Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = C. koseri

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
6 pages, 247 KiB  
Case Report
Second Trimester Fetal Loss Due to Citrobacter koseri Infection: A Rare Cause of Preterm Premature Rupture of Membranes (PPROM)
by Maria Paola Bonasoni, Giuseppina Comitini, Mariangela Pati, Giuseppe Russello, Loredana Vizzini, Marcellino Bardaro, Pietro Pini, Roberta Marrollo, Andrea Palicelli, Giulia Dalla Dea and Edoardo Carretto
Diagnostics 2022, 12(1), 159; https://doi.org/10.3390/diagnostics12010159 - 10 Jan 2022
Cited by 6 | Viewed by 4036
Abstract
Citrobacter koseri is a facultative anaerobic, motile, non-spore-forming Gram-negative bacillus, which belongs to the family of Enterobacteriaceae. Severe infections due to Citrobacter spp. have been reported in the urinary tract, respiratory airways, intra-abdominal organs, skin and soft tissue, eye, bone, bloodstream, and central [...] Read more.
Citrobacter koseri is a facultative anaerobic, motile, non-spore-forming Gram-negative bacillus, which belongs to the family of Enterobacteriaceae. Severe infections due to Citrobacter spp. have been reported in the urinary tract, respiratory airways, intra-abdominal organs, skin and soft tissue, eye, bone, bloodstream, and central nervous system. In newborns, C. koseri is a well-known cause of meningitis, cerebral abscesses, brain adhesions, encephalitis, and pneumocephalus. Infection can be acquired through vertical maternal transmission or horizontal hospital settings; however, in many cases, the source is unknown. Preterm premature rupture of membranes (PPROM), caused by C. koseri, has rarely been described. Herein, we describe a case of PPROM at 16 weeks and 3 days of gestation, leading to anhydramnios. The parents opted for legal termination of the pregnancy, as the prognosis was very poor. C. koseri was isolated postmortem from a placental subamniotic swab and parenchymal sample, as well as fetal blood and lung. To the best of our knowledge, this is the first case of early second-trimester PPROM in which C. koseri infection was demonstrated. Full article
(This article belongs to the Section Diagnostic Microbiology and Infectious Disease)
14 pages, 976 KiB  
Article
Antimicrobial Activity of Selected Essential Oils against Selected Pathogenic Bacteria: In Vitro Study
by Nikola Puvača, Jovana Milenković, Tamara Galonja Coghill, Vojislava Bursić, Aleksandra Petrović, Snežana Tanasković, Miloš Pelić, Dragana Ljubojević Pelić and Tatjana Miljković
Antibiotics 2021, 10(5), 546; https://doi.org/10.3390/antibiotics10050546 - 8 May 2021
Cited by 77 | Viewed by 12132
Abstract
The worldwide problem of infectious diseases has appeared in recent years, and antimicrobial agents are crucial in reducing disease emergence. Nevertheless, the development and distribution of multidrug-resistant (MDR) strains in pathogenic bacteria, such as Escherichia coli, Staphylococcus aureus, Salmonella Typhi and [...] Read more.
The worldwide problem of infectious diseases has appeared in recent years, and antimicrobial agents are crucial in reducing disease emergence. Nevertheless, the development and distribution of multidrug-resistant (MDR) strains in pathogenic bacteria, such as Escherichia coli, Staphylococcus aureus, Salmonella Typhi and Citrobacter koseri, has become a major society health hazard. Essential oils could serve as a promising tool as a natural drug in fighting the problem with these bacteria. The current study aimed to investigate the antimicrobial effectiveness of tea tree (Melaleuca alternifolia (Maiden and Betche) Cheel), rosemary (Rosmarinus officinalis L.), eucalyptus (Eucalyptus obliqua L’Hér.), and lavender (Lavandula angustifolia Mill) essential oils. The antimicrobial properties of essential oils were screened against four pathogenic bacteria, E. coli, S. aureus, S. Tyhpi, and C. koseri, and two reference bacterial strains, while for the testing, the agar well diffusion method was used. Gas chromatography (GC) and gas chromatography–mass spectrometric (GC–MSD) analyses were performed on essential oils. The obtained results showed that M. alternifolia essential oil is the richest in terpinen-4-ol, R. officinalis and E. oblique essential oils in 1,8-cineole, and L. angustifolia essential oil in α-terpinyl acetate. In addition, the main bioactive compounds present in the essential oil of tea tree are rich in α-pinene (18.38%), limonene (7.55%) and γ-terpinene (14.01%). The essential oil of rosemary is rich in α-pinene (8.38%) and limonene (11.86%); eucalyptus essential oil has significant concentrations of α-pinene (12.60%), p-cymene (3.24%), limonene (3.87%), and γ-terpinene (7.37%), while the essential oil of lavender is rich in linalool (10.71%), linalool acetate (9.60%), α-terpinyl acetate (10.93%), and carbitol (13.05%) bioactive compounds, respectively. The obtained results from the in vitro study revealed that most of the essential oils exhibited antimicrobial properties. Among the tested essential oils, tea tree was discovered to demonstrate the strongest antimicrobial activity. The recorded MIC of S. Typhi was 6.2 mg/mL, 3.4 mg/mL of C. koseri, 3.1 mg/mL of E. coli, and 2.7 mg/mL of E. coli ATCC 25922, compared to M. alternifolia. Similarly, only S. aureus ATCC 25923 showed antimicrobial activity towards R. officinalis (1.4 mg/mL), E. oblique (2.9 mg/mL), and L. angustifolia (2.1 mg/mL). Based on the obtained results, it is possible to conclude that tea tree essential oil might be used as an ecological antimicrobial in treating infectious diseases caused by the tested pathogens. Full article
Show Figures

Figure 1

11 pages, 845 KiB  
Brief Report
Characterization of Antimicrobial Resistance in Serratia spp. and Citrobacter spp. Isolates from Companion Animals in Japan: Nosocomial Dissemination of Extended-Spectrum Cephalosporin-Resistant Citrobacter freundii
by Kazuki Harada, Takae Shimizu, Hiroichi Ozaki, Yui Kimura, Tadashi Miyamoto and Yuzo Tsuyuki
Microorganisms 2019, 7(3), 64; https://doi.org/10.3390/microorganisms7030064 - 28 Feb 2019
Cited by 9 | Viewed by 5249
Abstract
In many countries including Japan, the status of emerging antimicrobial resistance among Serratia spp. and Citrobacter spp. in companion animals remains unknown because these genera are rarely isolated from animals. In this study, 30 Serratia spp. and 23 Citrobacter spp. isolates from companion [...] Read more.
In many countries including Japan, the status of emerging antimicrobial resistance among Serratia spp. and Citrobacter spp. in companion animals remains unknown because these genera are rarely isolated from animals. In this study, 30 Serratia spp. and 23 Citrobacter spp. isolates from companion animals underwent susceptibility testing for 10 antimicrobials. Phenotypic and genetic approaches were used to identify the mechanisms of extended-spectrum cephalosporins (ESC). Subsequently, ESC-resistant Citrobacter spp. strains underwent multilocus sequence typing and pulsed-field gel electrophoresis (PFGE). A significantly higher rate (34.8%) of ESC resistance was observed in Citrobacter spp. isolates than in Serratia spp. isolates (0%). ESC resistance was detected in five C. freundii strains, two C. portucalensis strains, and one C. koseri strain. All of the ESC-resistant Citrobacter spp. strains harbored CMY-type and/or DHA-type AmpC β-lactamases. Three C. freundii strains harbored the CTX-M-3-type extended-spectrum β-lactamases. Notably, the three blaCTX-3-producing and two blaCMY-117-bearing C. freundii strains (obtained from different patients in one hospital) had the same sequence type (ST156 and ST18, respectively) and similar PFGE profiles. We believe that ESC-resistant Citrobacter spp. are important nosocomial pathogens in veterinary medicine. Therefore, infection control in animal hospitals is essential to prevent dissemination of these resistant pathogens. Full article
(This article belongs to the Special Issue Multidrug-Resistant Pathogens)
Show Figures

Figure 1

Back to TopTop