Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (161)

Search Parameters:
Keywords = COVID-19 immunomodulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4401 KiB  
Article
Influence of Sex and 1,25α Dihydroxyvitamin D3 on SARS-CoV-2 Infection and Viral Entry
by Nicole Vercellino, Alessandro Ferrari, José Camilla Sammartino, Mattia Bellan, Elizabeth Iskandar, Daniele Lilleri and Rosalba Minisini
Pathogens 2025, 14(8), 765; https://doi.org/10.3390/pathogens14080765 - 2 Aug 2025
Viewed by 233
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the etiologic agent that causes the coronavirus disease (COVID-19) identified in Wuhan, in 2019. Men are more prone to developing severe manifestations than women, suggesting a possible crucial role of sex hormones. 17,β-Estradiol (E2) and 1,25 [...] Read more.
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the etiologic agent that causes the coronavirus disease (COVID-19) identified in Wuhan, in 2019. Men are more prone to developing severe manifestations than women, suggesting a possible crucial role of sex hormones. 17,β-Estradiol (E2) and 1,25 α dihydroxyvitamin D3 (calcitriol) act upon gene pathways as immunomodulators in several infectious respiratory diseases. In this study, we aimed to evaluate the influence of E2 and calcitriol on the VSV-based pseudovirus SARS-CoV-2 and SARS-CoV-2 infection in vitro. We infected Vero E6 cells with the recombinant VSV-based pseudovirus SARS-CoV-2 and the SARS-CoV-2 viruses according to the pre-treatment and pre–post-treatment models. The Angiotensin-Converting Enzyme 2 (ACE2) and Vitamin D Receptor (VDR) gene expression did not change under different treatments. The VSV-based pseudovirus SARS-CoV-2 infection showed a significant decrease in the focus-forming unit count in the presence of E2 and calcitriol (either alone or in combination) in the pre-treatment model, while in the pre–post-treatment model, the infection was inhibited only in the presence of E2. Th SARS-CoV-2 infection highlighted a decrease in viral titres in the presence of E2 and calcitriol only in the pre–post-treatment model. 17,β-Estradiol and calcitriol can exert an inhibitory effect on SARS-CoV-2 infections, demonstrating their protective role against viral infections. Full article
(This article belongs to the Special Issue Antiviral Strategies Against Human Respiratory Viruses)
Show Figures

Graphical abstract

36 pages, 1583 KiB  
Review
SARS-CoV-2 Pneumonia: Advances in Diagnosis and Treatment
by Olga Adriana Caliman-Sturdza, Iuliana Soldanescu and Roxana Elena Gheorghita
Microorganisms 2025, 13(8), 1791; https://doi.org/10.3390/microorganisms13081791 - 31 Jul 2025
Viewed by 288
Abstract
The development of severe SARS-CoV-2 pneumonia is characterized by extensive lung inflammation, which, in turn, leads to respiratory distress and a decline in blood oxygen levels. Hospital admission, along with intensive care or ventilator usage, becomes necessary because this condition leads to serious [...] Read more.
The development of severe SARS-CoV-2 pneumonia is characterized by extensive lung inflammation, which, in turn, leads to respiratory distress and a decline in blood oxygen levels. Hospital admission, along with intensive care or ventilator usage, becomes necessary because this condition leads to serious respiratory problems. This review aims to provide a comprehensive overview of the pathophysiological mechanisms, diagnostic methods, and current therapeutic options for pneumonia caused by the SARS-CoV-2 virus. The pathophysiological process of severe pneumonia due to SARS-CoV-2 infection is characterized by direct lung damage from viral replication, an excessive immune system response, inflammation, impaired gas exchange, and multi-organ failure. The coexistence of various medical conditions leads to substantial lung impairment, resulting in hypoxia and respiratory failure, which can ultimately lead to fatal outcomes. The diagnosis of severe SARS-CoV-2 pneumonia is made through a combination of clinical, radiologic, and laboratory findings. A multifaceted approach integrating antiviral therapy, corticosteroids, oxygen supplementation, ventilatory management, and immunomodulation is imperative to control inflammation and enhance clinical outcomes. Early intervention, meticulous monitoring, and personalized care are paramount for enhancing survival and mitigating complications in critically ill patients with COVID-19 pneumonia. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: SARS-CoV-2 and COVID-19)
Show Figures

Figure 1

17 pages, 3718 KiB  
Article
Pharmacological Immunomodulation via Collagen–Polyvinylpyrrolidone or Pirfenidone Plays a Role in the Recovery of Patients with Severe COVID-19 Through Similar Mechanisms of Action Involving the JAK/STAT Signalling Pathway: A Pilot Study
by Hugo Mendieta-Zerón, Esteban Cruz-Arenas, Salvador Díaz-Meza, Alejandro Cabrera-Wrooman, Edna Ayerim Mandujano-Tinoco, Rosa M. Salgado, Hugo Tovar, Daniel Muñiz-García, Laura Julieta Orozco-Castañeda, Sonia Hernández-Enríquez, Miriam Deyanira Rodríguez-Piña, Ana Sarahí Mulia-Soto, José Meneses-Calderón, Paul Mondragón-Terán and Edgar Krötzsch
Adv. Respir. Med. 2025, 93(4), 24; https://doi.org/10.3390/arm93040024 - 18 Jul 2025
Viewed by 590
Abstract
The therapeutic target of COVID-19 is focused on controlling inflammation and preventing fibrosis. Collagen–polyvinylpyrrolidone (collagen-PVP) and pirfenidone both have the ability to control the cytokine storm observed in rheumatic and fibrotic disorders. In this work, our aim was to understand the benefits of [...] Read more.
The therapeutic target of COVID-19 is focused on controlling inflammation and preventing fibrosis. Collagen–polyvinylpyrrolidone (collagen-PVP) and pirfenidone both have the ability to control the cytokine storm observed in rheumatic and fibrotic disorders. In this work, our aim was to understand the benefits of treatment with each of these drugs in patients with severe COVID-19. In total, 36 patients were treated with dexamethasone and enoxaparin, but 26 were allocated collagen-PVP or pirfenidone (n = 15 and 11, respectively); the clinical and metabolic effects were compared among them. Since pirfenidone works via transcriptional mechanisms, we performed a human genome microarray assay using RNA isolated from fibroblast and monocyte cultures treated with the biodrug, with the aim of hypothesising a possible mechanism of action for collagen-PVP. Our results showed that hospital stay duration, quick COVID-19 severity index (qCSI), and admission to the intensive care unit were statistically significantly lower (p < 0.02) in patients treated with collagen-PVP or pirfenidone when compared with the control group, and that only collagen-PVP normalised serum glucose at discharge. Ingenuity Pathway Analysis showed that the cell cycle, inflammation, and cell surface–extracellular matrix interactions could be regulated with collagen-PVP via the downmodulation of proinflammatory cytokines, while Th2 anti-inflammatory response signalling could be upregulated. Furthermore, the downregulation of some of the genes involved in nitric oxide production showed a possible control for JAK in the IFN-γ pathway, allowing for the possibility of controlling inflammation through the JAK/STAT pathway, as has been observed for pirfenidone and other immunomodulators, such as ruxolitinib. Full article
Show Figures

Figure 1

22 pages, 6762 KiB  
Article
A Novel Antiviral Therapeutic Platform: Anchoring IFN-β to the Surface of Infectious Virions Equips Interferon-Evasive Virions with Potent Antiviral Activity
by Hoda H. Jabbour, Alexander G. Bastian, Kayla B. DeOca and Mark D. Mannie
Viruses 2025, 17(5), 697; https://doi.org/10.3390/v17050697 - 13 May 2025
Viewed by 597
Abstract
The COVID-19 pandemic highlighted the need for new therapeutic strategies to counter emerging pathogenic viruses. Herein, we introduce a novel fusion protein platform that enables antiviral targeting of distinct viral species based on host receptor specificity. Proof-of-concept studies focused on the human coronavirus [...] Read more.
The COVID-19 pandemic highlighted the need for new therapeutic strategies to counter emerging pathogenic viruses. Herein, we introduce a novel fusion protein platform that enables antiviral targeting of distinct viral species based on host receptor specificity. Proof-of-concept studies focused on the human coronavirus NL63, which shares specificity for the ACE2 host receptor with the pandemic SARS-CoV and SARS-CoV-2 species. This antiviral fusion protein combines IFN-β with the soluble extracellular domain of ACE2 (IFNβ-ACE2). Both domains retained predicted bioactivities in that the IFN-β domain exhibited potent antiproliferative activity and the ACE2 domain exhibited full binding to the transmembrane SARS-CoV-2 Spike protein. In virus-washed (virus-targeted) and non-washed in vitro infection systems, we showed that the pool of IFNβ-ACE2 targeted to the virion surface had superior antiviral activity against NL63 compared to soluble ACE2, IFN-β, or the unlinked combination of ACE2 and IFN-β. The pool of IFNβ-ACE2 on the virion surface exhibited robust antiviral efficacy based on the preemptive targeting of antiviral IFN-β activity to the proximal site of viral infection. In conclusion, virus-targeted IFN-β places interferon optimally and antecedent to viral infection to constitute a new antiviral strategy. Full article
(This article belongs to the Special Issue Innovative Drug Discovery for Emerging Viral Diseases)
Show Figures

Figure 1

21 pages, 1666 KiB  
Review
Macrophage Dysfunction in Tuberculosis–Diabetes Mellitus Comorbidity: A Scoping Review of Immune Dysregulation and Disease Progression
by Simone E. Barry, Alice Sawka, Antonietta Maldari, Joseph Inauen, Sam LaBroome and James B. Geake
Diabetology 2025, 6(5), 35; https://doi.org/10.3390/diabetology6050035 - 2 May 2025
Viewed by 868
Abstract
Background: Tuberculosis (TB) and diabetes mellitus (DM) comorbidity (TB-DM) presents a significant global health challenge, with diabetes increasing susceptibility to TB, worsening clinical outcomes, and impairing immune responses. Among these dysfunctions, macrophages—the primary immune cells responsible for pathogen recognition, phagocytosis, and bacterial clearance—exhibit [...] Read more.
Background: Tuberculosis (TB) and diabetes mellitus (DM) comorbidity (TB-DM) presents a significant global health challenge, with diabetes increasing susceptibility to TB, worsening clinical outcomes, and impairing immune responses. Among these dysfunctions, macrophages—the primary immune cells responsible for pathogen recognition, phagocytosis, and bacterial clearance—exhibit profound alterations in TB-DM. However, the complex interplay between metabolic dysregulation, immune impairment, and macrophage dysfunction remains poorly defined. Objective: This scoping review systematically maps the literature on macrophage dysfunction in TB-DM, identifying key immunological impairments affecting phagocytosis, cytokine production, antigen presentation, macrophage polarisation, reactive oxygen species (ROS) and nitric oxide (NO) regulation, and chronic inflammation. Methods: A systematic search was conducted in PubMed, Web of Science, and Embase, covering studies from 2014 to 2024. Inclusion criteria focused on human studies investigating macrophage-specific mechanisms in TB-DM. Data extraction and synthesis were performed using Covidence, with findings grouped into key immunological themes. Results: A total of 44 studies were included, revealing significant impairments in macrophage function in TB-DM. Findings indicate reduced NO production, variable ROS dysregulation, altered M1/M2 polarisation, defective antigen presentation, and chronic inflammation. Elevated IL-10 and VEGF were associated with immune suppression and granuloma destabilisation, while eicosanoids (PGE2, LXA4) contributed to sustained inflammation. Conclusions: Macrophage dysfunction emerges as a central driver of immune failure in TB-DM, creating a self-perpetuating cycle of inflammation, immune exhaustion, and bacterial persistence. Understanding these mechanisms is essential for developing biomarker-driven diagnostics, host-directed therapies, targeted immunomodulation, and improving TB outcomes in diabetic populations. Future research should explore macrophage-targeted interventions to enhance immune function and mitigate TB-DM burden. Full article
Show Figures

Figure 1

15 pages, 1920 KiB  
Review
Challenges and Opportunities for Post-COVID Pulmonary Disease: A Focused Review of Immunomodulation
by Steffi Verbeeck Mendez, Isabella L. Do Orozco, Guadalupe E. Gavilanez-Chavez, Arnulfo Hernán Nava-Zavala and Maria G. Zavala-Cerna
Int. J. Mol. Sci. 2025, 26(8), 3850; https://doi.org/10.3390/ijms26083850 - 18 Apr 2025
Viewed by 782
Abstract
The resolution of the recent COVID-19 pandemic still requires attention, since the consequences of having suffered the infection, even in mild cases, are associated with several acute and chronic pathological conditions referred to as post-COVID syndrome (PCS). PCS often manifests with pulmonary disease [...] Read more.
The resolution of the recent COVID-19 pandemic still requires attention, since the consequences of having suffered the infection, even in mild cases, are associated with several acute and chronic pathological conditions referred to as post-COVID syndrome (PCS). PCS often manifests with pulmonary disease and, in up to 9% of cases, a more serious complication known as post-COVID-19 pulmonary fibrosis (PC19-PF), which has a similar clinical course as idiopathic pulmonary fibrosis (IPF). Generating knowledge to provide robust evidence about the clinical benefits of different therapeutic strategies to treat the pulmonary effects of PCS can provide new insights to amplify therapeutic options for these patients. We present evidence found after a scoping review, following extended PRIMSA guidelines, for the use of immunomodulators in pulmonary PCS. We start with a brief description of the immunomodulatory properties of the relevant drugs, their clinically proven efficacy for viral infections and chronic inflammatory conditions, and their use during the COVID-19 pandemic. We emphasize the need for well-designed clinical trials to improve our understanding the physiopathology of pulmonary PCS and PC19-PF and also to determine the efficacy and safety of candidate treatments. Full article
(This article belongs to the Special Issue Respiratory Virus Infection)
Show Figures

Figure 1

24 pages, 1014 KiB  
Review
The Dual-Edged Sword: Risks and Benefits of JAK Inhibitors in Infections
by Anders Jarneborn, Pradeep Kumar Kopparapu and Tao Jin
Pathogens 2025, 14(4), 324; https://doi.org/10.3390/pathogens14040324 - 27 Mar 2025
Cited by 1 | Viewed by 2111
Abstract
Janus kinase inhibitors (JAKis) represent a relatively new class of immunomodulatory drugs with potent effects on various cytokine signalling pathways. They have revolutionized the treatment landscape for autoimmune diseases such as rheumatoid arthritis, psoriatic arthritis, and ulcerative colitis. However, their ability to modulate [...] Read more.
Janus kinase inhibitors (JAKis) represent a relatively new class of immunomodulatory drugs with potent effects on various cytokine signalling pathways. They have revolutionized the treatment landscape for autoimmune diseases such as rheumatoid arthritis, psoriatic arthritis, and ulcerative colitis. However, their ability to modulate immune responses presents a dual-edged nature, influencing both protective immunity and pathological inflammation. This review explores the complex role of JAKis in infectious settings, highlighting both beneficial and detrimental effects. On the one hand, experimental models suggest that JAK inhibition can impair host defence mechanisms, increasing susceptibility to certain bacterial and viral infections. For example, tofacitinib-treated mice exhibited more severe joint erosions in Staphylococcus aureus (S. aureus) septic arthritis and showed impaired viral clearance in herpes simplex encephalitis. Additionally, clinical data confirm an increased risk of herpes zoster in patients receiving JAKis, underscoring the need for rigorous monitoring. On the other hand, JAK inhibition has demonstrated protective effects in certain infectious and hyperinflammatory conditions. In sepsis models, including cecal ligation and puncture (CLP) and S. aureus bacteraemia, tofacitinib improved survival by attenuating excessive inflammation. Furthermore, JAKis, particularly baricitinib, have shown substantial efficacy in mitigating cytokine storms during severe COVID-19 infections, leading to improved clinical outcomes and reduced mortality. These observations suggest that JAKis have a role in modulating hyperinflammatory responses in select infectious contexts. In conclusion, JAKis present a complex interplay between immunosuppression and immunomodulation. While they increase the risk of certain infections, they also show potential in managing hyperinflammatory conditions such as cytokine storms. The key challenge is determining which patients and situations benefit most from JAKis while minimizing risks, requiring a careful and personalized treatment approach. Full article
Show Figures

Figure 1

27 pages, 689 KiB  
Review
Vitamin D: A Nutraceutical Supplement at the Crossroad Between Respiratory Infections and COVID-19
by Manuela Rizzi and Pier Paolo Sainaghi
Int. J. Mol. Sci. 2025, 26(6), 2550; https://doi.org/10.3390/ijms26062550 - 12 Mar 2025
Viewed by 1412
Abstract
Even though in mid-2023 the World Health Organization declared the end of the public health emergency of international concern status for COVID-19, many areas of uncertainty about SARS-CoV-2 infection pathophysiology remain. Although in the last 4 years pharmaceutical industries widely invested in the [...] Read more.
Even though in mid-2023 the World Health Organization declared the end of the public health emergency of international concern status for COVID-19, many areas of uncertainty about SARS-CoV-2 infection pathophysiology remain. Although in the last 4 years pharmaceutical industries widely invested in the development of effective antiviral treatments and vaccines, large disparities in their availability worldwide still exist, thus fostering the investigation of nutritional supplements as adjuvant therapeutic approaches for disease management, especially in resource-limited settings. During the COVID-19 pandemic, vitamin D has been widely used as an over-the-counter solution to improve disease evolution, thanks to its known immunomodulatory and anti-inflammatory actions. Ecological and observational studies support a relationship between hypovitaminosis D and COVID-19 negative outcomes and, according to this evidence, several research groups investigated the role of vitamin D supplementation in protecting from SARS-CoV-2 infection and/or improving disease evolution. This narrative review is intended to offer insights into the existing data on vitamin D’s biological effects in respiratory infections, especially in COVID-19. Furthermore, it will also offer a brief overview of the complex interplay between vitamin D and vaccine-elicited immune response, with special attention to anti-COVID-19 vaccines. Full article
(This article belongs to the Special Issue COVID-19 Pandemic: Therapeutic Strategies and Vaccines: 2nd Edition)
Show Figures

Figure 1

37 pages, 388 KiB  
Review
Do Statins Affect Viral Infections Encountered by International Travelers?
by Chinmay T. Jani, Christian Mouchati, Nour Abdallah, Ruchi Jani, Loukas Kakoullis and Lin H. Chen
Trop. Med. Infect. Dis. 2025, 10(3), 73; https://doi.org/10.3390/tropicalmed10030073 - 11 Mar 2025
Viewed by 1445
Abstract
Statins are among the most frequently prescribed medications. In addition to their well-established effectiveness in lowering total cholesterol, LDL, and triglycerides, statins have been described to have immunomodulatory and anti-inflammatory properties and have been associated with improved endothelial functions. Given the common use [...] Read more.
Statins are among the most frequently prescribed medications. In addition to their well-established effectiveness in lowering total cholesterol, LDL, and triglycerides, statins have been described to have immunomodulatory and anti-inflammatory properties and have been associated with improved endothelial functions. Given the common use of statins, we sought to evaluate the effect of statins on some viral infections encountered by residents in tropical areas or by international travelers. A literature search was performed in PubMED/MEDLINE focusing on keywords that included statins and the viruses of interest, including SARS-CoV-2, influenza, yellow fever, dengue, Zika, tick-borne encephalitis, hemorrhagic fever viruses, hepatitis A, norovirus, hepatitis B, hepatitis C, measles, and herpesviruses; findings were synthesized for each virus into a summary. The effects of statins on viral infections vary depending on the specific virus. While some studies indicate potential benefits in chronic HBV and HCV infections, evidence regarding SARS-CoV-2 and influenza remains inconclusive due to mixed findings from observational studies and randomized controlled trials. The role of statins in other viral infections is largely unexplored, with preclinical data available for only a few viruses. Given the conflicting evidence, further prospective studies and randomized controlled trials are warranted to elucidate statins’ role in viral infections, particularly in modulating inflammation, endothelial dysfunction, and immune responses. Future research should aim to define the optimal patient populations, target viruses, statin types, and treatment durations that may confer benefits in specific viral infections. Full article
(This article belongs to the Special Issue Travel Medicine and Migrant Health)
28 pages, 2001 KiB  
Article
Pharmacogenomic Study of SARS-CoV-2 Treatments: Identifying Polymorphisms Associated with Treatment Response in COVID-19 Patients
by Alexandre Serra-Llovich, Natalia Cullell, Olalla Maroñas, María José Herrero, Raquel Cruz, Berta Almoguera, Carmen Ayuso, Rosario López-Rodríguez, Elena Domínguez-Garrido, Rocio Ortiz-Lopez, María Barreda-Sánchez, Marta Corton, David Dalmau, Esther Calbo, Lucía Boix-Palop, Beatriz Dietl, Anna Sangil, Almudena Gil-Rodriguez, Encarna Guillén-Navarro, Esther Mancebo, Saúl Lira-Albarrán, Pablo Minguez, Estela Paz-Artal, Gladys G. Olivera, Sheila Recarey-Rama, Luis Sendra, Enrique G. Zucchet, Miguel López de Heredia, Carlos Flores, José A. Riancho, Augusto Rojas-Martinez, Pablo Lapunzina, Ángel Carracedo, María J. Arranz and SCOURGE COHORT GROUPadd Show full author list remove Hide full author list
Biomedicines 2025, 13(3), 553; https://doi.org/10.3390/biomedicines13030553 - 21 Feb 2025
Viewed by 2634
Abstract
Background/Objectives: The COVID-19 pandemic resulted in 675 million cases and 6.9 million deaths by 2022. Despite substantial declines in case fatalities following widespread vaccination campaigns, the threat of future coronavirus outbreaks remains a concern. Current treatments for COVID-19 have been repurposed from [...] Read more.
Background/Objectives: The COVID-19 pandemic resulted in 675 million cases and 6.9 million deaths by 2022. Despite substantial declines in case fatalities following widespread vaccination campaigns, the threat of future coronavirus outbreaks remains a concern. Current treatments for COVID-19 have been repurposed from existing therapies for other infectious and non-infectious diseases. Emerging evidence suggests a role for genetic factors in both susceptibility to SARS-CoV-2 infection and response to treatment. However, comprehensive studies correlating clinical outcomes with genetic variants are lacking. The main aim of our study is the identification of host genetic biomarkers that predict the clinical outcome of COVID-19 pharmacological treatments. Methods: In this study, we present findings from GWAS and candidate gene and pathway enrichment analyses leveraging diverse patient samples from the Spanish Coalition to Unlock Research of Host Genetics on COVID-19 (SCOURGE), representing patients treated with immunomodulators (n = 849), corticoids (n = 2202), and the combined cohort of both treatments (n = 2487) who developed different outcomes. We assessed various phenotypes as indicators of treatment response, including survival at 90 days, admission to the intensive care unit (ICU), radiological affectation, and type of ventilation. Results: We identified significant polymorphisms in 16 genes from the GWAS and candidate gene studies (TLR1, TLR6, TLR10, CYP2C19, ACE2, UGT1A1, IL-1α, ZMAT3, TLR4, MIR924HG, IFNG-AS1, ABCG1, RBFOX1, ABCB11, TLR5, and ANK3) that may modulate the response to corticoid and immunomodulator therapies in COVID-19 patients. Enrichment analyses revealed overrepresentation of genes involved in the innate immune system, drug ADME, viral infection, and the programmed cell death pathways associated with the response phenotypes. Conclusions: Our study provides an initial framework for understanding the genetic determinants of treatment response in COVID-19 patients, offering insights that could inform precision medicine approaches for future epidemics. Full article
Show Figures

Figure 1

28 pages, 1475 KiB  
Review
Phytomedical Properties of Carica papaya for Boosting Human Immunity Against Viral Infections
by Rashmi Srivastava, Neeshma Jaiswal, Harsha Kharkwal, Neeraj Kumar Dubey and Rakesh Srivastava
Viruses 2025, 17(2), 271; https://doi.org/10.3390/v17020271 - 16 Feb 2025
Cited by 1 | Viewed by 3300
Abstract
Carica papaya, a tropical fruit-bearing plant, has attracted significant attention for its diverse phytomedical properties and its ability to regulate both innate and adaptive immunity, making it a promising natural therapeutic agent. C. papaya is rich in bioactive compounds that play a [...] Read more.
Carica papaya, a tropical fruit-bearing plant, has attracted significant attention for its diverse phytomedical properties and its ability to regulate both innate and adaptive immunity, making it a promising natural therapeutic agent. C. papaya is rich in bioactive compounds that play a multifaceted role in immunomodulation. These bioactive constituents have demonstrated efficacy not only against the dengue virus but also against other viral infections, including COVID-19 (Corona Virus Disease 2019), Human Immunodeficiency Virus (HIV), Zika virus, and others. The antiviral effects of C. papaya are achieved through its ability to enhance host immunity, mitigate inflammation, reduce oxidative stress, inhibit viral replication, and modulate immune responses. These mechanisms highlight its potential as a candidate for antiviral therapies, paving the way for further exploration of its pharmacological applications and promoting eco-friendly, accessible healthcare solutions for combating viral diseases. This review highlights the antiviral potential of C. papaya extracts in inhibiting viral replication and modulating immune responses, emphasizing the need for further studies and clinical trials to validate their efficacy against other medically significant viruses causing human diseases. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Graphical abstract

15 pages, 1673 KiB  
Article
Prenatal SARS-CoV-2 Infection Alters Human Milk-Derived Extracellular Vesicles
by Somchai Chutipongtanate, Supasek Kongsomros, Hatice Cetinkaya, Xiang Zhang, Damaris Kuhnell, Desirée Benefield, Wendy D. Haffey, Michael A. Wyder, Gaurav Kwatra, Shannon C. Conrey, Allison R. Burrell, Scott M. Langevin, Leyla Esfandiari, David S. Newburg, Kenneth D. Greis, Mary A. Staat and Ardythe L. Morrow
Cells 2025, 14(4), 284; https://doi.org/10.3390/cells14040284 - 15 Feb 2025
Cited by 1 | Viewed by 1260
Abstract
Human milk-derived extracellular vesicles (HMEVs) are key components in breast milk, promoting infant health and development. Maternal conditions could affect HMEV cargo; however, the impact of SARS-CoV-2 infection on HMEVs remains unknown. This study investigated the influence of SARS-CoV-2 infection during pregnancy on [...] Read more.
Human milk-derived extracellular vesicles (HMEVs) are key components in breast milk, promoting infant health and development. Maternal conditions could affect HMEV cargo; however, the impact of SARS-CoV-2 infection on HMEVs remains unknown. This study investigated the influence of SARS-CoV-2 infection during pregnancy on postpartum HMEV molecules. The median duration from SARS-CoV-2 test positivity to milk collection was 3 months. After defatting and casein micelle disaggregation, HMEVs were isolated from milk samples of nine mothers with prenatal SARS-CoV-2 and six controls by sequential centrifugation, ultrafiltration, and qEV-size exclusion chromatography. The presence of HMEV was confirmed via transmission electron microscopy. Nanoparticle tracking analysis demonstrated particle diameters of <200 nm and yields of >1 × 1011 particles per mL of milk. Western immunoblots detected ALIX, CD9, and HSP70, supporting the presence of HMEVs in the isolates. Cargo from thousands of HMEVs were analyzed using a multi-omics approach, including proteomics and microRNA sequencing, and predicted that mothers with prenatal SARS-CoV-2 infection produced HMEVs with enhanced functionalities involving metabolic reprogramming, mucosal tissue development, and immunomodulation. Our findings suggest that SARS-CoV-2 infection during pregnancy boosts mucosal site-specific functions of HMEVs, potentially protecting infants against viral infections. Further prospective studies should be pursued to reevaluate the short- and long-term benefits of breastfeeding in the post-COVID era. Full article
Show Figures

Figure 1

13 pages, 4535 KiB  
Article
Tocilizumab in COVID-19: A Double-Edged Sword?
by Bartosz Kudliński, Jacek Zawadzki, Wiktoria Kulińska, Jagoda Kania, Magdalena Murkos, Marta Stolińska, Dominika Zgoła, Anna Noga and Paweł Nowak
Biomedicines 2024, 12(12), 2924; https://doi.org/10.3390/biomedicines12122924 - 23 Dec 2024
Viewed by 1138
Abstract
Background/Objectives: SARS-CoV-2 was responsible for the global pandemic. Approximately 10–15% of patients with COVID-19 developed respiratory failure with adult acute respiratory distress syndrome (ARDS), which required treatment in the Intensive Care Unit (ICU). The cytokine storm observed in severe COVID-19 was frequently handled [...] Read more.
Background/Objectives: SARS-CoV-2 was responsible for the global pandemic. Approximately 10–15% of patients with COVID-19 developed respiratory failure with adult acute respiratory distress syndrome (ARDS), which required treatment in the Intensive Care Unit (ICU). The cytokine storm observed in severe COVID-19 was frequently handled with steroids. Synergically, tocilizumab, an anti-interleukin-6 receptor monoclonal antibody, gained popularity as a cytokine storm-suppressing agent. However, immunosuppression was proven to increase the predisposition to infections with resistant bacteria. Our study aimed to assess the relationship between positive tests for secondary infections and the survival of patients with severe COVID-19-attributed ARDS treated with immunosuppressive agents. Methods: This study included 342 patients qualified for the ICU and mechanical ventilation (MV). The patients were divided based on the type of immunomodulating therapy and the culture tests results. Results: The results showed the highest survival rate among patients <61 years, favoring the combined treatment (tocilizumab + steroids). Atrial fibrillation (AF) and coronary heart disease (CHD) correlated with a lower survival rate than other comorbidities. Tocilizumab was associated with an increased risk of positive pathogen cultures, which could potentially cause secondary infections; however, the survival rate among these patients was higher. Conclusions: MV and ICU procedures as well as the application of tocilizumab significantly decreased the mortality rate in patients with severe COVID-19-related ARDS. The suppression of cytokine storms played a crucial role in survival. Tocilizumab was found to be both efficient and safe despite the ‘side effect’ of the increased risk of positive results for secondary infections. Full article
Show Figures

Figure 1

12 pages, 1035 KiB  
Article
Prolactin Role in COVID-19 and Its Association with the Underlying Inflammatory Response
by Eleni Polyzou, Georgios Schinas, Panagiotis Bountouris, Dimitra Georgakopoulou, Anne-Lise de Lastic, Anastasia Parthymou, Charalambos Gogos, Venetsana Kyriazopoulou, Athanasia Mouzaki, Anastasia Theodoropoulou and Karolina Akinosoglou
Int. J. Mol. Sci. 2024, 25(22), 11905; https://doi.org/10.3390/ijms252211905 - 6 Nov 2024
Viewed by 1494
Abstract
The COVID-19 pandemic has prompted interest in identifying reliable biomarkers to predict disease severity and guide clinical decisions. Prolactin (PRL), a hormone traditionally associated with lactation, has gained attention for its role in immune modulation. This study aimed to assess PRL as a [...] Read more.
The COVID-19 pandemic has prompted interest in identifying reliable biomarkers to predict disease severity and guide clinical decisions. Prolactin (PRL), a hormone traditionally associated with lactation, has gained attention for its role in immune modulation. This study aimed to assess PRL as a biomarker for disease severity in COVID-19. A prospective cohort of 142 patients with moderate to severe COVID-19, defined as a WHO-CPS 5 or 6, was recruited from the University General Hospital of Patras. Baseline PRL levels were measured using an electrochemiluminescence immunoassay, and serum cytokines, including IL-1β, IL-6, IL-8, IL-10, IL-12p70, and TNF-α, were quantified through flow cytometry. Clinical outcomes, including mortality and the need for invasive mechanical ventilation (IMV), were recorded. Results indicated that PRL levels were significantly higher in female patients (12.95 ng/mL vs. 9.40 ng/mL, p < 0.001) but they did not correlate with key severity indices such as CCI, SOFA score upon admission or inflammatory markers. No significant associations between baseline PRL levels, cytokine concentrations, and clinical outcomes in COVID-19 were noted. Our findings suggest that PRL may lack prognostic reliability for disease severity compared to more established predictive markers and that its role in the immune response remains uncertain. Full article
(This article belongs to the Special Issue COVID-19: Advances in Pathophysiology and Therapeutics)
Show Figures

Figure 1

24 pages, 1325 KiB  
Article
Did We Overreact? Insights on COVID-19 Disease and Vaccination in a Large Cohort of Immune-Mediated Inflammatory Disease Patients during Sequential Phases of the Pandemic (The BELCOMID Study)
by Jeroen Geldof, Marie Truyens, João Sabino, Marc Ferrante, Jo Lambert, Hilde Lapeere, Tom Hillary, An Van Laethem, Kurt de Vlam, Patrick Verschueren, Triana Lobaton, Elizaveta Padalko and Séverine Vermeire
Vaccines 2024, 12(10), 1157; https://doi.org/10.3390/vaccines12101157 - 11 Oct 2024
Cited by 1 | Viewed by 2021
Abstract
Introduction: As the COVID-19 pandemic becomes an endemic state, still many questions remain regarding the risks and impact of SARS-CoV-2 infection and vaccination in patients with immune-mediated inflammatory diseases (IMIDs) who were excluded from the phase 3 COVID-19 vaccination trials. Methods: The BELCOMID [...] Read more.
Introduction: As the COVID-19 pandemic becomes an endemic state, still many questions remain regarding the risks and impact of SARS-CoV-2 infection and vaccination in patients with immune-mediated inflammatory diseases (IMIDs) who were excluded from the phase 3 COVID-19 vaccination trials. Methods: The BELCOMID study collected patient data and serological samples from a large, multicentric IMID patient cohort that was prospectively followed during sequential stages of the pandemic. Patients were stratified according to vaccination status into five groups across three sampling periods. Interactions between SARS-CoV-2 infection, COVID-19 vaccination status, IMID-treatment modalities and IMID course were explored. Results: In total, 2165 patients with IBD, a dermatological or rheumatological IMID participated. SARS-CoV-2 infection rates increased over the course of the pandemic and were highest in IMID patients that had refused every vaccine. After baseline COVID-19 vaccination, serologic spike (S)-antibody responses were attenuated by particular types of immune-modulating treatment: anti-TNF, rituximab, JAKi, systemic steroids, combined biologic/immunomodulator treatment. Nonetheless, S-antibody concentration increased progressively in patients who received a booster vaccination, reaching 100% seroconversion rate in patients who had received two booster vaccines. Previous SARS-CoV-2 infection was found as a predictor of higher S-antibody response. Patients who had refused every vaccine showed the lowest rates of S-seroconversion (53.8%). Multiple logistic regression did not identify previous SARS-CoV-2 infection as a risk factor for IMID flare-up. Furthermore, no increased risk of IMID flare-up was found with booster vaccination. Conclusions: Altogether, the BELCOMID study provides evidence for the efficacy and safety of COVID-19 vaccination and confirms the importance of repeated booster vaccination in IMID patients. Full article
(This article belongs to the Special Issue Immunotherapy and Vaccine Development for Viral Diseases)
Show Figures

Figure 1

Back to TopTop