Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = COPheat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3890 KiB  
Article
Evaluating the Thermal Performance and Environmental Impact of Agricultural Greenhouses Using Earth-to-Air Heat Exchanger: An Experimental Study
by Samia Hamdane, Luis Carlos Carvalho Pires, Pedro Dinho Silva and Pedro Dinis Gaspar
Appl. Sci. 2023, 13(2), 1119; https://doi.org/10.3390/app13021119 - 13 Jan 2023
Cited by 9 | Viewed by 2358
Abstract
The thermal performance and environmental impact of agricultural greenhouses (GH) connected to earth-to-air heat exchanger (EAHE) systems depend on the ambient temperature, soil temperature, EAHE system, and greenhouse specifications. The impact of an EAHE system on the temperature and humidity of a GH [...] Read more.
The thermal performance and environmental impact of agricultural greenhouses (GH) connected to earth-to-air heat exchanger (EAHE) systems depend on the ambient temperature, soil temperature, EAHE system, and greenhouse specifications. The impact of an EAHE system on the temperature and humidity of a GH microclimate, as well as its effects on CO2 emissions and heating energy consumption, are determined experimentally. Two scaled-down models of agricultural GHs (2 × 1.4 × 1.4 m3) were developed. Each GH was equipped with a heater. A spiral EAHE system was integrated into only one of the GHs. The temperature differences in the microclimate range from 3.5 °C to 7.5 °C, with the microclimates of GH + EAHE and GH being quite similar. In summary, the EAHE system helped to reduce the hourly energy consumption of the heating system by more than 40%. It also reduced emissions to the environment by more than 100 g (CO2)/hour. The EAHE coefficient of performance (COP) for the cooling mode has a higher average value than that for the heating mode. The closed-loop performed better in cooling mode, while the open-loop performed better in heating mode. When the difference between the set temperature in the heater and the air outlet temperature of the EAHE system is smaller, the heater performs better in reducing energy consumption and CO2 emissions of the heater. The COPheating range is between 0 and 3.4 and the COPcooling range is between 0.5 and 7.3. The energy consumption ranges between 0 and 1.41 kWh and the CO2 emissions are between 0 and 359.55 g. Thus, using EAHE in agricultural greenhouses improves thermal performance and reduces environmental impact, providing an overall benefit in terms of energy consumption and environmental sustainability. Full article
Show Figures

Figure 1

17 pages, 996 KiB  
Article
Investigation of the Performance of a Heat Pump Using Waste Water as a Heat Source
by Ali Kahraman and Alaeddin Çelebi
Energies 2009, 2(3), 697-713; https://doi.org/10.3390/en20300697 - 28 Aug 2009
Cited by 59 | Viewed by 14272
Abstract
In this research, a water-water heat pump system using waste water as a heat source, a type that is not often used in Turkey and the World, was experimentally modeled. The experiments were performed under the conditions of simulated waste water temperature values [...] Read more.
In this research, a water-water heat pump system using waste water as a heat source, a type that is not often used in Turkey and the World, was experimentally modeled. The experiments were performed under the conditions of simulated waste water temperature values of 20 °C, 30 °C and 40 °C. Inlet and outlet water temperatures of the evaporator and condenser, water flow rates in the evaporator and condenser circuits, pressures at the compressor inlet and outlet and power consumption of the system were measured. The heating coefficients of performance were calculated based on the measurements. It was found that the maximum temperature in the energy storage tank was about 50.6 °C. For the heat source temperatures of 20 °C, 30 °C and 40 °C, the heating coefficients of the performance of the system became 3.36, 3.43 and 3.69, respectively, 6 min. after the start time of the experiments and then they were decreased to 1.87, 1.83 and 1.77 with increasing water temperature in the condenser tank. The mean uncertainty value of the measurement parameters was found to be about ±2.47%. Finally, for the purpose of meeting hot water need as well as floor heating system requirements, it is seen that energy quality level of a waste low grade temperature heat source can be increased by using a heat pump system. Full article
Show Figures

Figure 1

Back to TopTop