Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Carlina oxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1009 KiB  
Proceeding Paper
Analysis of the Chemical Composition and Evaluation of Antioxidant and Anti-Inflammatory Properties of Hydrosol Extract and Its Principal Component (Carlina Oxide) in Aerial Parts of Atractylis gummifera from Western Algeria
by Tabet Zatla Amina, Hammoudi Amina and Brikci Nigassa Nawel
Chem. Proc. 2023, 14(1), 66; https://doi.org/10.3390/ecsoc-27-16135 - 15 Nov 2023
Cited by 1 | Viewed by 1052
Abstract
This work aimed to determine the chemical composition of hydrosol extract from Atractylis gummifera and to assess the in vitro antioxidant and anti-inflammatory properties of this extract, as well as analyze the carlina oxide isolated from it. This study also examined the in [...] Read more.
This work aimed to determine the chemical composition of hydrosol extract from Atractylis gummifera and to assess the in vitro antioxidant and anti-inflammatory properties of this extract, as well as analyze the carlina oxide isolated from it. This study also examined the in vitro synergistic effect of carlina oxide with BHT and diclofenac to reduce their minimum effective doses and minimize their potential side effects. The primary component of the hydrosol extract from A. gummifera was identified as the acetylenic compound carlina oxide (79.1%), which was isolated and confirmed through spectroscopic techniques such as 1H NMR, 13C NMR, and IR. The results of the biological assays demonstrated that both the hydrosol extract and carlina oxide exhibited noteworthy antioxidant and anti-inflammatory properties. Additionally, combining carlina oxide with positive controls yielded the enhancement of these activities, resulting in a significant reduction in the inhibitory concentrations and doses of the synthetic antioxidants and anti-inflammatories. Full article
Show Figures

Figure 1

14 pages, 2615 KiB  
Article
Phytochemical Profiling, Antioxidant Activity, and Protective Effect against H2O2-Induced Oxidative Stress of Carlina vulgaris Extract
by Ireneusz Sowa, Jarosław Mołdoch, Sławomir Dresler, Tomasz Kubrak, Agata Soluch, Dariusz Szczepanek, Maciej Strzemski, Roman Paduch and Magdalena Wójciak
Molecules 2023, 28(14), 5422; https://doi.org/10.3390/molecules28145422 - 15 Jul 2023
Cited by 10 | Viewed by 2362
Abstract
Carlina vulgaris is a little-understood plant with unexplored biological potential, and the papers regarding its chemical composition are scarce. In our study, for the first time, the phytochemical profile of the plant, focusing on polar metabolites, was established using modern chromatographic techniques including [...] Read more.
Carlina vulgaris is a little-understood plant with unexplored biological potential, and the papers regarding its chemical composition are scarce. In our study, for the first time, the phytochemical profile of the plant, focusing on polar metabolites, was established using modern chromatographic techniques including LC-HRMS-QTOF-CAD, UHPLC-PDA-MS. Phytochemical analysis revealed that the species is a rich source of polyphenolic components, with the most abundant being chlorogenic acid and C-glycosides of luteolin, including carlinoside, orientin, isoorientin, and C-glycosides of apigenin, schaftoside, isoschaftoside, and vitexin. Furthermore, we assessed the impact of the polyphenolic-rich fraction of C. vulgaris extracts on human skin fibroblasts using the MTT and NR assays. It was found that the extract was non-toxic and exhibited potent antioxidant activity in the cells subjected to induced oxidative stress. Additionally, it effectively protected the cells against H2O2-induced cytotoxicity. Our study contributes to the general trend of searching for new phytotherapeutics with potential applications in pharmacy and medicine. The results indicate that further exploration of C. vulgaris species is worthwhile, as they can serve as valuable plant material for cosmetic use. Full article
(This article belongs to the Special Issue Plant Metabolites: Accumulation, Profiling and Bioactivity)
Show Figures

Figure 1

16 pages, 3335 KiB  
Article
An Ethyl Acetate Extract of Eryngium carlinae Inflorescences Attenuates Oxidative Stress and Inflammation in the Liver of Streptozotocin-Induced Diabetic Rats
by Cristian M. Trejo-Hurtado, Cinthia I. Landa-Moreno, Jenaro Lemus-de la Cruz, Donovan J. Peña-Montes, Rocío Montoya-Pérez, Rafael Salgado-Garciglia, Salvador Manzo-Avalos, Christian Cortés-Rojo, Juan Luis Monribot-Villanueva, José Antonio Guerrero-Analco and Alfredo Saavedra-Molina
Antioxidants 2023, 12(6), 1235; https://doi.org/10.3390/antiox12061235 - 7 Jun 2023
Cited by 5 | Viewed by 2515
Abstract
Secondary metabolites such as flavonoids are promising in the treatment of non-alcoholic fatty liver disease (NAFLD), which is one of the complications of diabetes due to oxidative stress and inflammation. Some plants, such as Eryngium carlinae, have been investigated regarding their medicinal [...] Read more.
Secondary metabolites such as flavonoids are promising in the treatment of non-alcoholic fatty liver disease (NAFLD), which is one of the complications of diabetes due to oxidative stress and inflammation. Some plants, such as Eryngium carlinae, have been investigated regarding their medicinal properties in in vitro and in vivo assays, showing favorable results for the treatment of various diseases such as diabetes and obesity. The present study examined the antioxidant and anti-inflammatory effects of the phenolic compounds present in an ethyl acetate extract of the inflorescences of Eryngium carlinae on liver homogenates and mitochondria from streptozotocin (STZ)-induced diabetic rats. Phenolic compounds were identified and quantified by UHPLC-MS. In vitro assays were carried out to discover the antioxidant potential of the extract. Male Wistar rats were administered with a single intraperitoneal injection of STZ (45 mg/kg) and were given the ethyl acetate extract at a level of 30 mg/kg for 60 days. Phytochemical assays showed that the major constituents of the extract were flavonoids; in addition, the in vitro antioxidant activity was dose dependent with IC50 = 57.97 mg/mL and IC50 = 30.90 mg/mL in the DPPH and FRAP assays, respectively. Moreover, the oral administration of the ethyl acetate extract improved the effects of NAFLD, decreasing serum and liver triacylglycerides (TG) levels and oxidative stress markers and increasing the activity of the antioxidant enzymes. Likewise, it attenuated liver damage by decreasing the expression of NF-κB and iNOS, which lead to inflammation and liver damage. We hypothesize that solvent polarity and consequently chemical composition of the ethyl acetate extract of E. carlinae, exert the beneficial effects due to phenolic compounds. These results suggest that the phenolic compounds of the ethyl acetate extract of E. carlinae have antioxidant, anti-inflammatory, hypolipidemic, and hepatoprotective activity. Full article
Show Figures

Graphical abstract

12 pages, 1842 KiB  
Article
Microwave-Assisted Hydrodistillation of the Insecticidal Essential Oil from Carlina acaulis: A Fractional Factorial Design Optimization Study
by Eleonora Spinozzi, Marta Ferrati, Desiree Lo Giudice, Eugenio Felicioni, Riccardo Petrelli, Giovanni Benelli, Filippo Maggi and Marco Cespi
Plants 2023, 12(3), 622; https://doi.org/10.3390/plants12030622 - 31 Jan 2023
Cited by 5 | Viewed by 2763
Abstract
Recently, microwave-assisted hydrodistillation (MAH) has been reported as an innovative technique leading to increased essential oil (EO) extraction yield, coupled with reduced extraction time and energy costs. The EO of Carlina acaulis L. (Asteraceae), mainly constituted by carlina oxide (>95%) and conventionally obtained [...] Read more.
Recently, microwave-assisted hydrodistillation (MAH) has been reported as an innovative technique leading to increased essential oil (EO) extraction yield, coupled with reduced extraction time and energy costs. The EO of Carlina acaulis L. (Asteraceae), mainly constituted by carlina oxide (>95%) and conventionally obtained through traditional hydrodistillation (HD), has been reported as extremely effective against several arthropod vectors and pests of medical and economic importance with limited impact on non-target species, including mammals. This study aimed to the optimization of the EO extraction through MAH by using a one-step design of experiments (DoE) approach that allowed us to relate the characteristics of the produced EOs with the applied experimental conditions using mathematical models. The preliminary screening allowed us to optimize the protocol only by the extraction time, skipping complex data analysis. Moreover, the comparison of the optimized MAH conditions with traditional HD pointed out the higher efficiency of MAH in terms of EO yield (0.65 and 0.49% for MAH and HD, respectively) and extraction time (210 min for MAH). The results obtained confirmed the promising role that MAH could have in C. acaulis EO extraction, with increased yield and reduced extraction time, water consumption, and energy costs, and being employable on an industrial scale, with special reference to insecticidal and acaricidal formulations. Full article
Show Figures

Figure 1

10 pages, 285 KiB  
Article
Comprehensive Evaluation of the Antibacterial and Antifungal Activities of Carlina acaulis L. Essential Oil and Its Nanoemulsion
by Antonio Rosato, Alexia Barbarossa, Ahmed M. Mustafa, Giulia Bonacucina, Diego Romano Perinelli, Riccardo Petrelli, Filippo Maggi and Eleonora Spinozzi
Antibiotics 2021, 10(12), 1451; https://doi.org/10.3390/antibiotics10121451 - 25 Nov 2021
Cited by 18 | Viewed by 3024
Abstract
Plants are considered to be an excellent source of new compounds with antibiotic activity. Carlina acaulis L. is a medicinal plant whose essential oil (EO) is mainly characterized by the polyacetylene carlina oxide, which has antimicrobial properties. The aim of this study was [...] Read more.
Plants are considered to be an excellent source of new compounds with antibiotic activity. Carlina acaulis L. is a medicinal plant whose essential oil (EO) is mainly characterized by the polyacetylene carlina oxide, which has antimicrobial properties. The aim of this study was to evaluate the antimicrobial and antifungal activities of C. acaulis EO, carlina oxide, and nanoemulsion (NE) containing the EO. The EO was obtained through plant roots hydrodistillation, and carlina oxide was purified from it through silica gel column chromatography. The NE containing C. acaulis EO was prepared with the high-pressure homogenization method, and the minimum inhibitory concentration (MIC) was determined against several bacterial and fungal strains for all the C. acaulis-derived products. The latter resulted active versus all the screened Gram-positive bacterial strains and also on all the fungal strains with low MIC values. For yeast, the EO and carlina oxide showed good MIC values. The EO-NE demonstrated a better activity than the pure EO on all the tested bacterial and fungal strains. The results suggest that C. acaulis-derived products could be potential candidates for the development of natural antibacterial and antifungal agents. Full article
Show Figures

Figure 1

11 pages, 1108 KiB  
Article
Bioactivity of Carlina acaulis Essential Oil and Its Main Component towards the Olive Fruit Fly, Bactrocera oleae: Ingestion Toxicity, Electrophysiological and Behavioral Insights
by Roberto Rizzo, Marco Pistillo, Giacinto Salvatore Germinara, Gabriella Lo Verde, Milko Sinacori, Filippo Maggi, Riccardo Petrelli, Eleonora Spinozzi, Loredana Cappellacci, Valeria Zeni, Angelo Canale and Giovanni Benelli
Insects 2021, 12(10), 880; https://doi.org/10.3390/insects12100880 - 29 Sep 2021
Cited by 24 | Viewed by 3187
Abstract
Among botanical insecticides based on essential oils (EOs) or their main components, Carlina acaulis EO and the aromatic polyacetylene carlina oxide, constituting more than 90% of its EO, were recently proven to be effective against the larvae and adults of some insect vectors [...] Read more.
Among botanical insecticides based on essential oils (EOs) or their main components, Carlina acaulis EO and the aromatic polyacetylene carlina oxide, constituting more than 90% of its EO, were recently proven to be effective against the larvae and adults of some insect vectors and pests. In this study, the toxicity of C. acaulis EO and carlina oxide were tested on Bactrocera oleae adults using a protein bait formulation. The LC50 values of the C. acaulis EO and carlina oxide were 706 ppm and 1052 ppm, respectively. Electroantennographic (EAG) tests on B. oleae adults showed that both carlina EO and oxide elicited EAG dose-dependent responses in male and female antennae. The responses to the EO were significantly higher than those to carlina oxide, indicating that other compounds, despite their lower concentrations, can play a relevant role. Moreover, Y-tube assays carried out to assess the potential attractiveness or repellency of carlina oxide LC90 to B. oleae adults showed that it was unattractive to both males and females of B. oleae, and the time spent by both sexes in either the control or the treatment arm did not differ significantly. Overall, this study points out the potential use of C. acaulis EO and carlina oxide for the development of green and effective “lure-and-kill” tools. Full article
(This article belongs to the Collection Pesticide Chemistry and Toxicology)
Show Figures

Figure 1

15 pages, 1871 KiB  
Article
Developing a Highly Stable Carlina acaulis Essential Oil Nanoemulsion for Managing Lobesia botrana
by Giovanni Benelli, Lucia Pavoni, Valeria Zeni, Renato Ricciardi, Francesca Cosci, Gloria Cacopardo, Saverio Gendusa, Eleonora Spinozzi, Riccardo Petrelli, Loredana Cappellacci, Filippo Maggi, Roman Pavela, Giulia Bonacucina and Andrea Lucchi
Nanomaterials 2020, 10(9), 1867; https://doi.org/10.3390/nano10091867 - 18 Sep 2020
Cited by 78 | Viewed by 5811
Abstract
The growing interest in the development of green pest management strategies is leading to the exploitation of essential oils (EOs) as promising botanical pesticides. In this respect, nanotechnology could efficiently support the use of EOs through their encapsulation into stable nanoformulations, such as [...] Read more.
The growing interest in the development of green pest management strategies is leading to the exploitation of essential oils (EOs) as promising botanical pesticides. In this respect, nanotechnology could efficiently support the use of EOs through their encapsulation into stable nanoformulations, such as nanoemulsions (NEs), to improve their stability and efficacy. This technology assures the improvement of the chemical stability, hydrophilicity, and environmental persistence of EOs, giving an added value for the fabrication of natural insecticides effective against a wide spectrum of insect vectors and pests of public and agronomical importance. Carlina acaulis (Asteraceae) root EO has been recently proposed as a promising ingredient of a new generation of botanical insecticides. In the present study, a highly stable C. acaulis-based NE was developed. Interestingly, such a nanosystem was able to encapsulate 6% (w/w) of C. acaulis EO, showing a mean diameter of around 140 nm and a SOR (surfactant-to-oil ratio) of 0.6. Its stability was evaluated in a storage period of six months and corroborated by an accelerated stability study. Therefore, the C. acaulis EO and C. acaulis-based NE were evaluated for their toxicity against 1st instar larvae of the European grapevine moth (EGVM), Lobesia botrana (Denis & Schiffermüller, 1775) (Lepidoptera: Tortricidae), a major vineyard pest. The chemical composition of C. acaulis EO was investigated by gas chromatography–mass spectrometry (GC–MS) revealing carlina oxide, a polyacetylene, as the main constituent. In toxicity assays, both the C. acaulis EO and the C. acaulis-based NE were highly toxic to L. botrana larvae, with LC50 values of 7.299 and 9.044 µL/mL for C. acaulis EO and NE, respectively. The C. acaulis-based NE represents a promising option to develop highly stable botanical insecticides for pest management. To date, this study represents the first evidence about the insecticidal toxicity of EOs and EO-based NEs against this major grapevine pest. Full article
(This article belongs to the Special Issue Green Synthesis of Nanomaterials and Their Biological Applications)
Show Figures

Figure 1

11 pages, 1705 KiB  
Article
Toxicity of Carlina Oxide—A Natural Polyacetylene from the Carlina acaulis Roots—In Vitro and in Vivo Study
by Artur Wnorowski, Sylwia Wnorowska, Kamila Wojas-Krawczyk, Anna Grenda, Michał Staniak, Agnieszka Michalak, Sylwia Woźniak, Dariusz Matosiuk, Grażyna Biała, Magdalena Wójciak, Ireneusz Sowa, Paweł Krawczyk and Maciej Strzemski
Toxins 2020, 12(4), 239; https://doi.org/10.3390/toxins12040239 - 9 Apr 2020
Cited by 20 | Viewed by 3514
Abstract
There are several reports indicating that the roots of the Carlina acaulis L. used to be commonly applied as a treatment measure in skin diseases and as an antiparasitic agent, starting from antiquity to the 19th century; however, nowadays, it has lost its [...] Read more.
There are several reports indicating that the roots of the Carlina acaulis L. used to be commonly applied as a treatment measure in skin diseases and as an antiparasitic agent, starting from antiquity to the 19th century; however, nowadays, it has lost its importance. Currently, numerous studies are being conducted assessing the possibility of reintroducing C. acaulis-derived extracts to phytotherapy. Determining the safety profile of the main constituents of the plant material is crucial for achieving this goal. Here, we aimed to determine the toxicity profile of carlina oxide, one of the most abundant components of the C. acaulis root extract. We obtained the carlina oxide by distillation of C. acaulis roots in the Deryng apparatus. The purity of the standard was evaluated using GC-MS, and the identity was confirmed by IR, Raman, and NMR spectroscopy. In vitro cytotoxicity was assessed using a panel of human cell lines of skin origin, including BJ normal fibroblasts and UACC-903, UACC-647, and C32 melanoma cells. This was accompanied by an in vivo zebrafish acute toxicity test (ZFET). In vitro studies showed a toxic effect of carlina oxide, as demonstrated by an induction of apoptosis and necrosis in both normal and melanoma cells. Decreased expression of AKT kinase and extracellular signal-regulated kinase 1/2 (ERK1/2) was noted in the UACC-647 melanoma cell line. It was also observed that carlina oxide modified the expression of programmed cell death-ligand 1 (PD-L1) in tested cell lines. Carlina oxide exhibited high in vivo toxicity, with LC50 = 10.13 µg/mL upon the 96 h of exposure in the ZFET test. Here, we demonstrate that carlina oxide displays toxic effects to cells in culture and to living organisms. The data indicate that C. acaulis-based extracts considered for therapeutic use should be completely deprived of carlina oxide. Full article
(This article belongs to the Special Issue Microbial and Plant Phytotoxins)
Show Figures

Figure 1

14 pages, 2382 KiB  
Article
The Impact of Different Cultivation Systems on the Content of Selected Secondary Metabolites and Antioxidant Activity of Carlina acaulis Plant Material
by Maciej Strzemski, Sławomir Dresler, Ireneusz Sowa, Anna Czubacka, Monika Agacka-Mołdoch, Bartosz J. Płachno, Sebastian Granica, Marcin Feldo and Magdalena Wójciak-Kosior
Molecules 2020, 25(1), 146; https://doi.org/10.3390/molecules25010146 - 30 Dec 2019
Cited by 23 | Viewed by 4166
Abstract
Roots and leaves of Carlina acaulis L. are still used in ethnomedicine in many European countries; however, the limited occurrence of the plants and protection of this species necessitate a search for alternative ways for obtaining this plant material. In this study, in [...] Read more.
Roots and leaves of Carlina acaulis L. are still used in ethnomedicine in many European countries; however, the limited occurrence of the plants and protection of this species necessitate a search for alternative ways for obtaining this plant material. In this study, in vitro cultures, hydroponic cultures, and field cultivation were applied to obtain the C. acaulis plant material. Its quality was evaluated using antioxidant activity tests and high performance liquid chromatography analysis. Our study showed that the antioxidant activity and the content of chlorogenic and 3,5-di-caffeoylquinic acid in roots of plants cultivated in hydroponics and field conditions were comparable. However, the amount of carlina oxide was significantly higher in plants from the field. The flavonoid content in leaves obtained from both cultivation systems was at the same level; however, the antioxidant activity and the content of the investigated metabolites were higher in the soil cultivation system. The callus line exhibited high differentiation in phytochemical compositions depending on the treatments and medium compositions. Full article
Show Figures

Graphical abstract

12 pages, 2250 KiB  
Article
Metabolic Changes Induced by Silver Ions in Carlina acaulis
by Sławomir Dresler, Barbara Hawrylak-Nowak, Maciej Strzemski, Magdalena Wójciak-Kosior, Ireneusz Sowa, Agnieszka Hanaka, Iwona Gołoś, Agnieszka Skalska-Kamińska, Małgorzata Cieślak and Jozef Kováčik
Plants 2019, 8(11), 517; https://doi.org/10.3390/plants8110517 - 17 Nov 2019
Cited by 19 | Viewed by 4825
Abstract
Silver is one of the most toxic heavy metals for plants, inducing various toxic symptoms and metabolic changes. Here, the impact of Ag(I) on Carlina acaulis physiology and selected metabolites was studied using two Ag concentrations (1 or 10 µM) after 14 days [...] Read more.
Silver is one of the most toxic heavy metals for plants, inducing various toxic symptoms and metabolic changes. Here, the impact of Ag(I) on Carlina acaulis physiology and selected metabolites was studied using two Ag concentrations (1 or 10 µM) after 14 days of exposure. The higher concentration of Ag(I) evoked reduction of growth, while 1 µM Ag had a growth-promoting effect on root biomass. The translocation factor (<0.04) showed that Ag was mainly retained in the roots. The 1 µM Ag concentration increased the level of low-molecular-weight organic acids (LMWOAs), while 10 µM Ag depleted these compounds in the roots. The increased concentration of Ag(I) elevated the accumulation of phytochelatins (PCs) in the roots and reduced glutathione (GSH) in the shoots (but not in the roots). At 1 µM, Ag(I) elevated the level of phenolic and triterpene acids, while the 10 µM Ag treatment increased the carlina oxide content in the roots. The obtained results indicate an alteration of metabolic pathways of C. acaulis to cope with different levels of Ag(I) stress. Our data imply that the intracellular binding of Ag(I) and nonenzymatic antioxidants contribute to the protection against low concentrations of Ag ions. Full article
(This article belongs to the Special Issue Plant Responses and Tolerance to Metal/Metalloid Toxicity)
Show Figures

Figure 1

12 pages, 1105 KiB  
Article
Protective Effect of the Hexanic Extract of Eryngium carlinae Inflorescences In Vitro, in Yeast, and in Streptozotocin-Induced Diabetic Male Rats
by Donovan J. Peña-Montes, Maribel Huerta-Cervantes, Mónica Ríos-Silva, Xóchitl Trujillo, Miguel Huerta, Ruth Noriega-Cisneros, Rafael Salgado-Garciglia and Alfredo Saavedra-Molina
Antioxidants 2019, 8(3), 73; https://doi.org/10.3390/antiox8030073 - 26 Mar 2019
Cited by 21 | Viewed by 5528
Abstract
In the present study, we investigated the composition and antioxidant activity of the hexanic extract of Eryngium carlinae inflorescences by employing in vitro assays to measure antioxidant capacity and 2,2-diphenyl-1-picrylhydrazyl scavenging activity. We also applied the hexanic extract to Saccharomyces cerevisiae, under [...] Read more.
In the present study, we investigated the composition and antioxidant activity of the hexanic extract of Eryngium carlinae inflorescences by employing in vitro assays to measure antioxidant capacity and 2,2-diphenyl-1-picrylhydrazyl scavenging activity. We also applied the hexanic extract to Saccharomyces cerevisiae, under hydrogen peroxide-induced stress. Finally, we tested the extract in male Wistar rats with and without streptozotocin-induced diabetes. The compounds in the hexanic extract were analyzed by gas-chromatography-mass spectrometry, which revealed mainly terpenes and sesquiterpenes, including (Z)β-farnesene (38.79%), β-pinene (17.53%), calamene (13.3%), and α-farnesene (10.38%). In vitro and in S. cerevisiae, the extract possessed antioxidant activity at different concentrations, compared to ascorbic acid (positive control). In normoglycemic and hyperglycemic rats, oral administration of 30 mg/kg of the extract reduced blood glucose levels; lipid peroxidation in liver, kidney and brain; protein carbonylation; and reactive oxygen species (ROS) production. It also increased catalase activity in the brain, kidneys and liver. These findings show that this hexanic extract of E. carlinae inflorescences possessed antioxidant properties. Full article
(This article belongs to the Special Issue Antioxidants in Oxidative Stress Diseases)
Show Figures

Graphical abstract

10 pages, 2789 KiB  
Article
Carlina acaulis Exhibits Antioxidant Activity and Counteracts Aβ Toxicity in Caenorhabditis elegans
by Pille Link, Kevin Roth, Frank Sporer and Michael Wink
Molecules 2016, 21(7), 871; https://doi.org/10.3390/molecules21070871 - 2 Jul 2016
Cited by 31 | Viewed by 7579
Abstract
Carlina acaulis is a medicinal plant that has shown antioxidant activity in in vitro studies, but to date no corresponding in vivo data is available. Therefore, in the present study the antioxidant activity and its impact in counteracting Aβ toxicity were studied in [...] Read more.
Carlina acaulis is a medicinal plant that has shown antioxidant activity in in vitro studies, but to date no corresponding in vivo data is available. Therefore, in the present study the antioxidant activity and its impact in counteracting Aβ toxicity were studied in the Caenorhabditis elegans model. A dichloromethane extract of the roots of C. acaulis was prepared and characterised via gas-liquid-chromatography/mass-spectrometry (GLC-MS). The in vitro antioxidant activity was confirmed via 2,2-diphenyl-1-picrylhydracyl assay. The extract was further separated by thin layer chromatography into two fractions, one of which was a fraction of the dichloromethane extract of C. acaulis containing mostly Carlina oxide (CarOx). Different strains of C. elegans were employed to study the expression of hsp-16.2p::GFP as a marker for oxidative stress, delocalisation of the transcription factor DAF-16 as a possible mechanism of antioxidant activity, the effect of the drug under lethal oxidative stress, and the effect against beta-amyloid (Aβ) toxicity in a paralysis assay. The C. acaulis extract and CarOx showed high antioxidant activity (stress reduction by 47% and 64%, respectively) in C. elegans and could activate the transcription factor DAF-16 which directs the expression of anti-stress genes. In paralysis assay, only the total extract was significantly active, delaying paralysis by 1.6 h. In conclusion, in vivo antioxidant activity was shown for C. acaulis for the first time in the C. elegans model. The active antioxidant compound is Carlina oxide. This activity, however, is not sufficient to counteract Aβ toxicity. Other mechanisms and possibly other active compounds are involved in this effect. Full article
(This article belongs to the Collection Bioactive Compounds)
Show Figures

Graphical abstract

Back to TopTop