Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Bi12ZnO20/AgI

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6261 KB  
Article
The Development of a New Bi12ZnO20/AgI Heterosystem for the Degradation of Dye-Contaminated Water by Photocatalysis Under Solar Irradiation: Synthesis, Characterization and Kinetics
by Serine Madji, Mohamed Belmedani, Elhadj Mekatel, Sarra Zouaoui and Seif El Islam Lebouachera
Processes 2025, 13(5), 1342; https://doi.org/10.3390/pr13051342 - 27 Apr 2025
Cited by 4 | Viewed by 1121
Abstract
This study explores the efficiency of heterogeneous photocatalysis in wastewater treatment, which is recognized for inducing significant rates of degradation and mineralization of various contaminants, including dyes. The study focuses on the development of an innovative composite via a combination of the sillenite [...] Read more.
This study explores the efficiency of heterogeneous photocatalysis in wastewater treatment, which is recognized for inducing significant rates of degradation and mineralization of various contaminants, including dyes. The study focuses on the development of an innovative composite via a combination of the sillenite type semiconductor Bi12ZnO20 and the halide-type semiconductor AgI. Both semiconductors were synthesized via co-precipitation, and their phases were identified using X-ray diffraction and characterized by scanning electron microscopy, Raman spectroscopy, Brunauer–Emmett–Teller analysis for specific surface area, UV–Visible diffuse reflectance spectroscopy, and the point of zero charge. The evaluation of the photocatalytic activity of the Bi12ZnO20/AgI heterosystem was carried out by monitoring the degradation process of Basic Blue 41 (BB41) under solar irradiation conditions. The results of this study revealed that the Bi12ZnO20/AgI heterosystem achieved the efficient degradation of BB41, with a removal rate of 98% after 150 min of treatment. The mineralization study showed that the TOC value decreased from 19.89 mg L−1 to 6.87 mg L−1, indicating that a significant portion of BB41 was mineralized. Via kinetic research, it was established that the degradation process followed a pseudo-first-order mechanism. Furthermore, recycling tests showed that the synthesized heterostructures maintained good structural stability and acceptable reusability over several cycles. These findings highlight the potential of heterogeneous photocatalysis as a promising approach to addressing environmental challenges associated with azo dyes. Full article
Show Figures

Figure 1

18 pages, 2486 KB  
Article
Recovery of Strategic Metals from Waste Printed Circuit Boards with Deep Eutectic Solvents and Ionic Liquids
by Urszula Domańska, Anna Wiśniewska and Zbigniew Dąbrowski
Processes 2024, 12(3), 530; https://doi.org/10.3390/pr12030530 - 6 Mar 2024
Cited by 7 | Viewed by 5902
Abstract
The recycling of metals from waste printed circuit boards (WPCBs) has been presented as a solid–liquid extraction process using two deep eutectic solvents (DESs) and four ionic liquids (ILs). The extraction and separation of Cu(II), Ag(I), and other metals, such as Al(III), Fe(II), [...] Read more.
The recycling of metals from waste printed circuit boards (WPCBs) has been presented as a solid–liquid extraction process using two deep eutectic solvents (DESs) and four ionic liquids (ILs). The extraction and separation of Cu(II), Ag(I), and other metals, such as Al(III), Fe(II), and Zn(II), from the solid WPCBs (after the physical, mechanical, and thermal pre-treatments) with different solvents are demonstrated. Two popular DESs were used to recover valuable metal ions: (1) choline chloride + malonic acid, 1:1, and (2) choline chloride + ethylene glycol, 1:2. The extraction efficiencies of DES 1 after two extraction and two stripping stages were only 15.7 wt% for Cu(II) and 17.6 wt% for Ag(I). The obtained results were compared with those obtained with four newly synthetized ILs as follows: didecyldimethylammonium propionate ([N10,10,1,1][C2H5COO]), didecylmethylammonium hydrogen sulphate ([N10,10,1,H][HSO4]), didecyldimethylammonium dihydrogen phosphate ([N10,10,1,1][H2PO4]), and tetrabutylphosphonium dihydrogen phosphate ([P4,4,4,4][H2PO4]). Various additives, such as didecyldimethyl ammonium chloride surfactant, DDACl; hydrogen peroxide, H2O2; trichloroisocyanuric acid, TCCA; and glycine or pentapotassium bis(peroxymonosulphate) bis(sulphate), PHM, were used with ILs during the extraction process. The solvent concentration, quantity of additivities, extraction temperature, pH, and solid/liquid, as well as organic/water ratios, and the selectivity and distribution ratios were described for all of the systems. The utilization of DESs and the new ILs with different additives presented in this work can serve as potential alternative extractants. This will help to compare these extractants, additives, extraction efficiency, temperature, and time of extraction with those of others with different formulas and procedures. The metal ion content in aqueous and stripped organic solutions was determined by the ICP-MS or ICP-OES methods. The obtained results all show that solvent extraction can successfully replace traditional hydrometallurgical and pyrometallurgical methods in new technologies for the extraction of metal ions from a secondary electronic waste, WPCBs. Full article
Show Figures

Figure 1

Back to TopTop