Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = CEBPB

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2130 KB  
Article
Mendelian Randomization and Transcriptome Analyses Reveal Important Roles for CEBPB and CX3CR1 in Osteoarthritis
by Hui Gao, Xinling Gan, Jing He and Chengqi He
Bioengineering 2025, 12(9), 930; https://doi.org/10.3390/bioengineering12090930 - 29 Aug 2025
Viewed by 638
Abstract
Background: Chemokines play a pivotal role in the progression of osteoarthritis (OA), but their exact mechanisms remain unclear. This study aimed to identify potential chemokine-associated biomarkers and investigate their causal relationships with OA. Methods: Transcriptome and genome-wide association study (GWAS) data [...] Read more.
Background: Chemokines play a pivotal role in the progression of osteoarthritis (OA), but their exact mechanisms remain unclear. This study aimed to identify potential chemokine-associated biomarkers and investigate their causal relationships with OA. Methods: Transcriptome and genome-wide association study (GWAS) data were obtained from public databases, while chemokine-related genes (CRGs) were sourced from the literature. Initially, CRGs were expanded, followed by Mendelian randomization (MR) analysis, differential expression analysis, machine learning, and receiver operating characteristic (ROC) curve plotting to identify potential biomarkers. The causal relationships between these biomarkers and OA, as well as their biological functions, were further explored. Results: Fourteen candidate genes were identified for machine learning analysis, with DDIT3, CEBPB, CX3CR1, and ARHGAP25 emerging as feature genes. CEBPB and CX3CR1, which exhibited AUCs > 0.7 in the GSE55235 and GSE55457 datasets, were selected as potential biomarkers. Notably, CEBPB expression was lower, while CX3CR1 expression was elevated in the case group. Furthermore, both genes were co-enriched in spliceosome, lysosome, and cell adhesion molecule pathways. MR analysis confirmed that CEBPB and CX3CR1 were causally linked to OA and acted as protective factors (IVW model for CEBPB: OR = 0.9051, p = 0.0001; IVW model for CX3CR1: OR = 0.8141, p = 0.0282). Conclusions: CEBPB and CX3CR1 were identified as potential chemokine-related biomarkers, offering insights into OA and suggesting new avenues for further investigation. Full article
Show Figures

Graphical abstract

21 pages, 3451 KB  
Article
Transcriptional Repression of CCL2 by KCa3.1 K+ Channel Activation and LRRC8A Anion Channel Inhibition in THP-1-Differentiated M2 Macrophages
by Miki Matsui, Junko Kajikuri, Hiroaki Kito, Yohei Yamaguchi and Susumu Ohya
Int. J. Mol. Sci. 2025, 26(15), 7624; https://doi.org/10.3390/ijms26157624 - 6 Aug 2025
Viewed by 780
Abstract
We investigated the role of the intermediate-conductance, Ca2+-activated K+ channel KCa3.1 and volume-regulatory anion channel LRRC8A in regulating C-C motif chemokine ligand 2 (CCL2) expression in THP-1-differentiated M2 macrophages (M2-MACs), which serve as a useful [...] Read more.
We investigated the role of the intermediate-conductance, Ca2+-activated K+ channel KCa3.1 and volume-regulatory anion channel LRRC8A in regulating C-C motif chemokine ligand 2 (CCL2) expression in THP-1-differentiated M2 macrophages (M2-MACs), which serve as a useful model for studying tumor-associated macrophages (TAMs). CCL2 is a potent chemoattractant involved in the recruitment of immunosuppressive cells and its expression is regulated through intracellular signaling pathways such as ERK, JNK, and Nrf2 in various types of cells including macrophages. The transcriptional expression of CCL2 was suppressed in M2-MACs following treatment with a KCa3.1 activator or an LRRC8A inhibitor via distinct signaling pathways: ERK–CREB2 and JNK–c-Jun pathways for KCa3.1, and the NOX2–Nrf2–CEBPB pathway for LRRC8A. Under in vitro conditions mimicking the elevated extracellular K+ concentration ([K+]e) characteristic of the tumor microenvironment (TME), CCL2 expression was markedly upregulated, and this increase was reversed by treatment with them in M2-MACs. Additionally, the WNK1–AMPK pathway was, at least in part, involved in the high [K+]e-induced upregulation of CCL2. Collectively, modulating KCa3.1 and LRRC8A activities offers a promising strategy to suppress CCL2 secretion in TAMs, potentially limiting the CCL2-induced infiltration of immunosuppressive cells (TAMs, Tregs, and MDSCs) in the TME. Full article
(This article belongs to the Special Issue Regulation of Ion Channels and Transporters)
Show Figures

Figure 1

16 pages, 32599 KB  
Article
The Connection Between Lipid Metabolism in the Heart and Liver of Wuzhishan Pigs
by Yuwei Ren, Feng Wang, Ruiping Sun, Xinli Zheng, Yanning Lin and Zhe Chao
Biomolecules 2025, 15(7), 1024; https://doi.org/10.3390/biom15071024 - 16 Jul 2025
Viewed by 874
Abstract
Lipid metabolism is critical for the physiological activities of signal transduction, metabolic regulation, and energy provision, and Wuzhishan (WZS) pigs are a promising animal model for studying human diseases. However, lipid metabolites in the heart and liver of WZS pigs are indistinct. In [...] Read more.
Lipid metabolism is critical for the physiological activities of signal transduction, metabolic regulation, and energy provision, and Wuzhishan (WZS) pigs are a promising animal model for studying human diseases. However, lipid metabolites in the heart and liver of WZS pigs are indistinct. In this study, we detected gene expression, blood biochemical parameters, and metabolic profiles of hearts and livers of WZS and Large White (LW) pigs, and analyzed correlations between metabolites. The results showed that the fatty acid metabolic process was present in both the heart and liver, and was more dominant in the liver. Although the expression of lipid absorption-related genes of CYP7A1 increased in the liver, CEBPB levels increased in both the liver and heart; the fatty acid beta-oxidation genes RXRA and ACSS2 also showed increased expression. The quantity of metabolites related to lipid synthesis decreased in the liver, heart, and blood for WZS pigs compared to that of LW pigs, indicating a balance of lipid synthesis and breakdown for WZS pigs. Moreover, the lipid metabolites in the liver and heart exhibited strong correlations with each other and showed similar correlations to blood biochemical parameters, respectively. This study declared the balance of lipid metabolism in both the heart and liver, and identified their connections for WZS pigs. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

18 pages, 12084 KB  
Article
Profiles of Monocyte Subsets and Fibrosis-Related Genes in Patients with Muscular Dystrophy Undergoing Intermittent Prednisone Therapy
by Asma Chikhaoui, Dorra Najjar, Sami Bouchoucha, Rim Boussetta, Nadia Ben Achour, Kalthoum Tizaoui, Ichraf Kraoua, Ilhem Turki and Houda Yacoub-Youssef
Int. J. Mol. Sci. 2025, 26(13), 5992; https://doi.org/10.3390/ijms26135992 - 22 Jun 2025
Viewed by 1000
Abstract
Muscle dystrophies are a group of genetic disorders characterized by progressive muscle degeneration. Prednisone is a glucocorticoid drug widely used to prevent muscle weakness in these diseases. Despite its known beneficial role, the effect of intermittent delivery on monocytes’ polarization and on dystrophic [...] Read more.
Muscle dystrophies are a group of genetic disorders characterized by progressive muscle degeneration. Prednisone is a glucocorticoid drug widely used to prevent muscle weakness in these diseases. Despite its known beneficial role, the effect of intermittent delivery on monocytes’ polarization and on dystrophic muscle microenvironment has not yet been thoroughly investigated. In this study, our aim was to identify the phenotype of monocyte subsets in blood and the expression of fibrosis-related genes in dystrophic muscle biopsies in patients receiving intermittent prednisone therapy. We found an increased rate of classical monocytes and a decreased rate of non-classical monocytes that expressed anti-inflammatory marker CD206 in treated patients. In dystrophic muscles, 21 fibrosis-related genes were altered, among which we identified CCAAT/enhancer-binding protein beta CEBPB. Both classical monocytes and CEBPB are known for their roles in stimulating collagen 1 production, a probable marker hampering monocyte/macrophage function. Hence, in some patients with muscular dystrophy, intermittent prednisone treatment could shift the monocytes’ phenotype toward an M2, senescent-like profile. This seems to decrease the inflammatory infiltrate in muscle tissue, an observation that needs to be further confirmed. Full article
(This article belongs to the Special Issue Pathophysiology and Treatment of Congenital Neuromuscular Disorders)
Show Figures

Figure 1

18 pages, 3150 KB  
Article
Targeting ATF5, CEBPB, and CEBPD with Cell-Penetrating Dpep Sensitizes Tumor Cells to NK-92MI Cell Cytotoxicity
by Qing Zhou, Markus D. Siegelin and Lloyd A. Greene
Cells 2025, 14(9), 667; https://doi.org/10.3390/cells14090667 - 2 May 2025
Viewed by 973
Abstract
Natural killer (NK) cells are an important innate defense against malignancies, and exogenous sources of NK cells have been developed as anti-cancer agents. Nevertheless, the apparent limitations of NK cells in clearing cancers have suggested that their efficacy might be augmented by combination [...] Read more.
Natural killer (NK) cells are an important innate defense against malignancies, and exogenous sources of NK cells have been developed as anti-cancer agents. Nevertheless, the apparent limitations of NK cells in clearing cancers have suggested that their efficacy might be augmented by combination with other treatments. We have developed cell-penetrating peptides that target the transcription factors ATF5, CEBPB, and CEBPD and that promote apoptotic cancer cell death both in vitro and in vivo without apparent toxicity to non-transformed cells. We report here that one such peptide, Dpep, significantly sensitizes a variety of tumor cell types to the cytotoxic activity of the NK cell line, NK-92MI. Such sensitization requires pre-exposure of tumor cells to Dpep and does not appear due to effects of Dpep on NK cells themselves. Our findings suggest that Dpep acts in this context to lower the apoptotic threshold of tumor cells to NK cell toxicity. Additionally, while Dpep pre-treatment does not prevent tumor cells from causing NK cell “inactivation”, it sensitizes cancer cells to repeated rounds of exposure to fresh NK cells. These findings thus indicate that Dpep pre-treatment is an effective strategy to sensitize cancer cells to the cytotoxic actions of NK cells. Full article
Show Figures

Figure 1

14 pages, 1038 KB  
Article
Profiling of snoRNAs in Exosomes Secreted from Cells Infected with Influenza A Virus
by Wojciech Rozek, Malgorzata Kwasnik, Wojciech Socha, Bartosz Czech and Jerzy Rola
Int. J. Mol. Sci. 2025, 26(1), 12; https://doi.org/10.3390/ijms26010012 - 24 Dec 2024
Cited by 2 | Viewed by 1446
Abstract
Small nucleolar RNAs (snoRNAs) are non-coding RNAs (ncRNAs) that regulate many cellular processes. Changes in the profiles of cellular ncRNAs and those secreted in exosomes are observed during viral infection. In our study, we analysed differences in expression profiles of snoRNAs isolated from [...] Read more.
Small nucleolar RNAs (snoRNAs) are non-coding RNAs (ncRNAs) that regulate many cellular processes. Changes in the profiles of cellular ncRNAs and those secreted in exosomes are observed during viral infection. In our study, we analysed differences in expression profiles of snoRNAs isolated from exosomes of influenza (IAV)-infected and non-infected MDCK cells using high-throughput sequencing. The analysis revealed 133 significantly differentially regulated snoRNAs (131 upregulated and 2 downregulated), including 93 SNORD, 38 SNORA, and 2 SCARNA. The most upregulated was SNORD58 (log2FoldChange = 9.61), while the only downregulated snoRNAs were SNORD3 (log2FC = −2.98) and SNORA74 (log2FC = −2.67). Several snoRNAs previously described as involved in viral infections were upregulated, including SNORD27, SNORD28, SNORD29, SNORD58, and SNORD44. In total, 533 interactors of dysregulated snoRNAs were identified using the RNAinter database with an assigned confidence score ≥ 0.25. The main groups of predicted interactors were transcription factors (TFs, 169 interactors) and RNA-binding proteins (RBPs, 130 interactors). Among the most important were pioneer TFs such as POU5F1, SOX2, CEBPB, and MYC, while in the RBP category, notable interactors included Polr2a, TNRC6A, IGF2BP3, and FMRP. Our results suggest that snoRNAs are involved in pro-viral activity, although follow-up studies including experimental validation would be beneficial. Full article
(This article belongs to the Special Issue Exosomes and Non-Coding RNA Research in Health and Disease)
Show Figures

Figure 1

16 pages, 1761 KB  
Article
Emerging Signatures of Hematological Malignancies from Gene Expression and Transcription Factor-Gene Regulations
by Daniele Dall’Olio, Federico Magnani, Francesco Casadei, Tommaso Matteuzzi, Nico Curti, Alessandra Merlotti, Giorgia Simonetti, Matteo Giovanni Della Porta, Daniel Remondini, Martina Tarozzi and Gastone Castellani
Int. J. Mol. Sci. 2024, 25(24), 13588; https://doi.org/10.3390/ijms252413588 - 19 Dec 2024
Viewed by 1236
Abstract
Hematological malignancies are a diverse group of cancers developing in the peripheral blood, the bone marrow or the lymphatic system. Due to their heterogeneity, the identification of novel and advanced molecular signatures is essential for enhancing their characterization and facilitate its translation to [...] Read more.
Hematological malignancies are a diverse group of cancers developing in the peripheral blood, the bone marrow or the lymphatic system. Due to their heterogeneity, the identification of novel and advanced molecular signatures is essential for enhancing their characterization and facilitate its translation to new pharmaceutical solutions and eventually to clinical applications. In this study, we collected publicly available microarray data for more than five thousand subjects, across thirteen hematological malignancies. Using PANDA to estimate gene regulatory networks (GRNs), we performed hierarchical clustering and network analysis to explore transcription factor (TF) interactions and their implications on biological pathways. Our findings reveal distinct clustering patterns among leukemias and lymphomas, with notable differences in gene and TF expression profiles. Gene Set Enrichment Analysis (GSEA) identified 57 significantly enriched KEGG pathways, highlighting both common and unique biological processes across HMs. We also identified potential drug targets within these pathways, emphasizing the role of TFs such as CEBPB and NFE2L1 in disease pathophysiology. Our comprehensive analysis enhances the understanding of the molecular landscape of HMs and suggests new avenues for targeted therapeutic strategies. These findings also motivate the adoption of regulatory networks, combined with modern biotechnological possibilities, for insightful pan-cancer exploratory studies. Full article
(This article belongs to the Special Issue Molecular Progression of Genome-Related Diseases)
Show Figures

Figure 1

25 pages, 8089 KB  
Article
Protective Effects of Exogenous Melatonin Administration on White Fat Metabolism Disruption Induced by Aging and a High-Fat Diet in Mice
by Dongying Lv, Yujie Ren, Jiayan Chen, Ziyao Pang, Yaxuan Tang, Lizong Zhang, Laiqing Yan, Xiufeng Ai, Xiaoping Xv, Dejun Wang and Zhaowei Cai
Antioxidants 2024, 13(12), 1500; https://doi.org/10.3390/antiox13121500 - 9 Dec 2024
Cited by 2 | Viewed by 2269
Abstract
Obesity has emerged as a major risk factor for human health, exacerbated by aging and changes in dietary habits. It represents a significant health challenge, particularly for older people. While numerous studies have examined the effects of obesity and aging on fat metabolism [...] Read more.
Obesity has emerged as a major risk factor for human health, exacerbated by aging and changes in dietary habits. It represents a significant health challenge, particularly for older people. While numerous studies have examined the effects of obesity and aging on fat metabolism independently, research on their combined effects is limited. In the present study, the protective action against white fat accumulation after a high-fat diet (HFD) exerted by exogenous melatonin, a circadian hormone endowed with antioxidant properties also involved in fat metabolism, was investigated in a mouse model. For this purpose, a battery of tests was applied before and after the dietary and melatonin treatments of the animals, including epididymal white adipose tissue (eWAT) histological evaluations, transcriptomic and lipidomic analyses, real-time PCR tests, immunofluorescence staining, Western blot, the appraisal of serum melatonin levels, and transmission electron microscopy. This study found that aged mice on a high-fat diet (HFD) showed increased lipid deposition, inflammation, and reduced antioxidant glutathione (GSH) levels compared to younger mice. Lipidomic and transcriptomic analyses revealed elevated triglycerides, diglycerides, ceramides, and cholesterol, along with decreased sphingomyelin and fatty acids in eWAT. The genes linked to inflammation, NF-κB signaling, autophagy, and lipid metabolism, particularly the melatonin and glutathione pathways, were significantly altered. The aged HFD mice also exhibited reduced melatonin levels in serum and eWAT. Melatonin supplementation reduced lipid deposition, increased melatonin and GSH levels, and upregulated AANAT and MTNR1A expression in eWAT, suggesting that melatonin alleviates eWAT damage via the MTNR1A pathway. It also suppressed inflammatory markers (e.g., TNF-α, NLRP3, NF-κB, IL-1β, and CEBPB) and preserved mitochondrial function through enhanced mitophagy. This study highlights how aging and HFD affect lipid metabolism and gene expression, offering potential intervention strategies. These findings provide important insights into the mechanisms of fat deposition associated with aging and a high-fat diet, suggesting potential intervention strategies. Full article
(This article belongs to the Special Issue Antioxidant Therapy for Obesity-Related Diseases)
Show Figures

Figure 1

15 pages, 5181 KB  
Article
Deciphering the Role of the SREBF1 Gene in the Transcriptional Regulation of Porcine Adipogenesis Using CRISPR/Cas9 Editing
by Mehmet Onur Aksoy, Adrianna Bilinska, Monika Stachowiak, Tatiana Flisikowska and Izabela Szczerbal
Int. J. Mol. Sci. 2024, 25(23), 12677; https://doi.org/10.3390/ijms252312677 - 26 Nov 2024
Cited by 3 | Viewed by 2342
Abstract
Sterol regulatory element-binding protein 1 (SREBP1) is an important transcription factor that controls lipid metabolism and adipogenesis. Two isoforms, SREBP1a and SREBP1c, are generated by alternative splicing of the first exon of the SREBF1 gene. The porcine SREBF1 gene has mainly been studied [...] Read more.
Sterol regulatory element-binding protein 1 (SREBP1) is an important transcription factor that controls lipid metabolism and adipogenesis. Two isoforms, SREBP1a and SREBP1c, are generated by alternative splicing of the first exon of the SREBF1 gene. The porcine SREBF1 gene has mainly been studied for its role in lipid metabolism in adipose tissues, but little is known about its involvement, and the role of its two isoforms, in adipogenesis. The aim of the present study was to introduce a deletion in the 5′-regulatory region of the SREBF1c gene, considered crucial for adipogenesis, using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (CRISPR/Cas9) method. This approach allows for the evaluation of how inhibiting SREBF1c transcription affects the expression of other genes essential for adipocyte differentiation, particularly PPARG, CEBPA, CEBPB, CEBPD, GATA2, and FABP4. It was observed that disrupting the SREBF1c isoform had no effect on the GATA2 gene but did result in a decrease in the expression of the CEBPA and CEBPD genes, an increase in the expression of CEBPB, and an inhibition in the expression of the PPARG and FABP4 genes. These changes in gene expression blocked adipogenesis, as could be seen by the failure of lipid droplets to accumulate. Our results provide evidence highlighting the pivotal role of the SREBP1c isoform in the regulation of porcine adipogenesis. Full article
Show Figures

Figure 1

17 pages, 3180 KB  
Article
Transcriptome Analysis Reveals the Early Development in Subcutaneous Adipose Tissue of Laiwu Piglets
by Liwen Bian, Zhaoyang Di, Mengya Xu, Yuhan Tao, Fangyuan Yu, Qingyan Jiang, Yulong Yin and Lin Zhang
Animals 2024, 14(20), 2955; https://doi.org/10.3390/ani14202955 - 14 Oct 2024
Cited by 1 | Viewed by 1789
Abstract
Adipose tissue plays an important role in pig production efficiency. Studies have shown that postnatal development has a vital impact on adipose tissue; however, the mechanisms behind pig adipose tissue early-life programming remain unknown. In this study, we analyzed the transcriptomes of the [...] Read more.
Adipose tissue plays an important role in pig production efficiency. Studies have shown that postnatal development has a vital impact on adipose tissue; however, the mechanisms behind pig adipose tissue early-life programming remain unknown. In this study, we analyzed the transcriptomes of the subcutaneous adipose tissue (SAT) of 1-day and 21-day old Laiwu piglets. The results showed that the SAT of Laiwu piglets significantly increased from 1-day to 21-day, and transcriptome analysis showed that there were 2352 and 2596 differentially expressed genes (DEGs) between 1-day and 21-day SAT in male and female piglets, respectively. Expression of genes in glycolysis, gluconeogenesis, and glycogen metabolism such as pyruvate kinase M1/2 (PKM), phosphoenolpyruvate carboxy kinase 1 (PCK1) and amylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase (AGL) were significantly different between 1-day and 21-day SAT. Genes in lipid uptake, synthesis and lipolysis such as lipase E (LIPE), acetyl-CoA carboxylase alpha (ACACA), Stearoyl-CoA desaturase (SCD), and 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) were also differentially expressed. Functional analysis showed enrichment of DEGs in transcriptional regulation, protein metabolism and cellular signal transduction. The protein–protein interaction (PPI) networks of these DEGs were analyzed and potential hub genes in these pathways were identified, such as transcriptional factors forkhead box O4 (FOXO4), CCAAT enhancer binding protein beta (CEBPB) and CCAAT enhancer binding protein delta (CEBPD), signal kinases BUB1 mitotic checkpoint serine/threonine kinase (BUB1) and cyclin-dependent kinase 1 (CDK1), and proteostasis-related factors ubiquitin conjugating enzyme E2 C (UBE2C) and cathepsin D (CTSD). Moreover, we further analyzed the transcriptomes of SAT between genders and the results showed that there were 54 and 72 DEGs in 1-day and 21-day old SAT, respectively. Genes such as KDM5D and KDM6C showed gender-specific expression in 1-day and 21-day SAT. These results showed the significant changes in SAT between 1-day and 21-day in male and female Laiwu pigs, which would provide information to comprehensively understand the programming of adipose tissue early development and to regulate adipose tissue function. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

21 pages, 6082 KB  
Article
Downregulation of IL-8 and IL-10 by LRRC8A Inhibition through the NOX2–Nrf2–CEBPB Transcriptional Axis in THP-1-Derived M2 Macrophages
by Miki Matsui, Junko Kajikuri, Hiroaki Kito, Elghareeb E. Elboray, Takayoshi Suzuki and Susumu Ohya
Int. J. Mol. Sci. 2024, 25(17), 9612; https://doi.org/10.3390/ijms25179612 - 5 Sep 2024
Cited by 4 | Viewed by 2127
Abstract
M2-polarized, tumor-associated macrophages (TAMs) produce pro-tumorigenic and angiogenic mediators, such as interleukin-8 (IL-8) and IL-10. Leucine-rich repeat-containing protein 8 members (LRRC8s) form volume-regulated anion channels and play an important role in macrophage functions by regulating cytokine and chemokine production. We herein [...] Read more.
M2-polarized, tumor-associated macrophages (TAMs) produce pro-tumorigenic and angiogenic mediators, such as interleukin-8 (IL-8) and IL-10. Leucine-rich repeat-containing protein 8 members (LRRC8s) form volume-regulated anion channels and play an important role in macrophage functions by regulating cytokine and chemokine production. We herein examined the role of LRRC8A in IL-8 and IL-10 expression in THP-1-differentiated M2-like macrophages (M2-MACs), which are a useful tool for investigating TAMs. In M2-MACs, the pharmacological inhibition of LRRC8A led to hyperpolarizing responses after a transient depolarization phase, followed by a slight elevation in the intracellular concentration of Ca2+. Both the small interfering RNA-mediated and pharmacological inhibition of LRRC8A repressed the transcriptional expression of IL-8 and IL-10, resulting in a significant reduction in their secretion. The inhibition of LRRC8A decreased the nuclear translocation of phosphorylated nuclear factor-erythroid 2-related factor 2 (Nrf2), while the activation of Nrf2 reversed the LRRC8A inhibition-induced transcriptional repression of IL-8 and IL-10 in M2-MACs. We identified the CCAAT/enhancer-binding protein isoform B, CEBPB, as a downstream target of Nrf2 signaling in M2-MACs. Moreover, among several upstream candidates, the inhibition of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) suppressed the Nrf2–CEBPB transcriptional axis in M2-MACs. Collectively, the present results indicate that the inhibition of LRRC8A repressed IL-8 and IL-10 transcription in M2-MACs through the NOX2–Nrf2–CEBPB axis and suggest that LRRC8A inhibitors suppress the IL-10-mediated evasion of tumor immune surveillance and IL-8-mediated metastasis and neovascularization in TAMs. Full article
(This article belongs to the Special Issue Advances in Cell Signaling Pathways and Signal Transduction)
Show Figures

Graphical abstract

16 pages, 2741 KB  
Article
Transcriptional Dynamics and Key Regulators of Adipogenesis in Mouse Embryonic Stem Cells: Insights from Robust Rank Aggregation Analysis
by Mouza Alzaabi, Mariam Khalili, Mehar Sultana and Mohamed Al-Sayegh
Int. J. Mol. Sci. 2024, 25(17), 9154; https://doi.org/10.3390/ijms25179154 - 23 Aug 2024
Viewed by 1824
Abstract
Embryonic stem cells are crucial for studying developmental biology due to their self-renewal and pluripotency capabilities. This research investigates the differentiation of mouse ESCs into adipocytes, offering insights into obesity and metabolic disorders. Using a monolayer differentiation approach over 30 days, lipid accumulation [...] Read more.
Embryonic stem cells are crucial for studying developmental biology due to their self-renewal and pluripotency capabilities. This research investigates the differentiation of mouse ESCs into adipocytes, offering insights into obesity and metabolic disorders. Using a monolayer differentiation approach over 30 days, lipid accumulation and adipogenic markers, such as Cebpb, Pparg, and Fabp4, confirmed successful differentiation. RNA sequencing revealed extensive transcriptional changes, with over 15,000 differentially expressed genes linked to transcription regulation, cell cycle, and DNA repair. This study utilized Robust Rank Aggregation to identify critical regulatory genes like PPARG, CEBPA, and EP300. Network analysis further highlighted Atf5, Ccnd1, and Nr4a1 as potential key players in adipogenesis and its mature state, validated through RT-PCR. While key adipogenic factors showed plateaued expression levels, suggesting early differentiation events, this study underscores the value of ESCs in modeling adipogenesis. These findings contribute to our understanding of adipocyte differentiation and have significant implications for therapeutic strategies targeting metabolic diseases. Full article
(This article belongs to the Special Issue Adipose Tissue and Gene Expression)
Show Figures

Figure 1

20 pages, 3667 KB  
Article
DPEP Inhibits Cancer Cell Glucose Uptake, Glycolysis and Survival by Upregulating Tumor Suppressor TXNIP
by Qing Zhou, Trang Thi Thu Nguyen, Jeong-Yeon Mun, Markus D. Siegelin and Lloyd A. Greene
Cells 2024, 13(12), 1025; https://doi.org/10.3390/cells13121025 - 12 Jun 2024
Cited by 4 | Viewed by 3450
Abstract
We have designed cell-penetrating peptides that target the leucine zipper transcription factors ATF5, CEBPB and CEBPD and that promote apoptotic death of a wide range of cancer cell types, but not normal cells, in vitro and in vivo. Though such peptides have the [...] Read more.
We have designed cell-penetrating peptides that target the leucine zipper transcription factors ATF5, CEBPB and CEBPD and that promote apoptotic death of a wide range of cancer cell types, but not normal cells, in vitro and in vivo. Though such peptides have the potential for clinical application, their mechanisms of action are not fully understood. Here, we show that one such peptide, Dpep, compromises glucose uptake and glycolysis in a cell context-dependent manner (in about two-thirds of cancer lines assessed). These actions are dependent on induction of tumor suppressor TXNIP (thioredoxin-interacting protein) mRNA and protein. Knockdown studies show that TXNIP significantly contributes to apoptotic death in those cancer cells in which it is induced by Dpep. The metabolic actions of Dpep on glycolysis led us to explore combinations of Dpep with clinically approved drugs metformin and atovaquone that inhibit oxidative phosphorylation and that are in trials for cancer treatment. Dpep showed additive to synergistic activities in all lines tested. In summary, we find that Dpep induces TXNIP in a cell context-dependent manner that in turn suppresses glucose uptake and glycolysis and contributes to apoptotic death of a range of cancer cells. Full article
Show Figures

Graphical abstract

16 pages, 681 KB  
Article
Prenatal Immune Challenge Differentiates the Effect of Aripiprazole and Risperidone on CD200–CD200R and CX3CL1–CX3CR1 Dyads and Microglial Polarization: A Study in Organotypic Cortical Cultures
by Katarzyna Chamera, Katarzyna Curzytek, Kinga Kamińska, Monika Leśkiewicz and Agnieszka Basta-Kaim
Life 2024, 14(6), 721; https://doi.org/10.3390/life14060721 - 2 Jun 2024
Cited by 1 | Viewed by 1814
Abstract
Microglia are the primary innate immune cells of the central nervous system and extensively contribute to brain homeostasis. Dysfunctional or excessive activity of microglia may be associated with several neuropsychiatric disorders, including schizophrenia. Therefore, we examined whether aripiprazole and risperidone could influence the [...] Read more.
Microglia are the primary innate immune cells of the central nervous system and extensively contribute to brain homeostasis. Dysfunctional or excessive activity of microglia may be associated with several neuropsychiatric disorders, including schizophrenia. Therefore, we examined whether aripiprazole and risperidone could influence the expression of the Cd200–Cd200r and Cx3cl1–Cx3cr1 axes, which are crucial for the regulation of microglial activity and interactions of these cells with neurons. Additionally, we evaluated the impact of these drugs on microglial pro- and anti-inflammatory markers (Cd40, Il-1β, Il-6, Cebpb, Cd206, Arg1, Il-10 and Tgf-β) and cytokine release (IL-6, IL-10). The research was executed in organotypic cortical cultures (OCCs) prepared from the offspring of control rats (control OCCs) or those exposed to maternal immune activation (MIA OCCs), which allows for the exploration of schizophrenia-like disturbances in animals. All experiments were performed under basal conditions and after additional stimulation with lipopolysaccharide (LPS), following the “two-hit” hypothesis of schizophrenia. We found that MIA diminished the mRNA level of Cd200r and affected the OCCs’ response to additional LPS exposure in terms of this parameter. LPS downregulated the Cx3cr1 expression and profoundly changed the mRNA levels of pro- and anti-inflammatory microglial markers in both types of OCCs. Risperidone increased Cd200 expression in MIA OCCs, while aripiprazole treatment elevated the gene levels of the Cx3cl1–Cx3cr1 dyad in control OCCs. The antipsychotics limited the LPS-generated increase in the expression of proinflammatory factors (Il-1β and Il-6) and enhanced the mRNA levels of anti-inflammatory components (Cd206 and Tgf-β) of microglial polarization, mostly in the absence of the MIA procedure. Finally, we observed a more pronounced modulating impact of aripiprazole on the expression of pro- and anti-inflammatory cytokines when compared to risperidone in MIA OCCs. In conclusion, our data suggest that MIA might influence microglial activation and crosstalk of microglial cells with neurons, whereas aripiprazole and risperidone could beneficially affect these changes in OCCs. Full article
(This article belongs to the Special Issue Biology, Pathophysiology and Pharmacotherapy for Schizophrenia)
Show Figures

Figure 1

15 pages, 1248 KB  
Article
The Involvement of the microRNAs miR-466c and miR-340 in the Palmitate-Mediated Dysregulation of Gonadotropin-Releasing Hormone Gene Expression
by Vanessa Nkechika, Ningtong Zhang and Denise D. Belsham
Genes 2024, 15(4), 397; https://doi.org/10.3390/genes15040397 - 23 Mar 2024
Cited by 4 | Viewed by 1926
Abstract
Diets high in saturated fatty acids are associated with obesity and infertility. Palmitate, the most prevalent circulating saturated fatty acid, is sensed by hypothalamic neurons, contributing to homeostatic dysregulation. Notably, palmitate elevates the mRNA levels of gonadotropin-releasing hormone (Gnrh) mRNA and [...] Read more.
Diets high in saturated fatty acids are associated with obesity and infertility. Palmitate, the most prevalent circulating saturated fatty acid, is sensed by hypothalamic neurons, contributing to homeostatic dysregulation. Notably, palmitate elevates the mRNA levels of gonadotropin-releasing hormone (Gnrh) mRNA and its activating transcription factor, GATA binding protein 4 (Gata4). GATA4 is essential for basal Gnrh expression by binding to its enhancer region, with Oct-1 (Oct1) and CEBP-β (Cebpb) playing regulatory roles. The pre- and post-transcriptional control of Gnrh by palmitate have not been investigated. Given the ability of palmitate to alter microRNAs (miRNAs), we hypothesized that palmitate-mediated dysregulation of Gnrh mRNA involves specific miRNAs. In the mHypoA-GnRH/GFP neurons, palmitate significantly downregulated six miRNAs (miR-125a, miR-181b, miR-340, miR-351, miR-466c and miR-503), and the repression was attenuated by co-treatment with 100 μM of oleate. Subsequent mimic transfections revealed that miR-466c significantly downregulates Gnrh, Gata4, and Chop mRNA and increases Per2, whereas miR-340 upregulates Gnrh, Gata4, Oct1, Cebpb, and Per2 mRNA. Our findings suggest that palmitate may indirectly regulate Gnrh at both the pre- and post-transcriptional levels by altering miR-466c and miR-340, which in turn regulate transcription factor expression levels. In summary, palmitate-mediated dysregulation of Gnrh and, consequently, reproductive function involves parallel transcriptional mechanisms. Full article
(This article belongs to the Special Issue Non-coding RNAs in Human Health and Disease)
Show Figures

Figure 1

Back to TopTop