Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Berambadi watershed

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 132270 KiB  
Article
Identifying Seasonal Groundwater-Irrigated Cropland Using Multi-Source NDVI Time-Series Images
by Amit Kumar Sharma, Laurence Hubert-Moy, Sriramulu Buvaneshwari, Muddu Sekhar, Laurent Ruiz, Hemanth Moger, Soumya Bandyopadhyay and Samuel Corgne
Remote Sens. 2021, 13(10), 1960; https://doi.org/10.3390/rs13101960 - 18 May 2021
Cited by 10 | Viewed by 4252
Abstract
Groundwater has become a major source of irrigation in the past few decades in India, but as it comes from millions of individual borewells owned by smallholders irrigating small fields, it is difficult to quantify the actual irrigated area across seasons and years. [...] Read more.
Groundwater has become a major source of irrigation in the past few decades in India, but as it comes from millions of individual borewells owned by smallholders irrigating small fields, it is difficult to quantify the actual irrigated area across seasons and years. This study’s main goal was to monitor seasonal irrigated cropland using multiple optical satellite images. The proposed research was performed over the Berambadi watershed, an experimental site in southern peninsular India. While cloud cover during crop growth is the greatest obstacle to optical remote sensing in tropical regions, the cloud-free images from multiple optical satellite platforms (Landsat-8 (OLI), EO1 (ALI), IRS-P6 (LISS3 and LISS4), and Spot5Take5 (HRG2)) were used to fill data gaps during crop growth periods. The seasonal cumulative normalized difference vegetation index (NDVI) was calculated and resampled at 5 m spatial resolution for various cropping seasons. The support vector machine (SVM) classification was applied to seasonal cumulative NDVI images for irrigated cropland area classification. Validation of the classified irrigated cropland was performed by calculating kappa coefficients for three cropping seasons (summer, kharif, and rabi) from 2014–2016 using ground observations. Kappa coefficients ranged from 0.81–0.96 for 2014–2015 and 0.62–0.89 for 2015–2016, except for summer 2016, when it was 1.00. Groundwater irrigation in the watershed ranged from 4.6% to 16.5% of total cropland during these cropping seasons. These results showed that multi-source optical satellite data are relevant for quantifying areas under groundwater irrigation in tropical regions. Full article
(This article belongs to the Special Issue Irrigation Mapping Using Satellite Remote Sensing)
Show Figures

Figure 1

22 pages, 3548 KiB  
Article
Analysis of L-Band SAR Data for Soil Moisture Estimations over Agricultural Areas in the Tropics
by Mehrez Zribi, Sekhar Muddu, Safa Bousbih, Ahmad Al Bitar, Sat Kumar Tomer, Nicolas Baghdadi and Soumya Bandyopadhyay
Remote Sens. 2019, 11(9), 1122; https://doi.org/10.3390/rs11091122 - 11 May 2019
Cited by 68 | Viewed by 9908
Abstract
The main objective of this study is to analyze the potential use of L-band radar data for the estimation of soil moisture over tropical agricultural areas under dense vegetation cover conditions. Ten radar images were acquired using the Phased Array Synthetic Aperture Radar/Advanced [...] Read more.
The main objective of this study is to analyze the potential use of L-band radar data for the estimation of soil moisture over tropical agricultural areas under dense vegetation cover conditions. Ten radar images were acquired using the Phased Array Synthetic Aperture Radar/Advanced Land Observing Satellite (PALSAR/ALOS)-2 sensor over the Berambadi watershed (south India), between June and October of 2018. Simultaneous ground measurements of soil moisture, soil roughness, and leaf area index (LAI) were also recorded. The sensitivity of PALSAR observations to variations in soil moisture has been reported by several authors, and is confirmed in the present study, even for the case of very dense crops. The radar signals are simulated using five different radar backscattering models (physical and semi-empirical), over bare soil, and over areas with various types of crop cover (turmeric, marigold, and sorghum). When the semi-empirical water cloud model (WCM) is parameterized as a function of the LAI, to account for the vegetation’s contribution to the backscattered signal, it can provide relatively accurate estimations of soil moisture in turmeric and marigold fields, but has certain limitations when applied to sorghum fields. Observed limitations highlight the need to expand the analysis beyond the LAI by including additional vegetation parameters in order to take into account volume scattering in the L-band backscattered radar signal for accurate soil moisture estimation. Full article
(This article belongs to the Special Issue Microwave Remote Sensing for Hydrology)
Show Figures

Figure 1

23 pages, 14265 KiB  
Article
Irrigation History Estimation Using Multitemporal Landsat Satellite Images: Application to an Intensive Groundwater Irrigated Agricultural Watershed in India
by Amit Kumar Sharma, Laurance Hubert-Moy, Sriramulu Buvaneshwari, Muddu Sekhar, Laurent Ruiz, Soumya Bandyopadhyay and Samuel Corgne
Remote Sens. 2018, 10(6), 893; https://doi.org/10.3390/rs10060893 - 7 Jun 2018
Cited by 46 | Viewed by 6920
Abstract
Groundwater has rapidly evolved as a primary source for irrigation in Indian agriculture. Over-exploitation of the groundwater substantially depletes the natural water table and has negative impacts on the water resource availability. The overarching goal of the proposed research is to identify the [...] Read more.
Groundwater has rapidly evolved as a primary source for irrigation in Indian agriculture. Over-exploitation of the groundwater substantially depletes the natural water table and has negative impacts on the water resource availability. The overarching goal of the proposed research is to identify the historical evolution of irrigated cropland for the post-monsoon (rabi) and summer cropping seasons in the Berambadi watershed (Area = 89 km2) of Kabini River basin, southern India. Approximately five-year interval irrigated area maps were generated using 30 m spatial resolution Landsat satellite images for the period from 1990 to 2016. The potential of Support Vector Machine (SVM) was assessed to discriminate irrigated and non-irrigated croplands. Three indices, Normalized Difference Vegetation Index (NDVI), Normalized Difference Moisture Index (NDMI) and Enhanced Vegetation Index (EVI), were derived from multi-temporal Landsat satellite images. Spatially distributed intensive ground observations were collected for training and validation of the SVM models. The irrigated and non-irrigated croplands were estimated with high classification accuracy (kappa coefficient greater than 0.9). At the watershed scale, this approach allowed highlighting the contrasted evolution of multiple-cropping (two successive crops in rabi and summer seasons that often imply dual irrigation) with a steady increase in the upstream and a recent decrease in the downstream of the watershed. Moreover, the multiple-cropping was found to be much more frequent in the valleys. These intensive practices were found to have significant impacts on the water resources, with a drastic decline in the water table level (more than 50 m). It also impacted the ecosystem: Groundwater level decline was more pronounced in the valleys and the rivers are no more fed by the base flow. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Graphical abstract

21 pages, 3486 KiB  
Article
Farm Typology in the Berambadi Watershed (India): Farming Systems Are Determined by Farm Size and Access to Groundwater
by Marion Robert, Alban Thomas, Muddu Sekhar, Shrinivas Badiger, Laurent Ruiz, Magali Willaume, Delphine Leenhardt and Jacques-Eric Bergez
Water 2017, 9(1), 51; https://doi.org/10.3390/w9010051 - 13 Jan 2017
Cited by 42 | Viewed by 9324
Abstract
Farmers’ production decisions and agricultural practices directly and indirectly influence the quantity and quality of natural resources, some being depleted common resources such as groundwater. Representing farming systems while accounting for their flexibility is needed to evaluate targeted, regional water management policies. Farmers’ [...] Read more.
Farmers’ production decisions and agricultural practices directly and indirectly influence the quantity and quality of natural resources, some being depleted common resources such as groundwater. Representing farming systems while accounting for their flexibility is needed to evaluate targeted, regional water management policies. Farmers’ decisions regarding investing in irrigation and adopting cropping systems are inherently dynamic and must adapt to changes in climate and agronomic, economic and social, and institutional, conditions. To represent this diversity, we developed a typology of Indian farmers from a survey of 684 farms in Berambadi, an agricultural watershed in southern India (state of Karnataka). The survey provided information on farm structure, the cropping system and farm practices, water management for irrigation, and economic performances of the farm. Descriptive statistics and multivariate analysis (Multiple Correspondence Analysis and Agglomerative Hierarchical Clustering) were used to analyze relationships between observed factors and establish the farm typology. We identified three main types of farms: (1) large diversified and productivist farms; (2) small and marginal rainfed farms, and (3) small irrigated marketing farms. This typology represents the heterogeneity of farms in the Berambadi watershed. Full article
(This article belongs to the Special Issue Adaptation Strategies to Climate Change Impacts on Water Resources)
Show Figures

Figure 1

23 pages, 11163 KiB  
Article
MAPSM: A Spatio-Temporal Algorithm for Merging Soil Moisture from Active and Passive Microwave Remote Sensing
by Sat Kumar Tomer, Ahmad Al Bitar, Muddu Sekhar, Mehrez Zribi, Soumya Bandyopadhyay and Yann Kerr
Remote Sens. 2016, 8(12), 990; https://doi.org/10.3390/rs8120990 - 1 Dec 2016
Cited by 35 | Viewed by 9195
Abstract
Availability of soil moisture observations at a high spatial and temporal resolution is a prerequisite for various hydrological, agricultural and meteorological applications. In the current study, a novel algorithm for merging soil moisture from active microwave (SAR) and passive microwave is presented. The [...] Read more.
Availability of soil moisture observations at a high spatial and temporal resolution is a prerequisite for various hydrological, agricultural and meteorological applications. In the current study, a novel algorithm for merging soil moisture from active microwave (SAR) and passive microwave is presented. The MAPSM algorithm—Merge Active and Passive microwave Soil Moisture—uses a spatio-temporal approach based on the concept of the Water Change Capacity (WCC) which represents the amplitude and direction of change in the soil moisture at the fine spatial resolution. The algorithm is applied and validated during a period of 3 years spanning from 2010 to 2013 over the Berambadi watershed which is located in a semi-arid tropical region in the Karnataka state of south India. Passive microwave products are provided from ESA Level 2 soil moisture products derived from Soil Moisture and Ocean Salinity (SMOS) satellite (3 days temporal resolution and 40 km nominal spatial resolution). Active microwave are based on soil moisture retrievals from 30 images of RADARSAT-2 data (24 days temporal resolution and 20 m spatial resolution). The results show that MAPSM is able to provide a good estimate of soil moisture at a spatial resolution of 500 m with an RMSE of 0.025 m3/m3 and 0.069 m3/m3 when comparing it to soil moisture from RADARSAT-2 and in-situ measurements, respectively. The use of Sentinel-1 and RISAT products in MAPSM algorithm is envisioned over other areas where high number of revisits is available. This will need an update of the algorithm to take into account the angle sampling and resolution of Sentinel-1 and RISAT data. Full article
Show Figures

Graphical abstract

Back to TopTop