Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Capsicum pubescens seeds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 894 KiB  
Article
In Vitro Shoot Regeneration and Multiplication of Peruvian Rocoto Chili Pepper (Capsicum pubescens Ruiz & Pav.)
by Angel David Hernández-Amasifuen, Alexandra Jherina Pineda-Lázaro, Jorge L. Maicelo-Quintana and Juan Carlos Guerrero-Abad
Int. J. Plant Biol. 2024, 15(4), 979-987; https://doi.org/10.3390/ijpb15040069 - 4 Oct 2024
Cited by 1 | Viewed by 2141
Abstract
The rocoto (Capsicum pubescens Ruiz & Pav.) (Solanaceae) is an endemic herbaceous chili pepper from Peru. Low yields of rocoto production are due to the low availability of certified seeds or the production of superior plant seedlings. Therefore, the present study aimed [...] Read more.
The rocoto (Capsicum pubescens Ruiz & Pav.) (Solanaceae) is an endemic herbaceous chili pepper from Peru. Low yields of rocoto production are due to the low availability of certified seeds or the production of superior plant seedlings. Therefore, the present study aimed to establish an in vitro protocol for the regeneration and multiplication of rocoto shoots. The multiplication was carried out on shoot tips excised from rocoto seedlings germinated under in vitro conditions, and then the explants were placed on Murashigue and Skoog (MS) medium supplemented with different concentrations of 6-benzylaminopurine (BAP) and Kinetin: 0.5, 1.0, 1.5 and 2.0 mg/L. For rooting, shoots were obtained from the multiplication phase and placed under different treatments made up of MS medium supplemented with different concentrations of indole butyric acid (IBA) and naphthalene acetic acid (NAA): 0.5, 1.0, 1.5 and 2.0 mg/L. In the multiplication phase, the best results were observed with MS medium supplemented with 1.0 mg/L BAP, with 82.22% shoot development, 2.93 shoots per explant and 2.75 cm shoot length. In the rooting phase, the best results were observed with MS medium supplemented with 1.5 mg/L IBA, with 91.11% root development, 9.73 roots per explant and 6.79 cm root length. Here, we show the first evidence and tool for the in vitro regeneration and multiplication of rocoto chili pepper, which could be used for the multiplication of superior genotypes, germplasm in vitro conservation and its use in plant breeding programs. Full article
(This article belongs to the Section Plant Reproduction)
Show Figures

Figure 1

21 pages, 12433 KiB  
Article
Biocontrol Activity of Bacillus altitudinis CH05 and Bacillus tropicus CH13 Isolated from Capsicum annuum L. Seeds against Fungal Strains
by Merle Ariadna Espinosa Bernal, Mayra Paola Mena Navarro, Jackeline Lizzeta Arvizu Gómez, Carlos Saldaña, Miguel Ángel Ramos López, Aldo Amaro Reyes, Monserrat Escamilla García, Juan Ramiro Pacheco Aguilar, Victor Pérez Moreno, José Alberto Rodríguez Morales, Erika Álvarez Hidalgo, Jorge Nuñez Ramírez, José Luis Hernández Flores and Juan Campos Guillén
Microorganisms 2024, 12(10), 1943; https://doi.org/10.3390/microorganisms12101943 - 25 Sep 2024
Cited by 5 | Viewed by 2126
Abstract
In this study, seed-surface-associated bacteria from fresh fruits of Capsicum spp. were analyzed to explore potential isolates for biocontrol of phytopathogenic fungal strains. A total of 76 bacterial isolates were obtained from three different species of chili pepper (C. annuum L., C. [...] Read more.
In this study, seed-surface-associated bacteria from fresh fruits of Capsicum spp. were analyzed to explore potential isolates for biocontrol of phytopathogenic fungal strains. A total of 76 bacterial isolates were obtained from three different species of chili pepper (C. annuum L., C. pubescens R. & P., and C. chinense Jacq.), and two isolates were selected via mycelial growth inhibition assays based on their production of volatile organic compounds (VOCs) against six fungal strains. Genomic analysis identified these isolates as Bacillus altitudinis CH05, with a chromosome size of 3,687,823 bp and with 41.25% G+C, and Bacillus tropicus CH13, with a chromosome size of 5,283,706 bp and with 35.24% G+C. Both bacterial strains showed high mycelial growth inhibition capacities against Sclerotium rolfsii, Sclerotinia sp., Rhizoctonia solani, and Alternaria alternata but lower inhibition capacities against Colletotrichum gloesporoides and Fusarium oxysporum. VOC identification was carried out after 24 h of fermentation with 64 VOCs for B. altitudinis CH05 and 53 VOCs for B. tropicus CH13. 2,5-Dimethyl pyrazine and acetoin had the highest relative abundance values in both bacterial strains. Our findings revealed that seed-surface-associated bacteria on Capsicum spp. have the metabolic ability to produce VOCs for biocontrol of fungal strains and have the potential to be used in sustainable agriculture. Full article
(This article belongs to the Special Issue Microorganisms in Agriculture)
Show Figures

Figure 1

23 pages, 11016 KiB  
Article
Role of Volatile Organic Compounds Produced by Kosakonia cowanii Cp1 during Competitive Colonization Interaction against Pectobacterium aroidearum SM2
by Mayra Paola Mena Navarro, Merle Ariadna Espinosa Bernal, Adriana Eunice Martinez-Avila, Leonela Sofia Aponte Pineda, Luis Alberto Montes Flores, Carlos Daniel Chan Ku, Yoali Fernanda Hernández Gómez, Jacqueline González Espinosa, Juan Ramiro Pacheco Aguilar, Miguel Ángel Ramos López, Jackeline Lizzeta Arvizu Gómez, Carlos Saldaña Gutierrez, José Alberto Rodríguez Morales, Aldo Amaro Reyes, José Luis Hernández Flores and Juan Campos Guillén
Microorganisms 2024, 12(5), 930; https://doi.org/10.3390/microorganisms12050930 - 3 May 2024
Cited by 3 | Viewed by 2480
Abstract
The competitive colonization of bacteria on similar ecological niches has a significant impact during their establishment. The synthesis speeds of different chemical classes of molecules during early competitive colonization can reduce the number of competitors through metabolic effects. In this work, we demonstrate [...] Read more.
The competitive colonization of bacteria on similar ecological niches has a significant impact during their establishment. The synthesis speeds of different chemical classes of molecules during early competitive colonization can reduce the number of competitors through metabolic effects. In this work, we demonstrate for the first time that Kosakonia cowanii Cp1 previously isolated from the seeds of Capsicum pubescens R. P. produced volatile organic compounds (VOCs) during competitive colonization against Pectobacterium aroidearum SM2, affecting soft rot symptoms in serrano chili (Capsicum annuum L.). The pathogen P. aroidearum SM2 was isolated from the fruits of C. annuum var. Serrano with soft rot symptoms. The genome of the SM2 strain carries a 5,037,920 bp chromosome with 51.46% G + C content and 4925 predicted protein-coding genes. It presents 12 genes encoding plant-cell-wall-degrading enzymes (PCDEWs), 139 genes involved in five types of secretion systems, and 16 genes related to invasion motility. Pathogenic essays showed soft rot symptoms in the fruits of C. annuum L., Solanum lycopersicum, and Physalis philadelphica and the tubers of Solanum tuberosum. During the growth phases of K. cowanii Cp1, a mix of VOCs was identified by means of HS-SPME-GC-MS. Of these compounds, 2,5-dimethyl-pyrazine showed bactericidal effects and synergy with acetoin during the competitive colonization of K. cowanii Cp1 to completely reduce soft rot symptoms. This work provides novel evidence grounding a better understanding of bacterial interactions during competitive colonization on plant tissue, where VOC synthesis is essential and has a high potential capacity to control pathogenic microorganisms in agricultural systems. Full article
Show Figures

Figure 1

20 pages, 4758 KiB  
Article
Volatile Organic Compounds Produced by Kosakonia cowanii Cp1 Isolated from the Seeds of Capsicum pubescens R & P Possess Antifungal Activity
by José Luis Hernández Flores, Yomaiko Javier Martínez, Miguel Ángel Ramos López, Carlos Saldaña Gutierrez, Aldo Amaro Reyes, Mariem Monserrat Armendariz Rosales, Maraly Jazmin Cortés Pérez, Mayela Fosado Mendoza, Joanna Ramírez Ramírez, Grecia Ramírez Zavala, Paola Lizeth Tovar Becerra, Laila Valdez Santoyo, Karen Villasana Rodríguez, José Alberto Rodríguez Morales and Juan Campos Guillén
Microorganisms 2023, 11(10), 2491; https://doi.org/10.3390/microorganisms11102491 - 4 Oct 2023
Cited by 7 | Viewed by 2854
Abstract
The Kosakonia cowanii Cp1 strain was isolated from seeds of Capsicum pubescens R. & P. cultivated in Michoacan, Mexico. Genetic and ecological role analyses were conducted for better characterization. The results show that genome has a length of 4.7 Mbp with 56.22% G [...] Read more.
The Kosakonia cowanii Cp1 strain was isolated from seeds of Capsicum pubescens R. & P. cultivated in Michoacan, Mexico. Genetic and ecological role analyses were conducted for better characterization. The results show that genome has a length of 4.7 Mbp with 56.22% G + C and an IncF plasmid of 128 Kbp with 52.51% G + C. Furthermore, pathogenicity test revealed nonpathogenic traits confirmed by the absence of specific virulence-related genes. Interestingly, when fungal inhibitory essays were carried out, the bacterial synthesis of volatile organic compounds (VOCs) with antifungal activity showed that Sclerotinia sp. and Rhizoctonia solani were inhibited by 87.45% and 77.24%, respectively. Meanwhile, Sclerotium rolfsii, Alternaria alternata, and Colletotrichum gloeosporioides demonstrated a mean radial growth inhibition of 52.79%, 40.82%, and 55.40%, respectively. The lowest inhibition was by Fusarium oxysporum, with 10.64%. The VOCs’ characterization by headspace solid–phase microextraction combined with gas chromatography–mass spectrometry (HS-SPME-GC–MS) revealed 65 potential compounds. Some of the compounds identified with high relative abundance were ketones (22.47%), represented by 2-butanone, 3-hydroxy (13.52%), and alcohols (23.5%), represented by ethanol (5.56%) and 1-butanol-3-methyl (4.83%). Our findings revealed, for the first time, that K. cowanii Cp1 associated with C. pubescens seeds possesses potential traits indicating that it could serve as an effective biocontrol. Full article
(This article belongs to the Special Issue Biological Control of the Plant Pathogens)
Show Figures

Figure 1

39 pages, 2856 KiB  
Review
Overview of Biotic Stresses in Pepper (Capsicum spp.): Sources of Genetic Resistance, Molecular Breeding and Genomics
by Mario Parisi, Daniela Alioto and Pasquale Tripodi
Int. J. Mol. Sci. 2020, 21(7), 2587; https://doi.org/10.3390/ijms21072587 - 8 Apr 2020
Cited by 101 | Viewed by 15949
Abstract
Pepper (Capsicum spp.) is one of the major vegetable crops grown worldwide largely appreciated for its economic importance and nutritional value. This crop belongs to the large Solanaceae family, which, among more than 90 genera and 2500 species of flowering plants, includes [...] Read more.
Pepper (Capsicum spp.) is one of the major vegetable crops grown worldwide largely appreciated for its economic importance and nutritional value. This crop belongs to the large Solanaceae family, which, among more than 90 genera and 2500 species of flowering plants, includes commercially important vegetables such as tomato and eggplant. The genus includes over 30 species, five of which (C. annuum, C. frutescens, C. chinense, C. baccatum, and C. pubescens) are domesticated and mainly grown for consumption as food and for non-food purposes (e.g., cosmetics). The main challenges for vegetable crop improvement are linked to the sustainable development of agriculture, food security, the growing consumers’ demand for food. Furthermore, demographic trends and changes to climate require more efficient use of plant genetic resources in breeding programs. Increases in pepper consumption have been observed in the past 20 years, and for maintaining this trend, the development of new resistant and high yielding varieties is demanded. The range of pathogens afflicting peppers is very broad and includes fungi, viruses, bacteria, and insects. In this context, the large number of accessions of domesticated and wild species stored in the world seed banks represents a valuable resource for breeding in order to transfer traits related to resistance mechanisms to various biotic stresses. In the present review, we report comprehensive information on sources of resistance to a broad range of pathogens in pepper, revisiting the classical genetic studies and showing the contribution of genomics for the understanding of the molecular basis of resistance. Full article
(This article belongs to the Special Issue Plant Disease Resistance)
Show Figures

Figure 1

Back to TopTop