent. Metallic nanoparticles synthesised by Abutilon inducum, Butea monosperma, Gossypium hirsutum, Indoneesiella echioides, and Melia azedarach were acceptably safe as anti-cancer agents, as they had a therapeutic index of >2.0 when tested on both cancer cells and normal human cells. Most plant-mediated syntheses of metallic nanoparticles were found to be cytotoxic, although some were non-cytotoxic. The results from this study suggest a focus on a selected list of potential anti-cancer agents for further investigations of their pharmacodynamic/toxicodynamic and pharmacokinetic/toxicokinetic actions with the goal of reducing the Global Burden of Diseases and the second leading cause of mortality. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

10 pages, 911 KiB  
Article
Influence of Boiling, Steaming and Frying of Selected Leafy Vegetables on the In Vitro Anti-inflammation Associated Biological Activities
by K. D. P. P. Gunathilake, K. K. D. S. Ranaweera and H. P. V. Rupasinghe
Plants 2018, 7(1), 22; https://doi.org/10.3390/plants7010022 - 16 Mar 2018
Cited by 81 | Viewed by 10650
Abstract
The aim of the present study was to evaluate the effect of cooking (boiling, steaming, and frying) on anti-inflammation associated properties in vitro of six popularly consumed green leafy vegetables in Sri Lanka, namely: Centella asiatica, Cassia auriculata, Gymnema lactiferum, [...] Read more.
The aim of the present study was to evaluate the effect of cooking (boiling, steaming, and frying) on anti-inflammation associated properties in vitro of six popularly consumed green leafy vegetables in Sri Lanka, namely: Centella asiatica, Cassia auriculata, Gymnema lactiferum, Olax zeylanica, Sesbania grnadiflora, and Passiflora edulis. The anti-inflammation associated properties of methanolic extracts of cooked leaves were evaluated using four in vitro biological assays, namely, hemolysis inhibition, proteinase inhibition, protein denaturation inhibition, and lipoxygenase inhibition. Results revealed that the frying of all the tested leafy vegetables had reduced the inhibition abilities of protein denaturation, hemolysis, proteinase, and lipoxygenase activities when compared with other food preparation methods. Steaming significantly increased the protein denaturation and hemolysis inhibition in O. zeylanica and P. edulis. Steaming of leaves increased inhibition activity of protein denaturation in G. lactiferum (by 44.8%) and P. edulis (by 44%); hemolysis in C. asiatica, C. auriculata, and S. grandiflora; lipoxygenase inhibition ability in P. edulis (by 50%), C. asiatica (by 400%), and C. auriculata leaves (by 250%); proteinase inhibition in C. auriculata (100%) when compared with that of raw leaves. In general, steaming and boiling in contrast to frying protect the health-promoting properties of the leafy vegetables. Full article
(This article belongs to the Special Issue Medicinal Plants and Natural Product Research)
Show Figures

Figure 1

Back to TopTop