Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = C-glycosyl flavonoids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1090 KiB  
Article
Functional Properties of Campomanesia xanthocarpa Infusions: Phenolic Profile, Digestive Stability, Enzyme Inhibition, and Glycemic Effects
by Cristiane Maria Chitolina Tremea, Vanessa Ruana Ferreira da Silva, Larissa Cunico, Vinícius Gottardo Boff, Carolina Turnes Pasini Deolindo, Aleksandro Shafer da Silva and Aniela Pinto Kempka
Foods 2025, 14(14), 2469; https://doi.org/10.3390/foods14142469 - 14 Jul 2025
Viewed by 296
Abstract
This study investigated the functional potential of Campomanesia xanthocarpa leaf and fruit infusions through phytochemical profiling, simulated gastrointestinal digestion, enzyme inhibition assays, and in vivo evaluation of glycemic markers. Leaf infusions exhibited a more diverse phenolic profile, higher total phenolic content, and greater [...] Read more.
This study investigated the functional potential of Campomanesia xanthocarpa leaf and fruit infusions through phytochemical profiling, simulated gastrointestinal digestion, enzyme inhibition assays, and in vivo evaluation of glycemic markers. Leaf infusions exhibited a more diverse phenolic profile, higher total phenolic content, and greater antioxidant capacity compared to fruit infusions. Simulated digestion confirmed the bioaccessibility of key phenolic compounds, particularly glycosylated flavonoids such as quercetin-3-glucoside and kaempferol derivatives, with leaf extracts showing superior gastrointestinal stability. In vitro assays revealed a strong inhibitory activity of leaf infusions against α-amylase and β-glucosidase. In a 32-day trial with healthy dogs, the consumption of biscuits enriched with leaf infusion did not alter fasting glucose or amylase levels but resulted in a significant treatment × time interaction for serum fructosamine, indicating a delayed modulation of glycemic control, potentially associated with antioxidant or anti-glycation activity. These findings highlight the potential of C. xanthocarpa leaves as a functional ingredient in foods aimed at supporting glycemic regulation and metabolic health. Full article
Show Figures

Graphical abstract

23 pages, 9287 KiB  
Article
Emulsifying Stability, Digestive Sustained Release, and Cellular Uptake of Alcohol-Soluble Artemisia argyi Flavonoids Were Improved by Glycosylation of Casein Micelles with Oat Glucan
by Ye Zhang, Dongliang Wang, Mengling Peng, Min Yang, Ya Yu, Mengting Yuan, Yanan Liu, Bingyu Zhu, Xiuheng Xue and Juhua Wang
Foods 2025, 14(14), 2435; https://doi.org/10.3390/foods14142435 - 10 Jul 2025
Viewed by 353
Abstract
Flavonoids, widely present in Artemisia argyi (AA), offer potential health benefits but are limited in food applications because of their bitter taste, inadequate absorption, and stability. Casein micelles encapsulation can enhance the flavonoid absorption, stability, and bioactivity. In this study, Artemisia argyi flavonoids [...] Read more.
Flavonoids, widely present in Artemisia argyi (AA), offer potential health benefits but are limited in food applications because of their bitter taste, inadequate absorption, and stability. Casein micelles encapsulation can enhance the flavonoid absorption, stability, and bioactivity. In this study, Artemisia argyi flavonoids (AAFs) were extracted using ultrasound-assisted extraction (UAE) to optimize the process. The glycosylation reaction between casein (CN) micelles and oat β-glucan (OBG) was employed to improve AAF’s emulsifying stability, sustained release during digestion, and cellular uptake. The maximum glycosylation degree of 32.33% was achieved at a CN-to-OBG ratio of 1:2, 120 min browning time, and 95 °C temperature. This glycosylated delivery system enhanced the emulsifying properties of the AAFs, digestive sustained release, and cellular uptake, showing potential as a cross-linking material for fat-soluble substances and medicines. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

22 pages, 9092 KiB  
Article
α-Glucosidase Inhibition Mechanism and Anti-Hyperglycemic Effects of Flavonoids from Astragali Radix and Their Mixture Effects
by Xing Han, Pengpu Wang, Jing Zhang, Yang Lv, Zhigao Zhao, Fengxian Zhang, Mingying Shang, Guangxue Liu, Xuan Wang, Shaoqing Cai and Feng Xu
Pharmaceuticals 2025, 18(5), 744; https://doi.org/10.3390/ph18050744 - 18 May 2025
Cited by 1 | Viewed by 1506
Abstract
Background: Inhibition of intestinal α-glucosidase is a key strategy for controlling postprandial hyperglycemia in diabetes. Astragali Radix (AR), a traditional medicinal and dietary herb widely consumed in China, is rich in flavonoids that are believed to exhibit hypoglycemic properties. Methods: A [...] Read more.
Background: Inhibition of intestinal α-glucosidase is a key strategy for controlling postprandial hyperglycemia in diabetes. Astragali Radix (AR), a traditional medicinal and dietary herb widely consumed in China, is rich in flavonoids that are believed to exhibit hypoglycemic properties. Methods: A total of 29 AR-related flavonoids, including both original constituents and metabolites, were screened for α-glucosidase inhibitory activity using in vitro enzymatic assays. Mechanistic investigations were conducted through enzyme kinetics, circular dichroism (CD) spectroscopy, surface plasmon resonance (SPR), and molecular docking. The in vivo hypoglycemic effects were assessed using a postprandial hyperglycemic mouse model. Additionally, potential mixture effects of flavonoid combinations were evaluated. Results: Of the 29 flavonoids, 16 demonstrated significant α-glucosidase inhibitory activity, with five (C3, C17, C19, C28, and C29) identified as novel inhibitors. Structure–activity relationship (SAR) analysis revealed that hydroxylation, particularly at the C-3 position, enhanced activity, while glycosylation and methoxylation reduced it. Mechanistic studies demonstrated that these compounds bind to distinct amino acid residues within the active site of α-glucosidase, inducing conformational changes and exerting different types of inhibition, leading to varying inhibitory mechanisms. Additionally, 15 compounds reduced postprandial blood glucose levels, with C3, C16, C17, C19, and C28 confirmed as novel in vivo inhibitors. Notably, two compositions of flavonoids combined at their individually ineffective concentrations exhibited significant inhibitory effects. Conclusions: This study provides a comprehensive evaluation of AR-related flavonoids as α-glucosidase inhibitors and offers valuable insights for the development of highly effective, low-toxicity, flavonoid-based, antidiabetic therapeutics and functional foods. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

24 pages, 2639 KiB  
Article
Structural Variations of Broccoli Polyphenolics and Their Antioxidant Capacity as a Function of Growing Temperature
by Ivana Šola and Daria Gmižić
Plants 2025, 14(8), 1186; https://doi.org/10.3390/plants14081186 - 11 Apr 2025
Cited by 1 | Viewed by 567
Abstract
Polyphenolics in plants exist in free, soluble-bound, and insoluble-bound structural forms. The concentration of these structural forms depends on the plant’s developmental stage, tissue type, soil water availability, and food preparation methods. In this study, for the first time, the effects of growth [...] Read more.
Polyphenolics in plants exist in free, soluble-bound, and insoluble-bound structural forms. The concentration of these structural forms depends on the plant’s developmental stage, tissue type, soil water availability, and food preparation methods. In this study, for the first time, the effects of growth temperature (RT—room temperature—23 °C day/18 °C night, HT—high temperature—38 °C day/33 °C night, LT—low temperature—12 °C day/7 °C night) on variations of polyphenolic structural forms—free, soluble-bound (esterified and glycosylated), and insoluble-bound—in broccoli (Brassica oleracea L. convar. botrytis (L.) Alef. var. cymosa Duch.) microgreens were investigated. Using spectrophotometric, RP-HPLC, and statistical analyses, it was found that the highest amount of total phenolics (TP) in broccoli microgreens was present in the esterified form, regardless of the temperature at which they were grown (63.21 ± 3.49 mg GAE/g dw in RT, 65.55 ± 8.33 mg GAE/g dw in HT, 77.44 ± 7.82 mg GAE/g dw in LT). LT significantly increased the amount of free (from 13.30 ± 2.22 mg GAE/g dw in RT to 18.33 ± 3.85 mg GAE/g dw) and esterified soluble TP (from 63.21 ± 3.49 mg GAE/g dw in RT to 77.44 ± 7.82 mg GAE/g dw), while HT significantly increased the amount of TP glycosylated forms (from 14.85 ± 1.45 mg GAE/g dw in RT to 17.84 ± 1.20 mg GAE/g dw). LT also enhanced free and esterified forms of total flavonoids, tannins, hydroxycinnamic acids, and flavonols. HT, on the other hand, increased glycosylated forms of TP, flavonoids, tannins, hydroxycinnamic acids, flavonols, and phenolic acids, and decreased insoluble-bound tannins. According to the ABTS method, HT induced antioxidant potential of free and glycosylated forms, while LT increased antioxidant capacity of free forms only. According to the FRAP method, LT increased antioxidant potential of free and esterified polyphenolic forms. Also, based on ABTS and FRAP assays, esterified polyphenolics showed significantly higher antioxidant capacity than any other form. Principal component analysis showed that structural form had a greater impact than temperature. Hierarchical clustering showed that RT-, HT- and LT-broccoli microgreens were most similar in their glycosylated polyphenolics, but differed the most in esterified forms, which were also the most distinct overall. In conclusion, HT and LT induced specific shifts in the structural forms of broccoli polyphenolics and their antioxidant capacity. Based on the results, we recommend applying LT to increase the amount of free and esterified polyphenolics in broccoli microgreens, while HT may be used to enhance glycosylated forms. Full article
(This article belongs to the Special Issue Multifunctionality of Phenolic Compounds in Plants, 2nd Edition)
Show Figures

Figure 1

18 pages, 1777 KiB  
Article
Nutritional and Functional Characterization of Flour from Seeds of Chañar (Geoffroea decorticans) to Promote Its Sustainable Use
by Marisa Ayelen Rivas, Enzo Agustin Matteucci, Ivana Fabiola Rodriguez, María Alejandra Moreno, Iris Catiana Zampini, Adriana Ramon and María Inés Isla
Plants 2025, 14(7), 1047; https://doi.org/10.3390/plants14071047 - 27 Mar 2025
Viewed by 575
Abstract
Geoffroea decorticans (Gill. ex Hook. & Arn) Burk. is a native tree of the dry areas of Northwestern and Central Argentina. Its seeds are considered waste material. The flour of seeds was analyzed as a source of nutritional and bioactive compounds. It has [...] Read more.
Geoffroea decorticans (Gill. ex Hook. & Arn) Burk. is a native tree of the dry areas of Northwestern and Central Argentina. Its seeds are considered waste material. The flour of seeds was analyzed as a source of nutritional and bioactive compounds. It has a low carbohydrate content, containing about 9% protein and between 10 and 14% fat. Approximately 82–84% of the fatty acids were unsaturated (oleic and linoleic acids). A high polyphenol and dietary fiber content was detected. Flavonoids and condensed tannins were the dominant phenolics. Polyphenol-enriched extracts were obtained from seed flour. The HPLC–ESI-MS/MS analysis of these concentrated extracts allowed for the identification of six compounds including C-glycosyl flavones (vitexin and isovitexin), type A procyanidins (dimer and trimer), and epicatequin gallate. Polyphenolic extracts showed antioxidant capacity and were able to inhibit enzymes (α-glucosidase and α-amylase) related to carbohydrate metabolism and (lipoxygenase) pro-inflammatory enzymes and were not toxic. Flour and polyphenolic extract from chañar seeds could be considered as new alternative ingredients for the formulation of functional foods, nutraceuticals, or food supplements. The use of the seed flour in addition to the pulp of the fruit along with the rest of the plant would encourage the propagation of this species resistant to extreme arid environments for commercial and conservation purposes to boost the regional economies of vulnerable areas of South America. Full article
Show Figures

Figure 1

18 pages, 10631 KiB  
Article
Integrated Transcriptomic and Metabolomic Analysis Reveals Tissue-Specific Flavonoid Biosynthesis and MYB-Mediated Regulation of UGT71A1 in Panax quinquefolius
by Yumeng Wang, Jiaxin Zhang, Ping Wang, Yongkang Li, Yihan Wang, Yan Yan, Junwen Chi, Jiankang Chen, Junmei Lian, Xiangmin Piao, Xiujuan Lei, Ying Xiao, Jeremy Murray, Micheal K. Deyholos, Yingping Wang, Peng Di and Jian Zhang
Int. J. Mol. Sci. 2025, 26(6), 2669; https://doi.org/10.3390/ijms26062669 - 16 Mar 2025
Viewed by 1107
Abstract
Panax quinquefolius is a globally valued medicinal plant rich in bioactive flavonoids, yet the molecular mechanisms underlying their biosynthesis remain poorly understood. In this study, we integrated transcriptomic and metabolomic analyses to investigate tissue-specific flavonoid accumulation and regulatory networks in roots, leaves, and [...] Read more.
Panax quinquefolius is a globally valued medicinal plant rich in bioactive flavonoids, yet the molecular mechanisms underlying their biosynthesis remain poorly understood. In this study, we integrated transcriptomic and metabolomic analyses to investigate tissue-specific flavonoid accumulation and regulatory networks in roots, leaves, and flowers. Metabolomic profiling identified 141 flavonoid metabolites, with flavones, flavonols, and C-glycosylflavones predominantly enriched in aerial tissues (leaves and flowers), while specific glycosides like tricin 7-O-acetylglucoside showed root-specific accumulation. Transcriptome sequencing revealed 15,551–18,946 DEGs across tissues, and the reliability of the transcriptomic data was validated by qRT-PCR. KEGG and GO annotation analyses suggested that these DEGs may play a crucial role in the biosynthesis and metabolism of secondary metabolites. From the DEGs, UGTs and MYB TFs were identified and subjected to correlation analysis. Functional validation through in vitro enzymatic assays confirmed that PqUGT71A1 catalyzes apigenin and naringenin glycosylation at the 7-OH position. Additionally, subcellular localization and yeast one-hybrid assays demonstrated that PqMYB7 and PqMYB13 interact with the PqUGT71A1 promoter and activate its expression.. This study unveils the spatial dynamics of flavonoid metabolism in P. quinquefolius and establishes a MYB-UGT regulatory axis, providing critical insights for metabolic engineering and bioactive compound optimization in medicinal plants. Full article
(This article belongs to the Special Issue Advances in Plant Genomics and Genetics: 2nd Edition)
Show Figures

Figure 1

33 pages, 18701 KiB  
Article
Flavonoids as Potential Modulators of Pancreatic Lipase Catalytic Activity
by Sílvia Rocha, Carina Proença, Alberto N. Araújo, Marisa Freitas, Ismael Rufino, Natália Aniceto, Artur M. S. Silva, Félix Carvalho, Rita C. Guedes and Eduarda Fernandes
Pharmaceutics 2025, 17(2), 163; https://doi.org/10.3390/pharmaceutics17020163 - 25 Jan 2025
Viewed by 1264
Abstract
Background/Objectives: Obesity has reached pandemic proportions, with predictions suggesting that, by 2030, over 1.5 billion people will be affected. Pancreatic lipase (PL), the enzyme primarily responsible for the absorption of dietary lipids, presents a potential target for obesity management. However, while porcine [...] Read more.
Background/Objectives: Obesity has reached pandemic proportions, with predictions suggesting that, by 2030, over 1.5 billion people will be affected. Pancreatic lipase (PL), the enzyme primarily responsible for the absorption of dietary lipids, presents a potential target for obesity management. However, while porcine pancreatic lipase (PPL) is commonly used as the enzyme source for screening potential inhibitors, its effect on human pancreatic lipase (HPL) is rarely reported. This work aimed to screen the inhibitory effects of a library of flavonoids with different functional groups on the activity of PL from the human pancreas (triacylglycerol acyl hydrolase, EC 3.1.1.3) and compare it to the effects of the porcine pancreas (type II, EC 3.1.1.3), establishing, whenever possible, a structure–activity relationship. Methods: The inhibitory effects of a library of 48 flavonoids with different hydroxy, glycosyl, rutinosyl, galloyl, and extended alkyl groups were evaluated against PPL and HPL. The kinetic parameters and inhibitory mechanisms of the most active flavonoids were determined, and in silico docking studies of the more potent flavonoids were also performed, using the active site of HPL. Results/Conclusions: Variations in enzyme catalytic activity were observed depending on the source of the enzyme. The inhibitory effect was particularly influenced by the presence of extended alkyl groups at the C-3 of the C-ring and the C2=C3 double bond of the C-ring and the presence of a pyrogallol group at the C-2′, C-3′ and C-4′ of the B-ring. Docking results showed a strong correlation between docking scores and observed inhibitory activities, highlighting the critical role of specific substituents on the flavonoid backbone in enhancing detailed interaction dynamics with key amino acids. Compounds 28, 29, and 30, with alkyl groups, showed the highest docking scores, interacting with residues HIS151, PHE215, ARG256, and HIS263. Further analysis also revealed that specific substituents improved pocket occupancy and formed additional interactions with residues TYR114, PRO180, ILE209, and PHE215, which are crucial for inhibition. These binding characteristics closely mimic those observed with orlistat, reinforcing their mechanistic similarities in inhibiting HPL and validating their inhibitory activities. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

16 pages, 4077 KiB  
Article
Bioaccessibility of Flavones, Flavanones, and Flavonols from Vegetable Foods and Beverages
by Alice Cattivelli, Melissa Zannini, Maddalena De Angeli, Domenico D’Arca, Vincenzo Minischetti, Angela Conte and Davide Tagliazucchi
Biology 2024, 13(12), 1081; https://doi.org/10.3390/biology13121081 - 22 Dec 2024
Cited by 3 | Viewed by 1052
Abstract
The bioaccessibility of flavonoids is of paramount importance in determining their bioavailability and biological effects. Bioaccessibility is influenced by several aspects, comprising the food matrix and the structure of flavonoids. In the present study, the bioaccessibility of different classes of flavonoids (flavanones, flavones, [...] Read more.
The bioaccessibility of flavonoids is of paramount importance in determining their bioavailability and biological effects. Bioaccessibility is influenced by several aspects, comprising the food matrix and the structure of flavonoids. In the present study, the bioaccessibility of different classes of flavonoids (flavanones, flavones, and flavonols) was investigated after in vitro gastro-intestinal digestion of beverages and vegetables. O-glycosylated flavanones were stable during in vitro digestion and easily released from the food matrix. Otherwise, C-glycosylated flavanones displayed a lower bioaccessibility index. Similarly, flavones exhibited a high bioaccessibility index in beverages and vegetables, with the O-glycosylated forms being more stable than the C-glycosylated. Flavonols displayed different stability under gastro-intestinal conditions depending on their structure. The presence of a catechol moiety in the B-ring, as observed in 3-O-glycosylated quercetins, negatively impacted flavonol stability in comparison with kaempferol derivatives that lack the catechol moiety. Indeed, the presence of more than one sugar or the glycosylation of the OH group in the B-ring improved the digestive stability of quercetin derivatives. For flavonols, a clear food matrix effect was observed by comparing the bioaccessibility in beverages and vegetable foods. These findings may aid in improving the comprehension of the biological effects of flavonoids and flavonoid-rich foods. Full article
(This article belongs to the Special Issue Bioavailability, Metabolism, and Health Effects of Phenolic Compounds)
Show Figures

Figure 1

16 pages, 1114 KiB  
Review
Advances and Challenges in Biomanufacturing of Glycosylation of Natural Products
by Shunyang Hu, Bangxu Wang, Liang Pei, Jisheng Wang, Ya Gan, Liangzhen Jiang, Bingliang Liu, Jie Cheng and Wei Li
Fermentation 2024, 10(7), 349; https://doi.org/10.3390/fermentation10070349 - 9 Jul 2024
Cited by 5 | Viewed by 3523
Abstract
Glycosylation is one of the most common and important modifications in natural products (NPs), which can alter the biological activities and properties of NPs, effectively increase structural diversity, and improve pharmacological activities. The biosynthesis of glycosylation in natural products involves multiple complex biological [...] Read more.
Glycosylation is one of the most common and important modifications in natural products (NPs), which can alter the biological activities and properties of NPs, effectively increase structural diversity, and improve pharmacological activities. The biosynthesis of glycosylation in natural products involves multiple complex biological processes, which are coordinated by many enzymes. UDP-glycosyltransferases (UGTs) play a crucial role in glycosylation modification, and have attracted long-term and widespread research attention. UGTs can catalyze the O-, C-, S-, and N-glycosylation of different substrates, producing a variety of glycosides with broad biological activity, while improving the solubility, stability, bioavailability, pharmacological activity, and other functions of NPs. In recent years, the rapid development of synthetic biology and advanced manufacturing technologies, especially the widespread application of artificial intelligence in the field of synthetic biology, has led to a series of new discoveries in the biosynthesis of NP glycosides by UGT. This work summarizes the latest progress and challenges in the field of NP glycosylation, covering the research results and potential applications of glycosylated derivatives of terpenes, flavonoids, polyphenols, aromatic compounds, and other compounds in terms of biogenesis. Looking to the future, research may leverage artificial intelligence-driven synthetic biology techniques to decipher genes related to the synthetic pathway, which is expected to further promote the large-scale synthesis and application of glycosylated NPs, and increase the diversity of NPs in the pharmaceutical, functional food, and cosmetic industries. Full article
Show Figures

Figure 1

22 pages, 3459 KiB  
Article
Spasmolytic, Antimicrobial, and Antioxidant Activities of Spray-Dried Extracts of Gentiana asclepiadea L. with In Silico Pharmacokinetic Analysis
by Miloš S. Jovanović, Milica Milutinović, Suzana Branković, Tatjana Mihajilov-Krstev, Milica Randjelović, Bojana Miladinović, Nada Ćujić Nikolić, Katarina Šavikin and Dušanka Kitić
Plants 2024, 13(11), 1445; https://doi.org/10.3390/plants13111445 - 23 May 2024
Cited by 3 | Viewed by 2045
Abstract
This study aimed to evaluate the spasmolytic activity of an underground parts extract of Gentiana asclepiadea L. (Gentianaceae), assess its antioxidant and antimicrobial activities, and explore the impact of extract encapsulation on the aforementioned bioactivities. An extract encapsulated by spray drying with whey [...] Read more.
This study aimed to evaluate the spasmolytic activity of an underground parts extract of Gentiana asclepiadea L. (Gentianaceae), assess its antioxidant and antimicrobial activities, and explore the impact of extract encapsulation on the aforementioned bioactivities. An extract encapsulated by spray drying with whey protein, pure extract, and pure whey protein were comparatively tested. The main compounds identified via HPLC-DAD analysis underwent in silico ADME assessment. The spasmolytic effect was tested on a model of spontaneous rat ileum contractions, and the mechanism of action was further evaluated on acetylcholine-, KCl-, CaCl2-, BaCl2-, histamine-, N(ω)-nitro-L-arginine methyl ester-, and glibenclamide-modified contractions. The most abundant compounds were secoiridoids (dominantly gentiopicroside), followed by C-glycosylated flavonoids and xanthones. Both pure and encapsulated extracts achieved significant spasmolytic effects, despite the spasmogenic activity of pure whey protein. The extract may exert its spasmolytic effect through multiple pathways, predominantly by antagonizing the Ca2+ channel and opening the K+ channel, while the nitric oxide pathway appears not to be involved. The antimicrobial and antioxidant activities of the pure extract were moderate. The extract stabilized by encapsulation retained all of the tested bioactivities of the unencapsulated extract. The obtained results suggest that G. asclepiadea has potential for use in the treatment of some gastrointestinal complaints and that the encapsulated extract could be a valuable functional ingredient in pharmaceutical and food products. Full article
(This article belongs to the Special Issue Plant-Derived Natural Products: Development and Utilization)
Show Figures

Graphical abstract

19 pages, 2001 KiB  
Review
Metabolic Engineering of Corynebacterium glutamicum for the Production of Flavonoids and Stilbenoids
by Luan Luong Chu, Chau T. Bang Tran, Duyen T. Kieu Pham, Hoa T. An Nguyen, Mi Ha Nguyen, Nhung Mai Pham, Anh T. Van Nguyen, Dung T. Phan, Ha Minh Do and Quang Huy Nguyen
Molecules 2024, 29(10), 2252; https://doi.org/10.3390/molecules29102252 - 10 May 2024
Cited by 8 | Viewed by 5258
Abstract
Flavonoids and stilbenoids, crucial secondary metabolites abundant in plants and fungi, display diverse biological and pharmaceutical activities, including potent antioxidant, anti-inflammatory, and antimicrobial effects. However, conventional production methods, such as chemical synthesis and plant extraction, face challenges in sustainability and yield. Hence, there [...] Read more.
Flavonoids and stilbenoids, crucial secondary metabolites abundant in plants and fungi, display diverse biological and pharmaceutical activities, including potent antioxidant, anti-inflammatory, and antimicrobial effects. However, conventional production methods, such as chemical synthesis and plant extraction, face challenges in sustainability and yield. Hence, there is a notable shift towards biological production using microorganisms like Escherichia coli and yeast. Yet, the drawbacks of using E. coli and yeast as hosts for these compounds persist. For instance, yeast’s complex glycosylation profile can lead to intricate protein production scenarios, including hyperglycosylation issues. Consequently, Corynebacterium glutamicum emerges as a promising alternative, given its adaptability and recent advances in metabolic engineering. Although extensively used in biotechnological applications, the potential production of flavonoid and stilbenoid in engineered C. glutamicum remains largely untapped compared to E. coli. This review explores the potential of metabolic engineering in C. glutamicum for biosynthesis, highlighting its versatility as a cell factory and assessing optimization strategies for these pathways. Additionally, various metabolic engineering methods, including genomic editing and biosensors, and cofactor regeneration are evaluated, with a focus on C. glutamicum. Through comprehensive discussion, the review offers insights into future perspectives in production, aiding researchers and industry professionals in the field. Full article
Show Figures

Figure 1

15 pages, 1328 KiB  
Article
Fermentation of Orange Peels by Lactic Acid Bacteria: Impact on Phenolic Composition and Antioxidant Activity
by María del Carmen Razola-Díaz, Soumi De Montijo-Prieto, Eduardo Jesús Guerra-Hernández, María Jiménez-Valera, Alfonso Ruiz-Bravo, Ana María Gómez-Caravaca and Vito Verardo
Foods 2024, 13(8), 1212; https://doi.org/10.3390/foods13081212 - 16 Apr 2024
Cited by 6 | Viewed by 4522
Abstract
Orange processing generates peel by-products rich in phenolic compounds, particularly flavanones like hesperidin and narirutin, offering potential health benefits. Utilizing these by-products is of significant interest in supporting Spain’s circular bioeconomy. Therefore, the aim of this study was to investigate the fermentation of [...] Read more.
Orange processing generates peel by-products rich in phenolic compounds, particularly flavanones like hesperidin and narirutin, offering potential health benefits. Utilizing these by-products is of significant interest in supporting Spain’s circular bioeconomy. Therefore, the aim of this study was to investigate the fermentation of orange peels by different lactic acid bacteria (LAB) strains and its impact on phenolic composition and antioxidant activity. Three different LAB strains, two Lactiplantibacillus plantarum, and one Levilactobacillus brevis were utilized. The phenolic compounds were measured by HPLC-ESI-TOF-MS, and antioxidant activity was assessed using DPPH and ABTS methods. The growth of the LAB strains varied, showing initial increases followed by gradual declines, with strain-specific patterns observed. Medium acidification occurred during fermentation. A phenolic analysis revealed an 11% increase in phenolic acids in peels fermented by La. plantarum CECT 9567-C4 after 24 h, attributed to glycosylation by LAB enzymes. The flavonoid content exhibited diverse trends, with Le. brevis showing an 8% increase. The antioxidant assays demonstrated strain- and time-dependent variations. Positive correlations were found between antioxidant activity and total phenolic compounds. The results underscore the importance of bacterial selection and fermentation time for tailored phenolic composition and antioxidant activity in orange peel extracts. LAB fermentation, particularly with La. plantarum CECT 9567 and Le. brevis, holds promise for enhancing the recovery of phenolic compounds and augmenting antioxidant activity in orange peels, suggesting potential applications in food and beverage processing. Full article
(This article belongs to the Special Issue Foodomics Fifteen Years On From. Where Are We Now, What’s Next)
Show Figures

Figure 1

13 pages, 5791 KiB  
Article
Functional Identification of HhUGT74AG11—A Key Glycosyltransferase Involved in Biosynthesis of Oleanane-Type Saponins in Hedera helix
by Han Yu, Jun Zhou, Jing Zhang, Xinyi He, Siqing Peng, Hao Ling, Zhuang Dong, Xiangyang Lu, Yun Tian, Guiping Guan, Qi Tang, Xiaohong Zhong and Yuedong He
Int. J. Mol. Sci. 2024, 25(7), 4067; https://doi.org/10.3390/ijms25074067 - 5 Apr 2024
Cited by 3 | Viewed by 2444
Abstract
Hedera helix is a traditional medicinal plant. Its primary active ingredients are oleanane-type saponins, which have extensive pharmacological effects such as gastric mucosal protection, autophagy regulation actions, and antiviral properties. However, the glycosylation-modifying enzymes responsible for catalyzing oleanane-type saponin biosynthesis remain unidentified. Through [...] Read more.
Hedera helix is a traditional medicinal plant. Its primary active ingredients are oleanane-type saponins, which have extensive pharmacological effects such as gastric mucosal protection, autophagy regulation actions, and antiviral properties. However, the glycosylation-modifying enzymes responsible for catalyzing oleanane-type saponin biosynthesis remain unidentified. Through transcriptome, cluster analysis, and PSPG structural domain, this study preliminarily screened four candidate UDP-glycosyltransferases (UGTs), including Unigene26859, Unigene31717, CL11391.Contig2, and CL144.Contig9. In in vitro enzymatic reactions, it has been observed that Unigene26859 (HhUGT74AG11) has the ability to facilitate the conversion of oleanolic acid, resulting in the production of oleanolic acid 28-O-glucopyranosyl ester. Moreover, HhUGT74AG11 exhibits extensive substrate hybridity and specific stereoselectivity and can transfer glycosyl donors to the C-28 site of various oleanane-type triterpenoids (hederagenin and calenduloside E) and the C-7 site of flavonoids (tectorigenin). Cluster analysis found that HhUGT74AG11 is clustered together with functionally identified genes AeUGT74AG6, CaUGT74AG2, and PgUGT74AE2, further verifying the possible reason for HhUGT74AG11 catalyzing substrate generalization. In this study, a novel glycosyltransferase, HhUGT74AG11, was characterized that plays a role in oleanane-type saponins biosynthesis in H. helix, providing a theoretical basis for the production of rare and valuable triterpenoid saponins. Full article
Show Figures

Figure 1

27 pages, 6634 KiB  
Article
Agave angustifolia Haw. Leaves as a Potential Source of Bioactive Compounds: Extraction Optimization and Extract Characterization
by Misael Bermúdez-Bazán, Mirna Estarrón-Espinosa, Gustavo Adolfo Castillo-Herrera, Antonio Escobedo-Reyes, Judith Esmeralda Urias-Silvas, Eugenia Lugo-Cervantes and Anne Gschaedler-Mathis
Molecules 2024, 29(5), 1137; https://doi.org/10.3390/molecules29051137 - 3 Mar 2024
Cited by 5 | Viewed by 2560
Abstract
The leaves of Agave angustifolia Haw. are the main agro-waste generated by the mezcal industry and are becoming an important source of bioactive compounds, such as phenolic compounds, that could be used in the food and pharmaceutical industries. Therefore, the extraction and identification [...] Read more.
The leaves of Agave angustifolia Haw. are the main agro-waste generated by the mezcal industry and are becoming an important source of bioactive compounds, such as phenolic compounds, that could be used in the food and pharmaceutical industries. Therefore, the extraction and identification of these phytochemicals would revalorize these leaf by-products. Herein, maceration and supercritical carbon dioxide (scCO2) extractions were optimized to maximize the phenolic and flavonoid contents and the antioxidant capacity of vegetal extracts of A. angustifolia Haw. In the maceration process, the optimal extraction condition was a water–ethanol mixture (63:37% v/v), which yielded a total phenolic and flavonoid content of 27.92 ± 0.90 mg EAG/g DL and 12.85 ± 0.53 µg QE/g DL, respectively, and an antioxidant capacity of 32.67 ± 0.91 (ABTS assay), 17.30 ± 0.36 (DPPH assay), and 13.92 ± 0.78 (FRAP assay) µM TE/g DL. Using supercritical extraction, the optimal conditions for polyphenol recovery were 60 °C, 320 bar, and 10% v/v. It was also observed that lower proportions of cosolvent decreased the polyphenol extraction more than pressure and temperature. In both optimized extracts, a total of 29 glycosylated flavonoid derivatives were identified using LC-ESI-QTof/MS. In addition, another eight novel compounds were identified in the supercritical extracts, showing the efficiency of the cosolvent for recovering new flavonoid derivatives. Full article
(This article belongs to the Special Issue Study on Extraction and Chemical Constituents of Natural Extracts)
Show Figures

Figure 1

1 pages, 3919 KiB  
Article
Impact of Preparative Isolation of C-Glycosylflavones Derived from Dianthus superbus on In Vitro Glucose Metabolism
by Zikai Lin, Xiaowei Zhou, Chen Yuan, Yan Fang, Haozheng Zhou, Zhenhua Wang, Jun Dang and Gang Li
Molecules 2024, 29(2), 339; https://doi.org/10.3390/molecules29020339 - 9 Jan 2024
Cited by 1 | Viewed by 3075
Abstract
Dianthus superbus L. has been extensively studied for its potential medicinal properties in traditional Chinese medicine and is often consumed as a tea by traditional folk. It has the potential to be exploited in the treatment of inflammation, immunological disorders, and diabetic nephropathy. [...] Read more.
Dianthus superbus L. has been extensively studied for its potential medicinal properties in traditional Chinese medicine and is often consumed as a tea by traditional folk. It has the potential to be exploited in the treatment of inflammation, immunological disorders, and diabetic nephropathy. Based on previous studies, this study continued the separation of another subfraction of Dianthus superbus and established reversed-phase/reversed-phase and reversed-phase/hydrophilic (RPLC) two-dimensional (2D) high-performance liquid chromatography (HPLC) modes, quickly separating two C-glycosylflavones, among which 2″-O-rhamnosyllutonarin was a new compound and isomer with 6‴-O-rhamnosyllutonarin. This is the first study to investigate the effects of 2″-O-rhamnosyllutonarin and 6‴-O-rhamnosyllutonarin on cellular glucose metabolism in vitro. First, molecular docking was used to examine the effects of 2″-O-rhamnosyllutonarin and 6″-O-rhamnosyllutonarin on AKT and AMPK; these two compounds exhibited relatively high activity. Following this, based on the HepG2 cell model of insulin resistance, it was proved that both of the 2″-O-rhamnosyllutonarin and 6‴-O-rhamnosyllutonarin demonstrated substantial efficacy in ameliorating insulin resistance and were found to be non-toxic. Simultaneously, it is expected that the methods developed in this study will provide a basis for future studies concerning the separation and pharmacological effects of C-glycosyl flavonoids. Full article
Show Figures

Figure 1

Back to TopTop