Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = C. guianensis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4350 KiB  
Article
The Development and Characterization of an Andiroba Oil-Based Nanoemulsion (Carapa guianensis, Aubl.): Insights into Its Physico-Chemical Features and In Vitro Potential Healing Effects
by Isolda de Sousa Monteiro, Aimê Stefany Alves Fonseca, Carolina Ramos dos Santos, João Paulo Santos de Carvalho, Sebastião William da Silva, Valdir F. Veiga-Junior, Rayssa Ribeiro, Ivo José Curcino Vieira, Thalya Soares Ribeiro Nogueira, Carlos Alexandre Rocha da Costa, Gilson Gustavo Lucinda Machado, Lorrane Ribeiro Souza, Eduardo Valério Barros Vilas Boas, Samuel Silva Morais, Jackson Roberto Guedes da Silva Almeida, Livia Macedo Dutra, Victória Laysna dos Anjos Santos, Atailson Oliveira Silva, Marcelo Henrique Sousa, Marcella Lemos Brettas Carneiro and Graziella Anselmo Joanittiadd Show full author list remove Hide full author list
Pharmaceutics 2025, 17(4), 498; https://doi.org/10.3390/pharmaceutics17040498 - 9 Apr 2025
Viewed by 1044
Abstract
Background/Objectives: Andiroba oil, extracted from Carapa guianensis seeds, possesses therapeutic properties including anti-inflammatory and wound healing effects. This study aimed to develop and characterize a nanoemulsion formulation containing andiroba oil (NeAnd) and to evaluate its cytotoxicity and wound healing potential in vitro. Methods [...] Read more.
Background/Objectives: Andiroba oil, extracted from Carapa guianensis seeds, possesses therapeutic properties including anti-inflammatory and wound healing effects. This study aimed to develop and characterize a nanoemulsion formulation containing andiroba oil (NeAnd) and to evaluate its cytotoxicity and wound healing potential in vitro. Methods: The oil was evaluated for acidity, antioxidant activity, and fatty acid composition. NeAnd was produced by ultrasonication and characterized using FTIR (Fourier transform infrared spectroscopy), Raman spectroscopy, dynamic light scattering, and transmission electron microscopy. Results: NeAnd exhibited a spherical shape and stable physicochemical properties, with an average hydrodynamic diameter (HD) of 205.7 ± 3.9 nm, a polydispersity index (PdI) of 0.295 ± 0.05, a negative zeta potential of −4.16 ± 0.414 mV, and pH of approximately 6.5. These nanodroplets remained stable for 120 days when stored at 4 °C and maintained their parameters even under pH variations. FTIR and Raman analyses confirmed the presence of functional groups and the organization of fatty acid chains in NeAnd. Cell viability assays revealed no statistically significant differences in cytotoxicity at various concentrations (90–360 µg/mL) after 24 and 48 h. In scratch wound healing assays, NeAnd significantly enhanced wound closure (88.9%) compared to the PBS control (38%) and free andiroba oil (68.6%) in keratinocytes (p < 0.05). Conclusions: These promising findings indicate NeAnd as a potential nanophytomedicine for wound healing and tissue regeneration treatments. Full article
(This article belongs to the Special Issue Recent Advances in Nanotechnology Therapeutics)
Show Figures

Graphical abstract

13 pages, 456 KiB  
Article
5,6-Dihydro-5,6-Epoxymultiplolide A, Cytosporone C, and Uridine Production by Diaporthe hongkongensis, an Endophytic Fungus from Minquartia guianensis
by Andrei da Silva Alexandre, Luana Lopes Casas, David Ribeiro da Silva and Cecilia Veronica Nunez
Microorganisms 2025, 13(4), 792; https://doi.org/10.3390/microorganisms13040792 - 31 Mar 2025
Viewed by 653
Abstract
Endophytic fungi are valuable sources of bioactive secondary metabolites, with potential applications in pharmaceutical and agricultural fields. This study investigates the metabolic potential of Diaporthe hongkongensis, an endophytic fungus isolated from Minquartia guianensis. To date, no secondary metabolites have been identified [...] Read more.
Endophytic fungi are valuable sources of bioactive secondary metabolites, with potential applications in pharmaceutical and agricultural fields. This study investigates the metabolic potential of Diaporthe hongkongensis, an endophytic fungus isolated from Minquartia guianensis. To date, no secondary metabolites have been identified from this species, highlighting the novelty of this research and its contribution to understanding the chemical diversity of endophytic fungi. The fungus was cultivated on parboiled rice under static and dark conditions for 28 days, leading to the isolation of the following three compounds: 5,6-dihydro-5,6-epoxymultiplolide A (1), cytosporone C (2), and uridine (3). Structural identification was carried out using nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. The results revealed the metabolic versatility of D. hongkongensis, as demonstrated by its ability to produce structurally diverse substances with biological relevance. Hence, it describes the first isolation of secondary metabolites from the endophytic fungus D. hongkongensis, marking a significant step in understanding its chemical profile. The identification of a known antifungal compound and a lactone derivative underscores the biosynthetic potential of this endophytic fungus, while the isolation of a nucleoside expands the chemical repertoire of fungal metabolites, suggesting possible roles in cellular metabolism and stress adaptation. These findings highlight the role of endophytic fungi as prolific sources of structurally diverse and potentially bioactive natural products, supporting further exploration of their biotechnological applications. Full article
(This article belongs to the Special Issue Endophytic Fungus as Producers of New and/or Bioactive Substances)
Show Figures

Figure 1

21 pages, 20072 KiB  
Article
Tree and Liana Growth in Three Neotropical Dry Forests: Coherent Patterns and Individualistic Responses to Climate Variability
by J. Julio Camarero and Cristina Valeriano
Forests 2025, 16(3), 542; https://doi.org/10.3390/f16030542 - 19 Mar 2025
Viewed by 403
Abstract
Tropical dry forests (TDFs) are among the ecosystems most threatened by agricultural use and climate warming. However, the long-term growth responses to climate variability of woody plants in TDFs are understudied because not all TDF species form conspicuous annual rings. To address this [...] Read more.
Tropical dry forests (TDFs) are among the ecosystems most threatened by agricultural use and climate warming. However, the long-term growth responses to climate variability of woody plants in TDFs are understudied because not all TDF species form conspicuous annual rings. To address this issue, we sampled trees (26 species) and lianas (2 species) in TDFs subjected to contrasting climate conditions and located in Colombia, Ecuador, and Bolivia. First, we examined the potential to form conspicuous tree-ring boundaries in 22 tree species (Amyris pinnata, Aspidosperma tomentosum, Beilschmiedia sp., Bursera graveolens, Caesalpinia pluviosa, Ceiba pentandra, Centrolobium microchaete, Citharexylum kunthianum, Cordia alliodora, Croton gossypiifolius, Cupania cinerea, Eugenia sp., Genipa americana, Guarea guidonia, Hymenaea courbaril, Machaerium capote, Pithecellobium dulce, Rapanea guianensis, Sapindus saponaria, Senna spectabilis, Zanthoxylum monophyllum, Zanthoxylum rhoifolium, and Zanthoxylum verrucosum) and two liana species (Bignoniaceae and Combretaceae families). Second, we built mean series of ring-width indices in selected tree (A. tomentosum, B. graveolens, C. alliodora, C. cinerea, C. microchaete, P. dulce, S. spectabilis, and Z. verrucosum) and liana species and related them to climate variables. Wet conditions during the current and prior growing seasons enhanced growth in tree and liana species in different TDFs. Coexisting species showed individualistic responses to climate variability. Full article
Show Figures

Figure 1

19 pages, 20476 KiB  
Article
Enhancing Cassava Starch Bioplastics with Vismia guianensis Alcoholic Extract: Characterization with Potential Applications
by Josiel F. Santos, Crystian Willian C. Silva, Barbara P. G. Silva, Pedro H. Britto-Costa, Cleidilane S. Costa, Larissa Otubo, Artur W. Carbonari and Gabriel A. Cabrera-Pasca
Polymers 2025, 17(3), 419; https://doi.org/10.3390/polym17030419 - 5 Feb 2025
Cited by 1 | Viewed by 2138
Abstract
This work investigates the incorporation of Vismia guianensis alcoholic extract (EAVG) into cassava starch, with the aim of improving its bioplastic properties. Cassava starch was dissolved into distilled water and doped with 0.2%, 0.5%, and 1.0% EAVG under a temperature controlled at the [...] Read more.
This work investigates the incorporation of Vismia guianensis alcoholic extract (EAVG) into cassava starch, with the aim of improving its bioplastic properties. Cassava starch was dissolved into distilled water and doped with 0.2%, 0.5%, and 1.0% EAVG under a temperature controlled at the gelatinization point (∼70 °C) and then cast to form bioplastics. The resulting samples were characterized via attenuated total reflectance/Fourier transform infrared spectroscopy (ATR/FTIR), thermogravimetric and differential thermal analysis (TGA-DTA), X-ray diffraction (XRD), scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS), atomic force microscopy (AFM), and mechanical essays, providing insights into chemical composition, thermal stability, crystallinity, surface morphology, and mechanical properties. The results demonstrated that EAVG played an effective role, enhancing the flexibility and stability of the bioplastic with potential use in biomedical applications. Moreover, the results also showed significant improvements in mechanical and thermal properties, suggesting that EAVG is a valuable addition to bioplastics. Therefore, EAVG presents a pathway for advancing bioplastics with enhanced mechanical, thermal, and functional characteristics, with the potential for further advancements in these fields. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

14 pages, 1876 KiB  
Article
Pseudomonas aeruginosa Rhamnolipids Produced by Andiroba (Carapa guianensis Aubl.) (Sapindales: Meliaceae) Biomass Waste from Amazon: A Potential Weapon Against Aedes aegypti L. (Diptera: Culicidae)
by Giulian César da Silva Sá, Pedro Vitor Vale Bezerra, Evelly Oliveira Ramos, Alexandre Orsato, Karoline Leite, Alan Moura Feio, Lucas Mariano Siqueira Pimentel, Joane de Almeida Alves, Glenda Soares Gomes, Pamela Dias Rodrigues, Cristina M. Quintella, Sinara Pereira Fragoso, Emilly Cruz da Silva, Adriana Ferreira Uchôa and Sidnei Cerqueira dos Santos
Molecules 2025, 30(3), 618; https://doi.org/10.3390/molecules30030618 - 31 Jan 2025
Viewed by 1173
Abstract
Rhamnolipids, biosurfactants synthesized from natural resources, demonstrate significant applications, including notable insecticidal efficacy against Aedes aegypti L., the primary vector for numerous arboviruses. The global spread of A. aegypti poses substantial public health challenges, requiring innovative and sustainable control strategies. This research investigates [...] Read more.
Rhamnolipids, biosurfactants synthesized from natural resources, demonstrate significant applications, including notable insecticidal efficacy against Aedes aegypti L., the primary vector for numerous arboviruses. The global spread of A. aegypti poses substantial public health challenges, requiring innovative and sustainable control strategies. This research investigates the use of andiroba (Carapa guianensis Aubl.) biomass waste as a substrate for synthesizing a rhamnolipid biosurfactant (BSAW) produced by Pseudomonas aeruginosa and evaluates its insecticidal activity against A. aegypti. The findings indicate a biosurfactant yield of 4.42 mg mL−1, alongside an emulsification index approaching 60%. BSAW successfully reduced both surface and interfacial tensions to below 30 mN/m and 4 mN/m, respectively. Characterization revealed that BSAW is a di-rhamnolipid, consisting of two rhamnose units covalently linked to a saturated C10 fatty acid chain. At a concentration of 1.0 mg mL−1, BSAW exhibited notable larvicidal activity, leading to structural impairments and cellular dysfunctions in A. aegypti larvae while also disrupting their associated bacterial microbiota. Moreover, BSAW effectively deterred oviposition in adult mosquitoes. These findings underscore BSAW’s potential to compromise various developmental stages of A. aegypti, supporting integrated arbovirus management approaches. Furthermore, this research emphasizes the feasibility of utilizing agro-industrial waste as substrates for microbial rhamnolipid production. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

18 pages, 3963 KiB  
Article
Vismia guianensis Improves Survival of Tenebrio molitor and Mice During Lethal Infection with Candida albicans
by Arthur André Castro Costa, Elizangela Pestana Motta, Aluísio Silva Oliveira, Pamela Gomes Santos, Josivan Regis Farias, Danielle Cristine Gomes Franco, Mayara Cristina Pinto Silva, Nicolle Teixeira Barbosa, Simone Batista Muniz, Luís Douglas Miranda. Silva, Lucilene Amorim Silva, Claudia Quintino Rocha, Flavia Raquel Fernandes Nascimento and Rosane Nassar Meireles Guerra
Antibiotics 2025, 14(1), 72; https://doi.org/10.3390/antibiotics14010072 - 11 Jan 2025
Viewed by 1287
Abstract
Background/Objectives: Vismia guianensis is a vegetal species popularly used to treat fungal infections. This study evaluated the anti-Candida effect of V. guianensis extract after C. albicans lethal infection in Tenebrio molitor larvae and mice. Methods and Results: The chemical profile [...] Read more.
Background/Objectives: Vismia guianensis is a vegetal species popularly used to treat fungal infections. This study evaluated the anti-Candida effect of V. guianensis extract after C. albicans lethal infection in Tenebrio molitor larvae and mice. Methods and Results: The chemical profile analysis of a hydroethanolic extract of the leaves of V. guianensis (EHVG) identified 14 compounds. Two sets of experiments used T. molitor larvae. To evaluate toxicity, the uninfected larvae were treated with EHVG or anthraquinone. We considered the following groups: the controls received PBS; ANFO B received amphotericin B (600 mg/mL); EHVG received the extract; and ANTQ received anthraquinone. The extract and anthraquinone resulted in low-level toxicity in the T. molitor larvae. Another set of experiments evaluated the EHVG effect during lethal infection with Candida albicans. The T. molitor larvae were treated intracelomically (ic/10 μL). Treatment with EHVG efficiently improved the survival of the larvae after lethal infection (60%), probably due to the reduction in CFUs. In the mice, the antifungal effect of EHVG was determined in three groups of immunosuppressed Swiss mice (cyclophosphamide, 50 mg/kg/ip) infected with C. albicans (1 × 107 CFU/ip). The control animals were infected and untreated; the ANFO B animals were infected and treated with amphotericin B (600 µg/kg/ip); and the EHVG animals were infected and treated with the extract (5 mg/kg/orally). A SHAM group (uninfected and untreated) was also included. Survival was assessed for 5 days. The extract increased the mice’s survival (60%) and life expectancy, reducing the CFU counts in the peritoneum and blood. EHVG also increased the number of blood neutrophils and peritoneal macrophages. These systemic activities are likely associated with the presence of flavonoids in the extract. Conclusions: The beneficial effects of EHVG in lethal sepsis are related to an antifungal effect, with the number of CFUs decreasing in the larvae and the mice. In addition, EHVG showed immunological activity in the mice, considering immune cell distribution and cytokine production. Full article
Show Figures

Figure 1

13 pages, 1955 KiB  
Article
Anticancer Activity and Mechanism of Action of Couroupita guianensis Bark Decoction in Gastric Adenocarcinoma Cancer Cell Line
by Simona Pisanti, Serena Penna, Silvia Sposito, Tiziana Esposito, Teresa Mencherini, Rita Celano, Tania Re, Rita Patrizia Aquino and Rosanna Martinelli
Int. J. Mol. Sci. 2024, 25(17), 9183; https://doi.org/10.3390/ijms25179183 - 24 Aug 2024
Cited by 1 | Viewed by 2495
Abstract
Couroupita guianensis, a medicinal plant autochthonal to South America and South India, is widely used in the ethnomedicine of the indigenous peoples of these regions thanks to its alleged antimicrobial, anti-inflammatory, antioxidant and wound-healing properties. The majority of studies have mainly analyzed [...] Read more.
Couroupita guianensis, a medicinal plant autochthonal to South America and South India, is widely used in the ethnomedicine of the indigenous peoples of these regions thanks to its alleged antimicrobial, anti-inflammatory, antioxidant and wound-healing properties. The majority of studies have mainly analyzed organic extracts of the Indian plant’s flowers and leaves, with limited research on its bark decoction, traditionally used in Amazonian shamanic medicine. In this study, we investigated the anticancer effects of the bark decoction and its main fractions obtained through chromatographic separation, as well as the underlying molecular mechanisms in AGS gastric cancer cells. Viability, cell proliferation, cell cycle, apoptosis and protein expression related to these processes were evaluated. Both the bark decoction and fraction III significantly inhibited cell viability, and the cytotoxic effect was linked to cell cycle blockade and the induction of apoptosis also through an engulfment of the autophagic flux. Increased expression or activation of the key proteins (p53, p21, cdk2, Bak, caspases, pAMPK, pAkt, beclin, p62 and LC3BII) involved in these processes was observed. The results obtained confirmed an important anticancer effect of C. guianensis bark decoction, providing scientific validation for its use in traditional medicine and highlighting its potential as a therapeutic agent against gastric cancer. Full article
(This article belongs to the Special Issue Bioactive Compounds and Their Anticancer Effects)
Show Figures

Graphical abstract

13 pages, 1088 KiB  
Article
Fermentation Parameters, Amino Acids Profile, Biogenic Amines Formation, and Bacterial Community of Ensiled Stylo Treated with Formic Acid or Sugar
by Kai Mao, Marcia Franco, Yi Xu, Huan Chai, Jian Wang, Shuai Huang, Zhiyong Wang, Wenjuan Xun, Zuoxiang Liang, Zhu Yu and Musen Wang
Animals 2024, 14(16), 2397; https://doi.org/10.3390/ani14162397 - 18 Aug 2024
Cited by 4 | Viewed by 1644
Abstract
Substantial proteolysis occurs and free amino acids can be degraded to biogenic amines by decarboxylation during stylo (Stylosanthes guianensis) ensiling. High biogenic amine concentrations in silage are harmful to the health of ruminant animals. The purposes of this work were to [...] Read more.
Substantial proteolysis occurs and free amino acids can be degraded to biogenic amines by decarboxylation during stylo (Stylosanthes guianensis) ensiling. High biogenic amine concentrations in silage are harmful to the health of ruminant animals. The purposes of this work were to (1) analyze the biogenic amines and amino acids concentrations, bacterial composition, and fermentation profile of spontaneously fermented stylo silage, (2) explore the effect of formic acid or sugar additive on these silage parameters, and (3) further reveal the correlations between silage amines and fermentation parameters, amino acids, and bacteria. Freshly chopped stylo was treated with distilled water (control), formic acid (4 mL/kg), and sugar (20 g/kg) and fermented for 28 days. The results indicated that putrescine (321 mg/kg dry matter), cadaverine (384 mg/kg dry matter), and tyramine (127 mg/kg dry matter) rapidly increased in concentration and become predominant in the control silage after 28 days of fermentation. Applying formic acid and sugar at ensiling, especially the acidifier, significantly decreased putrescine, cadaverine, tyramine, and total biogenic amine concentrations compared with the control treatment (p < 0.0001). Clostridium pabulibutyricum, Weissella cibaria and W. paramesenteroides were the predominant bacteria in the control silage, and the application of both additives remarkably lowered their relative abundance in comparison with the control treatment (p < 0.001). Correlation analysis showed that putrescine, cadaverine, and tyramine were positively related to pH, butyric acid, non-protein nitrogen, and ammonia nitrogen (p < 0.01). These amines also had significant correlations with C. pabulibutyricum, W. cibaria and W. paramesenteroides (p < 0.001). Putrescine, cadaverine, and tyramine were the main biogenic amines and C. pabulibutyricum was the predominant undesirable bacterium in naturally fermented stylo silage. C. pabulibutyricum, W. cibaria and W. paramesenteroides were positively related to putrescine, cadaverine, and tyramine formation. The application of formic acid or sugar significantly reduced the undesirable bacterial population and improved the fermentation and hygienic quality of the stylo silage. These findings lay the foundation for further elucidating the microbial mechanism underlying the main biogenic amine formation during fermentation of stylo silage. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

16 pages, 5455 KiB  
Article
Fatty Acid Amides Suppress Proliferation via Cannabinoid Receptors and Promote the Apoptosis of C6 Glioma Cells in Association with Akt Signaling Pathway Inhibition
by Nágila Monteiro da Silva, Izabella Carla Silva Lopes, Adan Jesus Galué-Parra, Irlon Maciel Ferreira, Chubert Bernardo Castro de Sena, Edilene Oliveira da Silva, Barbarella de Matos Macchi, Fábio Rodrigues de Oliveira and José Luiz Martins do Nascimento
Pharmaceuticals 2024, 17(7), 873; https://doi.org/10.3390/ph17070873 - 2 Jul 2024
Viewed by 1836
Abstract
A glioma is a type of tumor that acts on the Central Nervous System (CNS) in a highly aggressive manner. Gliomas can occasionally be inaccurately diagnosed and treatments have low efficacy, meaning that patients exhibit a survival of less than one year after [...] Read more.
A glioma is a type of tumor that acts on the Central Nervous System (CNS) in a highly aggressive manner. Gliomas can occasionally be inaccurately diagnosed and treatments have low efficacy, meaning that patients exhibit a survival of less than one year after diagnosis. Due to factors such as intratumoral cell variability, inefficient chemotherapy drugs, adaptive resistance development to drugs and tumor recurrence after resection, the search continues for new drugs that can inhibit glioma cell growth. As such, analogues of endocannabinoids, such as fatty acid amides (FAAs), represent interesting alternatives for inhibiting tumor growth, since FAAs can modulate several metabolic pathways linked to cancer and, thus, may hold potential for managing glioblastoma. The aim of this study was to investigate the in vitro effects of two fatty ethanolamides (FAA1 and FAA2), synthetized via direct amidation from andiroba oil (Carapa guianensis Aublet), on C6 glioma cells. FAA1 and FAA2 reduced C6 cell viability, proliferation and migratory potential in a dose-dependent manner and were not toxic to normal retina glial cells. Both FAAs caused apoptotic cell death through the loss of mitochondrial integrity (ΔΨm), probably by activating cannabinoid receptors, and inhibiting the PI3K/Akt pathway. In conclusion, FAAs derived from natural products may have the potential to treat glioma-type brain cancer. Full article
(This article belongs to the Special Issue Therapeutic Agents for the Treatment of Tumors in the CNS)
Show Figures

Figure 1

27 pages, 8085 KiB  
Article
Lipid Fractionation and Physicochemical Characterization of Carapa guianensis Seed Oil from Guyana
by Stacy O. James, Laziz Bouzidi, R. J. Neil Emery and Suresh S. Narine
Processes 2023, 11(9), 2565; https://doi.org/10.3390/pr11092565 - 27 Aug 2023
Cited by 3 | Viewed by 2328
Abstract
The seed oil of Carapa guianensis, known as crabwood oil (CWO), is distinguished for its medicinal and cosmetics applications, attributed to its bioactive components and lipid profile. CWO and its dry and solvent fractionation were studied, with a focus on physicochemical functionality [...] Read more.
The seed oil of Carapa guianensis, known as crabwood oil (CWO), is distinguished for its medicinal and cosmetics applications, attributed to its bioactive components and lipid profile. CWO and its dry and solvent fractionation were studied, with a focus on physicochemical functionality and the partitioning of known bioactive compounds, such as limonoids and sterols. Important bioactive components, including limonoids and sterols, were partitioned depending on the fractionation method; in particular, there is a direct dependence on solvent polarity. There was a very strong solid fraction yield–solvent polarity with a high linear slope of −121.3%. The partitioning of the lipids is significant enough to drive measurable and predictable changes in the physical properties. Palmitic (P: C16:0) and oleic (O: C18:1) fatty acids account for about 60% of the total fatty acid composition of the TAGs of CWO and its fractions. The most abundant limonoid is methyl angolensate (from 28 to 39%), followed by Trichilin A (from 13% to 22%). Gedunin and Andirobin were more abundant in the liquid fractions, whereas Carapanolides (less than 1.3%) were more present in the olein fractions. The crystallization and melting temperatures of the solid fractions were up to 26 °C, compared to 11°C for CWO, and were particularly strongly correlated to the polarity of the solvents. The SFC profile indicated semi-solid fats, with the solid fractions showing up to 19% at 18 °C, twice the SFC in CWO. The fractions demonstrated a wide range of distinguishable microstructures. The shapes include well-organized spherulites and needle-like and rod-like crystals with sizes varying from 5 to 250 µ, suggesting that they are likely to have different flow characteristics and feel to the skin and mouth. There is a potential to make unique compositions with significantly different properties, with antimicrobial and antifungal efficacy due to the bioactive components of CWO through fractionation, using polarity as a predictive tool. Full article
(This article belongs to the Special Issue Feature Review Papers in Section "Food Processes")
Show Figures

Figure 1

17 pages, 602 KiB  
Article
Extracts from the Leaf of Couroupita guianensis (Aubl.): Phytochemical, Toxicological Analysis and Evaluation of Antioxidant and Antimicrobial Activities against Oral Microorganisms
by Marco Aurélio Carmona Augusco, Daniela Abram Sarri, Juliane Farinelli Panontin, Maria Angélica Melo Rodrigues, Rachel de Moura Nunes Fernandes, Juliana Fonseca Moreira da Silva, Claudia Andrea Lima Cardoso, Magale Karine Diel Rambo and Elisandra Scapin
Plants 2023, 12(12), 2327; https://doi.org/10.3390/plants12122327 - 15 Jun 2023
Cited by 11 | Viewed by 3538
Abstract
The study of phytotherapy in dentistry holds great relevance because of the scarcity of research conducted on the treatment of oral pathologies, specifically, caries and periodontal disease. Therefore, this research aimed to analyze the chemical composition of extracts from Couroupita guianensis Aubl. leaves, [...] Read more.
The study of phytotherapy in dentistry holds great relevance because of the scarcity of research conducted on the treatment of oral pathologies, specifically, caries and periodontal disease. Therefore, this research aimed to analyze the chemical composition of extracts from Couroupita guianensis Aubl. leaves, evaluate their toxicity, and assess their antioxidant and antimicrobial properties against Staphylococcus aureus, Streptococcus mutans, and Candida albicans. Three extracts were prepared using assisted ultrasound and the Soxhlet apparatus, namely, Crude Ultrasound Extract (CUE), Crude Soxhlet Extract (CSE), and the Ethanol Soxhlet Extract (ESE). Flavonoids, tannins, and saponins were detected in the chemical analysis, while LC-DAD analysis revealed the presence of caffeic acid, sinapic acid, rutin, quercetin, luteolin, kaempferol, and apigenin in all extracts. GC-MS analysis identified stigmasterol and β-sitosterol in the CUE and CSE. The ESE showed higher antioxidant activity (2.98 ± 0.96 and 4.93 ± 0.90) determined by the DPPH• and ABTS•+ methods, respectively. In the toxicity evaluation, the CUE at 50 μg/mL and the ESE at 50 μg/mL stimulated the growth of Allium cepa roots, while all extracts inhibited root growth at 750 μg/mL. None of the extracts exhibited toxicity against Artemia salina. Antibacterial activity was observed in all extracts, particularly against the microorganisms S. aureus and S. mutans. However, no antifungal activity against C. albicans was detected. These results suggest that extracts of C. guianensis have therapeutic potential for controlling microorganisms in the oral microbiota. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

24 pages, 3892 KiB  
Article
The Anti-Virulence Effect of Vismia guianensis against Candida albicans and Candida glabrata
by Elizangela Pestana Motta, Josivan Regis Farias, Arthur André Castro da Costa, Anderson França da Silva, Alberto Jorge Oliveira Lopes, Maria do Socorro Sousa Cartágenes, Roberto Nicolete, Afonso Gomes Abreu, Elizabeth Soares Fernandes, Flavia Raquel Fernandes Nascimento, Cláudia Quintino da Rocha, Cristina Andrade Monteiro and Rosane Nassar Meireles Guerra
Antibiotics 2022, 11(12), 1834; https://doi.org/10.3390/antibiotics11121834 - 16 Dec 2022
Cited by 8 | Viewed by 2781
Abstract
In folk medicine, Vismia guianensis is used to treat skin diseases and mycoses in the Amazon region. We evaluated the anti-Candida activity of the hydroalcoholic extract from the leaves of Vismia guianensis (EHVG). HPLC-PDA and FIA-ESI-IT-MSn were used to chemically characterize [...] Read more.
In folk medicine, Vismia guianensis is used to treat skin diseases and mycoses in the Amazon region. We evaluated the anti-Candida activity of the hydroalcoholic extract from the leaves of Vismia guianensis (EHVG). HPLC-PDA and FIA-ESI-IT-MSn were used to chemically characterize EHVG. The anti-Candida activity was determined in vitro by the minimum inhibitory concentrations (MIC) against Candida glabrata (ATCC-2001); Candida albicans (ATCC-90028, ATCC-14053, and ATCC-SC5314), and C. albicans clinical isolates. EHVG effects on adhesion, growth, and biofilm formation were also determined. Molecular docking was used to predict targets for EHVG compounds. The main compounds identified included anthraquinone, vismione D, kaempferol, quercetin, and vitexin. EHVG was fungicidal against all tested strains. C. albicans ATCC 14053 and C. glabrata ATCC 2001 were the most sensitive strains, as the extract inhibited their virulence factors. In silico analysis indicated that vismione D presented the best antifungal activity, since it was the most effective in inhibiting CaCYP51, and may act as anti-inflammatory and antioxidant agent, according to the online PASS prediction. Overall, the data demonstrate that EHVG has an anti-Candida effect by inhibiting virulence factors of the fungi. This activity may be related to its vismione D content, indicating this compound may represent a new perspective for treating diseases caused by Candida sp. Full article
(This article belongs to the Special Issue Antimicrobial and Anti-infective Activity of Natural Products)
Show Figures

Graphical abstract

18 pages, 2825 KiB  
Article
A Gedunin-Type Limonoid, 7-Deacetoxy-7-Oxogedunin, from Andiroba (Carapa guianensis Aublet) Reduced Intracellular Triglyceride Content and Enhanced Autophagy in HepG2 Cells
by Akifumi Nagatomo, Kiyofumi Ninomiya, Shinsuke Marumoto, Chie Sakai, Shuta Watanabe, Wakana Ishikawa, Yoshiaki Manse, Takashi Kikuchi, Takeshi Yamada, Reiko Tanaka, Osamu Muraoka and Toshio Morikawa
Int. J. Mol. Sci. 2022, 23(21), 13141; https://doi.org/10.3390/ijms232113141 - 28 Oct 2022
Cited by 7 | Viewed by 2903
Abstract
The seed oil of Carapa guianensis Aublet (Andiroba) has been used in folk medicine for its insect-repelling, anti-inflammatory, and anti-malarial activities. This study aimed to examine the triglyceride (TG) reducing effects of C. guianensis-derived limonoids or other commercially available limonoids in human [...] Read more.
The seed oil of Carapa guianensis Aublet (Andiroba) has been used in folk medicine for its insect-repelling, anti-inflammatory, and anti-malarial activities. This study aimed to examine the triglyceride (TG) reducing effects of C. guianensis-derived limonoids or other commercially available limonoids in human hepatoblastoma HepG2 cells and evaluate the expression of lipid metabolism or autophagy-related proteins by treatment with 7-deacetoxy-7-oxogedunin (DAOG; 1), a principal limonoid of C. guianensis. The gedunin-type limonoids, such as DAOG (% of control at 20 μM: 70.9 ± 0.9%), gedunin (2, 74.0 ± 1.1%), epoxyazadiradione (4, 73.4 ± 2.0%), 17β-hydroxyazadiradione (5, 79.9 ± 0.6%), 7-deacetoxy-7α-hydroxygedunin (6, 61.0 ± 1.2%), andirolide H (7, 87.4 ± 2.2%), and 6α-hydroxygedunin (8, 84.5 ± 1.1%), were observed to reduce the TG content at lower concentrations than berberine chloride (BBR, a positive control, 84.1 ± 0.3% at 30 μM) in HepG2 cells pretreated with high glucose and oleic acid. Andirobin-, obacunol-, nimbin-, and salannin-type limonoids showed no effect on the intracellular TG content in HepG2 cells. The TG-reducing effect of DAOG was attenuated by the concomitant use of compound C (dorsomorphin), an AMPK inhibitor. Further investigation on the detailed mechanism of action of DAOG at non-cytotoxic concentrations revealed that the expressions of autophagy-related proteins, LC3 and p62, were upregulated by treatment with DAOG. These findings suggested that gedunin-type limonoids from Andiroba could ameliorate fatty liver, and that the action of DAOG in particular is mediated by autophagy. Full article
(This article belongs to the Special Issue Chemopreventive Activities of Phytochemicals 2.0)
Show Figures

Figure 1

11 pages, 2599 KiB  
Article
Tree Species and Morphology of Holes Caused by Black-Tufted Marmosets to Obtain Exudates: Some Implications for the Exudativory
by Juliane Martins Lamoglia, Vanner Boere, Edgard Augusto de Toledo Picoli, Juraci Alves de Oliveira, Carlos de Melo e Silva Neto and Ita de Oliveira Silva
Animals 2022, 12(19), 2578; https://doi.org/10.3390/ani12192578 - 27 Sep 2022
Cited by 1 | Viewed by 1811
Abstract
Knowledge of the pattern of exploitation of trees can help us understand the relationship between marmosets and plants, especially in declining forests, such as those in the Brazilian Cerrado. Black-tufted marmosets (Callithrix penicillata) regularly exploit exudates by gouging the bark of [...] Read more.
Knowledge of the pattern of exploitation of trees can help us understand the relationship between marmosets and plants, especially in declining forests, such as those in the Brazilian Cerrado. Black-tufted marmosets (Callithrix penicillata) regularly exploit exudates by gouging the bark of trees with their specialized teeth. Determining preferred tree species to exploit exudates is important for forest management aimed at maintaining an essential food source for urban marmosets. We characterized the tree species, dendrometry, and the characteristics of the holes made by marmosets to obtain exudates. Based on these data, we proposed a gouging effort index (Chiseling Suitability Index for Marmosets, ChiSI). We identified 16 species belonging to 10 families of trees with gouging marks made by marmosets. Eleven new tree species used by black-tufted marmosets for exudates were identified in urban forests in the Cerrado. Exudate exploration was predominantly of medium intensity, with round holes concentrated in the canopy. The species Tapirira guianensis and Croton urucarana were preferred. The ChiSI was characterized by a narrow range for both T. guianensis and C. urucarana. Despite the flexibility of obtaining exudates, the black-tufted marmosets concentrate their exploitation to only a few tree species. The T. guianensis and C. urucarana tree species should be considered the most important species for management plans and the preservation of black-tufted marmosets that live in urban forests in the Cerrado. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

17 pages, 3177 KiB  
Article
Seasonality and Phosphate Fertilization in Carbohydrates Storage: Carapa guianensis Aubl. Seedlings Responses
by Vanessa Leão Peleja, Poliana Leão Peleja, Túlio Silva Lara, Edgard Siza Tribuzy and José Mauro Sousa de Moura
Plants 2022, 11(15), 1956; https://doi.org/10.3390/plants11151956 - 27 Jul 2022
Cited by 6 | Viewed by 2227
Abstract
The low availability of phosphorus and water in soil can promote the remobilization of carbohydrates in the plant, releasing energy to mitigate stress. In this context, our objective was to analyze the production and allocation of carbohydrates in plants of Carapa guianensis Aubl. [...] Read more.
The low availability of phosphorus and water in soil can promote the remobilization of carbohydrates in the plant, releasing energy to mitigate stress. In this context, our objective was to analyze the production and allocation of carbohydrates in plants of Carapa guianensis Aubl. submitted to different doses of phosphate fertilization, during the rainy and dry seasons, in the western region of Pará. We used three phosphorus dosages (0, 50, 250 kg ha−1) as treatments. We evaluated the plants during the dry and wet seasons. We quantified dry matter production, phosphorus content, total soluble sugars, reducing sugars, sucrose, and starch. Phosphate fertilization and different evaluation periods influenced carbohydrate concentrations (p < 0.05) in plants. The highest levels of P in the leaves were registered in October and, in the roots the content decreased with the passage of time in all treatments. The control had higher dry matter production in leaves and stems. During the dry season, there was an accumulation of carbohydrates in plants and a low production of dry matter. Soluble sugars and sucrose tended to be allocated to the stem, reducing sugars to the leaves and starch to the roots, in most periods. In general, C. guianensis seedlings were not very responsive to phosphorus addition. Full article
(This article belongs to the Special Issue Soil-Plant-Water System and Interactions)
Show Figures

Figure 1

Back to TopTop