Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = BSA permeation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8753 KiB  
Article
Enhanced Protein Separation Performance of Cellulose Acetate Membranes Modified with Covalent Organic Frameworks
by Shurui Shao, Maoyu Liu, Baifu Tao, Kayode Hassan Lasisi, Wenqiao Meng, Xing Wu and Kaisong Zhang
Membranes 2025, 15(3), 84; https://doi.org/10.3390/membranes15030084 - 6 Mar 2025
Viewed by 1395
Abstract
As a porous crystalline material, covalent organic frameworks (COFs) have attracted significant attention due to their extraordinary features, such as an ordered pore structure and excellent stability. Synthesized through the aldehyde amine condensation reaction, TpPa-1 COFs (Triformylphloroglucinol-p-Phenylenediamine-1 COFs) were blended with cellulose acetate [...] Read more.
As a porous crystalline material, covalent organic frameworks (COFs) have attracted significant attention due to their extraordinary features, such as an ordered pore structure and excellent stability. Synthesized through the aldehyde amine condensation reaction, TpPa-1 COFs (Triformylphloroglucinol-p-Phenylenediamine-1 COFs) were blended with cellulose acetate (CA) to form a casting solution. The TpPa-1 COF/CA ultrafiltration membrane was then prepared using the non-solvent-induced phase inversion (NIPS) method. The influence of TpPa-1 COFs content on the hydrophilicity, stability and filtration performance of the modified membrane was studied. Due to the hydrophilic groups in TpPa-1 COFs and the network structure formed by covalent bonds, the modified CA membranes exhibited higher hydrophilicity and lower protein adsorption compared with the pristine CA membrane. The porous crystalline structure of TpPa-1 COFs increased the water permeation path in the CA membrane, improving the permeability of the modified membrane while maintaining an outstanding bovine serum albumin (BSA) rejection. Furthermore, the addition of TpPa-1 COFs reduced protein adsorption on the CA membrane and overcame the trade-off between permeability and selectivity in CA membrane bioseparation applications. This approach provides a sustainable method for enhancing membrane performance while enhancing the application of membranes in protein purification. Full article
(This article belongs to the Special Issue Membrane Separation and Water Treatment: Modeling and Application)
Show Figures

Figure 1

15 pages, 1783 KiB  
Article
Surface-Charge Characterization of Nanocomposite Cellulose Acetate/Silver Membranes and BSA Permeation Performance
by Ana Sofia Figueiredo, María Guadalupe Sánchez-Loredo, Maria Norberta de Pinho and Miguel Minhalma
Membranes 2025, 15(2), 61; https://doi.org/10.3390/membranes15020061 - 11 Feb 2025
Cited by 3 | Viewed by 1293
Abstract
Membrane processes are a reality in a wide range of industrial applications, and efforts to continuously enhance their performance are being pursued. The major drawbacks encountered are related to the minimization of polarization concentration, fouling, and biofouling formation. In this study, silver nanoparticles [...] Read more.
Membrane processes are a reality in a wide range of industrial applications, and efforts to continuously enhance their performance are being pursued. The major drawbacks encountered are related to the minimization of polarization concentration, fouling, and biofouling formation. In this study, silver nanoparticles were added to the casting solutions of cellulose acetate membranes in order to obtain new hybrid membranes that present characteristics inherent to the silver nanoparticles, namely antibacterial behavior that leads to biofouling reduction. A systematic study was developed to assess the effect of ionic strength, membrane polymeric structure, and silver nanoparticle incorporation on the cellulose acetate (CA) membrane surface charge. Surface charge was quantified by streaming potential measurements and it was correlated with BSA permeation performance. CA membranes were prepared by the phase-inversion method using three casting-solution compositions, to obtain membranes with different polymeric structures (CA400-22, CA400-30, CA400-34). The nanocomposite CA/silver membranes (CA/Ag) were prepared through the incorporation of silver nanoparticles (0.1 and 0.4 wt% Ag) in the casting solutions of the membranes. To evaluate the electrolyte concentration effect on the membranes zeta potential and surface charge, two potassium chloride solutions of 1 mM and 5 mM were used, in the pH range between 4 and 9. The results show that the zeta-potential values of CA/Ag membranes were less negative when compared to the silver-free membranes, and almost independent of the silver content and the pH of the solution. The influence of the protein solution pH and the protein charge in the BSA solutions permeation was studied. The pH conditions that led to the lower permeate fluxes were observed at the isoelectric point of BSA, pH = 4.8. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

16 pages, 5210 KiB  
Article
Synthesis of a Free-Standing Ternary WO3/CNT/ZnO–Chitosan Composite Photocatalytic Membrane for the Mitigation of Protein Fouling in Membranes
by Wei Tze Chong, Sze Mun Lam, Yit Thai Ong and Trong-Ming Don
Polymers 2025, 17(4), 437; https://doi.org/10.3390/polym17040437 - 7 Feb 2025
Viewed by 859
Abstract
The application of membrane filtration, particularly micro- and ultra-filtration, in food and pharmaceutical industries often faces the issue of protein fouling. In this study, we aimed to fabricate a free-standing ternary tungsten trioxide/carbon nanotube/zinc oxide (WO3/CNT/ZnO)–chitosan composite photocatalytic membrane via wet [...] Read more.
The application of membrane filtration, particularly micro- and ultra-filtration, in food and pharmaceutical industries often faces the issue of protein fouling. In this study, we aimed to fabricate a free-standing ternary tungsten trioxide/carbon nanotube/zinc oxide (WO3/CNT/ZnO)–chitosan composite photocatalytic membrane via wet processing and infiltration techniques to address the fouling issue. Infiltration with low molecular weight chitosan was found to enhance the mechanical stability of the ternary composite photocatalytic membrane. The ternary composite photocatalytic membrane with a 0.16 g ternary photocatalyst load demonstrated 86% efficiency in the degradation of bovine serum albumin (BSA) under sunlight irradiation for 120 min. A reduction in permeation flux accompanied by an increase in BSA rejection was observed as the loading of the ternary photocatalyst in the ternary composite photocatalytic membrane was increased. This can be associated with the decreased average porosity and mean pore radius. The ternary composite photocatalytic membrane demonstrated reasonably good antifouling behavior with an Rfr of 82% and an Rif of 18%. The antifouling property demonstrated by the ternary composite photocatalytic membrane is important in maintaining the reusability of the membrane. Full article
(This article belongs to the Special Issue Polymeric Membrane Science and Surface Modification Technologies)
Show Figures

Graphical abstract

19 pages, 3248 KiB  
Article
On the Temporal Evolution of Key Hemofilter Parameters—In Vitro Study under Co-Current Flow
by Anastasios J. Karabelas, Alexandra Moschona and Konstantinos Merenidis
Membranes 2024, 14(9), 200; https://doi.org/10.3390/membranes14090200 - 21 Sep 2024
Viewed by 1256
Abstract
Effective permeability KP, the ultrafiltration coefficient (KUF), the sieving coefficient (SC), and the loss/permeation of proteins (primarily albumin) are key parameters/specifications characterizing hemofilter (HF) performance. However, there are uncertainties regarding their determination. This work aims (a) to demonstrate that [...] Read more.
Effective permeability KP, the ultrafiltration coefficient (KUF), the sieving coefficient (SC), and the loss/permeation of proteins (primarily albumin) are key parameters/specifications characterizing hemofilter (HF) performance. However, there are uncertainties regarding their determination. This work aims (a) to demonstrate that the co-current flow (of blood and dialysate) can lead to beneficial unidirectional filtration (from blood/plasma to dialysate) under a fairly uniform local trans-membrane pressure (TMP), unlike the presently employed counter-current flow; (b) to study the temporal evolution of key HF performance parameters under co-current flow, particularly during the important early stage of hemocatharsis (HC). Experiments with human plasma and BSA solutions in co-current flow mode (for which a fluid mechanical model is developed) show a fairly uniform local/axial TMP, which also improves the local/axial uniformity of protein membrane fouling, particularly under (currently favored) high convective flux operation. Due to incipient membrane fouling, a significant temporal variability/decline in the effective KP is observed, and, in turn, of other parameters (i.e., the Kuf, SC, and permeation/mass flux Mm for albumin and total proteins). A satisfactory correlation of the albumin/protein mass flux Mm with permeability KP is obtained, indicating strong inter-dependence. In conclusion, co-current flow, allowing for a fair local TMP axial uniformity, enables the acquisition of accurate/representative data on the evolution of HF parameters, facilitating their interpretation and correlation. The new results provide a basis for exploring the clinical application of the co-current flow. Full article
(This article belongs to the Section Membrane Applications for Other Areas)
Show Figures

Figure 1

6 pages, 1686 KiB  
Proceeding Paper
Activated Carbon, CNTs and GO Based Polymeric Nanocomposites Membranes for Textile Wastewater Treatment: Preparation, Performance, and Fouling Control
by Imran A. Khan and Nasir M. Ahmad
Environ. Sci. Proc. 2023, 25(1), 77; https://doi.org/10.3390/ECWS-7-14307 - 3 Apr 2023
Viewed by 1412
Abstract
Textile wastewater is a challenging area for treatment by membrane separation technology due to its complex structure and the presence of reactive components. Therefore, most of the conventional technologies appear incapable of offering satisfactory treatment for the effluents. This paper studies the application [...] Read more.
Textile wastewater is a challenging area for treatment by membrane separation technology due to its complex structure and the presence of reactive components. Therefore, most of the conventional technologies appear incapable of offering satisfactory treatment for the effluents. This paper studies the application of activated carbon, carbon nanotubes, and graphene oxide base polymeric nanofiltration membranes (NF) in the textile industry, which usually produces large volumes of wastewater containing complex contaminants from its daily operation. Hence, it is accepted that NF membranes offer solutions to the problem. The primary performances of NF membranes have been examined in terms of dye rejection, salt rejection, permeate flux, and COD rejection. Some of the NF membranes achieved maximum separation of dye and salts while some attained higher flux. This is due to the large variability of the parameters of textile wastewater and the NF membranes selected. However, for all these attempts, the general issue of (bio)fouling represents a key barrier to full-scale industrial implementation. The low fouling tendency of NF membranes has lately gained substantial attention since they are an exciting addition to conventional technologies (i.e., adsorption, biological degradation, coagulation, and ultrafiltration). Polymers membrane blended with oxidized activated carbon, carbon nanotubes, and graphene oxide increased hydrophilicity, textile dyes, slat rejection, BSA rejection, antibacterial activity, and water flux enhancement from 60% to 100%. We present some nanocomposite membrane developments and demonstrate how they can be used to reduce textile dyes. In addition, the process of membrane fouling and the various approaches for preventing and controlling fouling are discussed. Full article
(This article belongs to the Proceedings of The 7th International Electronic Conference on Water Sciences)
Show Figures

Figure 1

26 pages, 13260 KiB  
Article
Enhanced Antifouling in Flat-Sheet Polyphenylsulfone Membranes Incorporating Graphene Oxide–Tungsten Oxide for Ultrafiltration Applications
by Raghad M. Al-Maliki, Qusay F. Alsalhy, Sama Al-Jubouri, Adnan A. AbdulRazak, Mohammed Ahmed Shehab, Zoltán Németh, Klara Hernadi and Hasan Sh. Majdi
Membranes 2023, 13(3), 269; https://doi.org/10.3390/membranes13030269 - 24 Feb 2023
Cited by 21 | Viewed by 2666
Abstract
In this study tungsten oxide and graphene oxide (GO-WO2.89) were successfully combined using the ultra-sonication method and embedded with polyphenylsulfone (PPSU) to prepare novel low-fouling membranes for ultrafiltration applications. The properties of the modified membranes and performance were investigated using Fourier-transform [...] Read more.
In this study tungsten oxide and graphene oxide (GO-WO2.89) were successfully combined using the ultra-sonication method and embedded with polyphenylsulfone (PPSU) to prepare novel low-fouling membranes for ultrafiltration applications. The properties of the modified membranes and performance were investigated using Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), contact angle (CA), water permeation flux, and bovine serum albumin (BSA) rejection. It was found that the modified PPSU membrane fabricated from 0.1 wt.% of GO-WO2.89 possessed the best characteristics, with a 40.82° contact angle and 92.94% porosity. The permeation flux of the best membrane was the highest. The pure water permeation flux of the best membrane showcased 636.01 L·m−2·h−1 with 82.86% BSA rejection. Moreover, the membranes (MR-2 and MR-P2) manifested a higher flux recovery ratio (FRR %) of 92.66 and 87.06%, respectively, and were less prone to BSA solution fouling. The antibacterial performance of the GO-WO2.89 composite was very positive with three different concentrations, observed via the bacteria count method. These results significantly overtake those observed by neat PPSU membranes and offer a promising potential of GO-WO2.89 on activity membrane performance. Full article
(This article belongs to the Special Issue Separation Principles and Applications of Membrane Technology)
Show Figures

Figure 1

14 pages, 4522 KiB  
Article
Tailoring Morphology and Properties of Tight Utrafiltration Membranes by Two-Dimensional Molybdenum Disulfide for Performance Improvement
by Huali Tian, Xing Wu and Kaisong Zhang
Membranes 2022, 12(11), 1071; https://doi.org/10.3390/membranes12111071 - 29 Oct 2022
Cited by 7 | Viewed by 2106
Abstract
To enhance the permeation and separation performance of the polyethersulfone (PES) tight ultrafiltration (TUF) membrane, two-dimensional molybdenum disulfide (MoS2) was applied as a modifier in low concentrations. The influence of different concentrations of MoS2 (0, 0.25, 0.50, 1.00, and 1.50 [...] Read more.
To enhance the permeation and separation performance of the polyethersulfone (PES) tight ultrafiltration (TUF) membrane, two-dimensional molybdenum disulfide (MoS2) was applied as a modifier in low concentrations. The influence of different concentrations of MoS2 (0, 0.25, 0.50, 1.00, and 1.50 wt%) on TUF membranes was investigated in terms of morphology, mechanical strength properties, permeation, and separation. The results indicate that the blending of MoS2 tailored the microstructure of the membrane and enhanced the mechanical strength property. Moreover, by embedding an appropriate amount of MoS2 into the membrane, the PES/MoS2 membranes showed improvement in permeation and without the sacrifice of the rejection of bovine serum protein (BSA) and humic acid (HA). Compared with the pristine membrane, the modified membrane embedded with 0.5 wt% MoS2 showed a 36.08% increase in the pure water flux, and >99.6% rejections of BSA and HA. This study reveals that two-dimensional MoS2 can be used as an effective additive to improve the performance and properties of TUF membranes for water treatment. Full article
(This article belongs to the Special Issue UF/NF/RO Membranes for Wastewater Treatment and Reuse)
Show Figures

Figure 1

27 pages, 6372 KiB  
Article
Nanoformulation of Seaweed Eisenia bicyclis in Albumin Nanoparticles Targeting Cardiovascular Diseases: In Vitro and In Vivo Evaluation
by Sofia Pinto, Maria Manuela Gaspar, Lia Ascensão, Pedro Faísca, Catarina Pinto Reis and Rita Pacheco
Mar. Drugs 2022, 20(10), 608; https://doi.org/10.3390/md20100608 - 27 Sep 2022
Cited by 6 | Viewed by 3626
Abstract
Natural products, especially those derived from seaweeds, are starting to be seen as effective against various diseases, such as cardiovascular diseases (CVDs). This study aimed to design a novel oral formulation of bovine albumin serum nanoparticles (BSA NPs) loaded with an extract of [...] Read more.
Natural products, especially those derived from seaweeds, are starting to be seen as effective against various diseases, such as cardiovascular diseases (CVDs). This study aimed to design a novel oral formulation of bovine albumin serum nanoparticles (BSA NPs) loaded with an extract of Eisenia bicyclis and to validate its beneficial health effects, particularly targeting hypercholesterolemia and CVD prevention. Small and well-defined BSA NPs loaded with Eisenia bicyclis extract were successfully prepared exhibiting high encapsulation efficiency. Antioxidant activity and cholesterol biosynthesis enzyme 3-hydroxy-3 methylutaryl coenzyme A reductase (HMGR) inhibition, as well as reduction of cholesterol permeation in intestinal lining model cells, were assessed for the extract both in free and nanoformulated forms. The nanoformulation was more efficient than the free extract, particularly in terms of HMGR inhibition and cholesterol permeation reduction. In vitro cytotoxicity and in vivo assays in Wistar rats were performed to evaluate its safety and overall effects on metabolism. The results demonstrated that the Eisenia bicyclis extract and BSA NPs were not cytotoxic against human intestinal Caco-2 and liver HepG2 cells and were also safe after oral administration in the rat model. In addition, an innovative approach was adopted to compare the metabolomic profile of the serum from the animals involved in the in vivo assay, which showed the extract and nanoformulation’s impact on CVD-associated key metabolites. Altogether, these preliminary results revealed that the seaweed extract and the nanoformulation may constitute an alternative natural dosage form which is safe and simple to produce, capable of reducing cholesterol levels, and consequently helpful in preventing hypercholesterolemia, the main risk factor of CVDs. Full article
(This article belongs to the Special Issue The Mechanisms of Action of Bioactive Marine Natural Products)
Show Figures

Figure 1

21 pages, 4265 KiB  
Article
Modification of Polyethersulfone Ultrafiltration Membrane Using Poly(terephthalic acid-co-glycerol-g-maleic anhydride) as Novel Pore Former
by Ali A. Abbas Aljanabi, Noor Edin Mousa, Mustafa M. Aljumaily, Hasan Sh. Majdi, Ali Amer Yahya, Mohammad N. AL-Baiati, Noor Hashim, Khaild T. Rashid, Saad Al-Saadi and Qusay F. Alsalhy
Polymers 2022, 14(16), 3408; https://doi.org/10.3390/polym14163408 - 20 Aug 2022
Cited by 22 | Viewed by 3755
Abstract
In this research, poly terephthalic acid-co-glycerol-g-maleic anhydride (PTGM) graft co-polymer was used as novel water-soluble pore formers for polyethersulfone (PES) membrane modification. The modified PES membranes were characterized to monitor the effect of PTGM content on their pure water flux, hydrophilicity, porosity, morphological [...] Read more.
In this research, poly terephthalic acid-co-glycerol-g-maleic anhydride (PTGM) graft co-polymer was used as novel water-soluble pore formers for polyethersulfone (PES) membrane modification. The modified PES membranes were characterized to monitor the effect of PTGM content on their pure water flux, hydrophilicity, porosity, morphological structure, composition, and performance. PTGM and PES/PTGM membranes were characterized by field emission scanning electron microscopy (FESEM), Fourier-transform infrared spectroscopy (FTIR), and contact angle (CA). The results revealed that the porosity and hydrophilicity of the fabricated membrane formed using a 5 wt.% PTGM ratio exhibited an enhancement of 20% and 18%, respectively. Similarly, upon raising the PTGM ratio in the casting solution, a more porous with longer finger-like structure was observed. However, at optimum PTGM content (i.e., 5%), apparent enhancements in the water flux, bovine serum albumin (BSA), and sodium alginate (SA) retention were noticed by values of 203 L/m2.h (LMH), 94, and 96%, respectively. These results illustrated that the observed separation and permeation trend of the PES/PTGM membrane may be a suitable option for applications of wastewater treatment. The experimental results suggest the promising potential of PTGM as a pore former on the membrane properties and performance. Full article
(This article belongs to the Special Issue Functional Membranes: From Synthesis To Applications)
Show Figures

Graphical abstract

19 pages, 4478 KiB  
Article
Novel Water-Soluble Poly(terephthalic-co-glycerol-g-fumaric acid) Copolymer Nanoparticles Harnessed as Pore Formers for Polyethersulfone Membrane Modification: Permeability–Selectivity Tradeoff Manipulation
by Khalid T. Rashid, Haiyam M. Alayan, Alyaa E. Mahdi, Mohammad N. AL-Baiati, Hasan Sh. Majdi, Issam K. Salih, Jamal M. Ali and Qusay F. Alsalhy
Water 2022, 14(9), 1507; https://doi.org/10.3390/w14091507 - 8 May 2022
Cited by 18 | Viewed by 4291
Abstract
This work presents poly(terephthalic-co-glycerol-g-fumaric acid) (TGF) as a novel water-soluble polymeric nano-additive for the modification of a polyethersulfone ultrafiltration membrane. The TGF was harnessed as a pore former, aiming to improve the membrane surface porosity and hydrophilicity. Modified membranes [...] Read more.
This work presents poly(terephthalic-co-glycerol-g-fumaric acid) (TGF) as a novel water-soluble polymeric nano-additive for the modification of a polyethersulfone ultrafiltration membrane. The TGF was harnessed as a pore former, aiming to improve the membrane surface porosity and hydrophilicity. Modified membranes were characterized to observe the influence of varying the TGF content on their hydrophilicity, porosity, morphological structure, and composition, as well as their entire performance. The results disclosed that porosity and hydrophilicity of the modified membrane prepared using 4 wt.% TGF content recorded an enhancement by 24% and 38%, respectively. Herein, the lower contact angle was mainly a reflection of the improved porosity, but not of the hydrophilic nature of water-soluble TGF. Furthermore, upon increasing the TGF content in the polymeric matrix, a more porous structure with longer finger-like micropores was formed. Moreover, a sponge-like layer clearly appeared near the bottom surface. Nevertheless, at optimum TGF content (4%), a clear enhancement in the water flux and BSA retention was witnessed by values of 298 LMH and 97%, respectively. These results demonstrate that the obtained permeation and separation behavior of the PES/TGF membrane could stand as a promising choice for water and wastewater treatment applications. Full article
(This article belongs to the Special Issue Membrane Technology for Water Treatment and Desalination)
Show Figures

Figure 1

21 pages, 5649 KiB  
Article
Graphene Oxide Modified Polyamide 66 Ultrafiltration Membranes with Enhanced Anti-Fouling Performance
by Jiangyi Yan, Lihong Nie, Guiliang Li, Yuanlu Zhu, Ming Gao, Ruili Wu and Beifu Wang
Membranes 2022, 12(5), 458; https://doi.org/10.3390/membranes12050458 - 24 Apr 2022
Cited by 10 | Viewed by 3523
Abstract
Improving the contamination resistance of membranes is one of the most effective ways to address the short service life of membranes. While preparing the membrane system structure, doping nanoparticles into the polymer matrix is beneficial to the preparation of high-performance membranes. To develop [...] Read more.
Improving the contamination resistance of membranes is one of the most effective ways to address the short service life of membranes. While preparing the membrane system structure, doping nanoparticles into the polymer matrix is beneficial to the preparation of high-performance membranes. To develop a new structure for membrane contamination protection, in this study, a novel asymmetric polyamide 66 composite ultrafiltration (UF) membrane was fabricated by incorporating different masses (ranging from zero to 0.5 wt.%) of graphene oxide (GO) into the polyamide 66 microporous substrate, using formic acid and propylene carbonate as solvents. The effects of GO doping on the morphology, microporous structure and surface of ultrafiltration membranes were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM), integrated thermal analysis (DSC) and contact angle (CA). In addition, pure water flux, bovine serum albumin (BSA) rejection and contamination resistance were measured to evaluate the filtration performance of different membranes. The overall performance of all the modified membranes was improved compared to pure membranes. The results of contact angle and permeation experiments showed that the addition of GO improved the hydrophilicity of the membrane, but reduced the permeability of the membrane. The minimum flux was only 3.5 L/m2·h, but the rejection rate was 92.5%. Most noteworthy was the fact that GO further enhanced the anti-pollution performance of the membranes and achieved a remarkable performance of 91.32% when the GO content was 0.5 wt.%, which was 1.36 times higher than that of the pure membrane. Therefore, optimal performance was achieved. Furthermore, the UF membrane made of composite substrate offers a promising solution for the development of long-life ultrafiltration membranes with better stability, high-cost efficiency and adequate chemical durability. Full article
(This article belongs to the Special Issue Porous Polymers and Polymeric Membranes)
Show Figures

Figure 1

23 pages, 9760 KiB  
Article
Development of Novel Membranes Based on Polyvinyl Alcohol Modified by Pluronic F127 for Pervaporation Dehydration of Isopropanol
by Mariia Dmitrenko, Ramadan Atta, Andrey Zolotarev, Anna Kuzminova, Sergey Ermakov and Anastasia Penkova
Sustainability 2022, 14(6), 3561; https://doi.org/10.3390/su14063561 - 17 Mar 2022
Cited by 25 | Viewed by 4126
Abstract
Membrane methods are environmentally friendly and can significantly improve the design and development of new energy consumption processes that are very important nowadays. However, their effective use requires advanced membrane materials. This study aims to improve the performance of pervaporation polyvinyl alcohol (PVA)-based [...] Read more.
Membrane methods are environmentally friendly and can significantly improve the design and development of new energy consumption processes that are very important nowadays. However, their effective use requires advanced membrane materials. This study aims to improve the performance of pervaporation polyvinyl alcohol (PVA)-based membrane for isopropanol dehydration. To achieve this goal, two methods were applied: (1) bulk modification of PVA by Pluronic F127 and (2) development of supported PVA-based membrane using polyphenylene isophthalamide (PA) as a substrate with a various porosity. Developed membranes were characterized by Fourier-transform infrared spectroscopy, scanning electron microscopy (SEM), contact angle measurement, and swelling experiments. The concentration influence of PA casting solution (12–20 wt.%) on the performance of porous PA membranes (substrates) was investigated in ultrafiltration of pure water and bovine serum albumin (BSA) solution as well as by microscopic methods (SEM and atomic force microscopy). The developed dense and supported PVA-based membranes were tested in the pervaporation dehydration of isopropanol. Optimal transport characteristics were obtained for a supported membrane with a PVA-based selective layer containing 3 wt.% Pluronic F127 onto an ultrafiltration PA (17 wt.%) substrate: improved permeation flux 0.100–1.164 kg/(m2 h) and 98.8–84.6 wt.% water content in the permeate in pervaporation dehydration of isopropanol (12–80 wt.% water). Full article
Show Figures

Graphical abstract

15 pages, 3039 KiB  
Article
Zwitterionic Polysulfone Copolymer/Polysulfone Blended Ultrafiltration Membranes with Excellent Thermostability and Antifouling Properties
by Dalong Li, Changlu Gao, Xinyue Wang, Gang Wu, Jinghua Yin, Yudong Huang and Xiuhua Sun
Membranes 2021, 11(12), 932; https://doi.org/10.3390/membranes11120932 - 26 Nov 2021
Cited by 7 | Viewed by 2841
Abstract
Membrane fouling has been one of the most important challenges in membrane separation operations. In this study, we report a facile strategy to prepare antifouling polysulfone (PSf) UF membranes by blending amphiphilic zwitterion polysulfone-co-sulfobetaine polysulfone (PSf-co-SBPSf) copolymer. The copolymer chemical structure was characterized [...] Read more.
Membrane fouling has been one of the most important challenges in membrane separation operations. In this study, we report a facile strategy to prepare antifouling polysulfone (PSf) UF membranes by blending amphiphilic zwitterion polysulfone-co-sulfobetaine polysulfone (PSf-co-SBPSf) copolymer. The copolymer chemical structure was characterized by 1HNMR spectroscopy. The PSf/PSf-co-SBPSf blend membranes with various zwitterionic SBPSf segment contents exhibited better surface hydrophilicity and excellent antifouling ability compared to PSf and PSf/PEG membranes. The significant increase of both porosity and water permeance indicates that the PSf-co-SBPSf has a pore-forming effect. The pure water flux and flux recovery ratio of the PSf/PSf-co-SBPSf blend membranes were both remarked to improve 286.43 L/m2h and 92.26%, while bovine serum albumin (BSA) rejection remained at a high level (97.66%). More importantly, the water flux and BSA rejection see minimal variance after heat treatment, indicating excellent thermostability. Overall, the PSf/PSf-co-SBPSf blend membranes achieved a comprehensive performance of sustainable hydrophilic, high permeation flux, and remarkable antifouling ability, thus becoming a promising candidate in high-temperature separation application. Full article
(This article belongs to the Special Issue Membrane Fouling Control in Water Treatment)
Show Figures

Figure 1

12 pages, 2876 KiB  
Article
How Poloxamer Addition in Hyaluronic-Acid-Decorated Biodegradable Microparticles Affects Polymer Degradation and Protein Release Kinetics
by Teresa Silvestri, Barbara Immirzi, Giovanni Dal Poggetto, Paola Di Donato, Valentina Mollo, Laura Mayol and Marco Biondi
Appl. Sci. 2021, 11(16), 7567; https://doi.org/10.3390/app11167567 - 18 Aug 2021
Cited by 2 | Viewed by 2051
Abstract
Polymeric microparticles (MPs) designed for the intravitreal administration of therapeutic proteins result in a prolonged half-life in the vitreous and can delay or discourage the onset of adverse effects inevitably related to this route of administration. Hence, here we designed MPs composed of [...] Read more.
Polymeric microparticles (MPs) designed for the intravitreal administration of therapeutic proteins result in a prolonged half-life in the vitreous and can delay or discourage the onset of adverse effects inevitably related to this route of administration. Hence, here we designed MPs composed of a polymeric blend based on poly(lactic-co-glycolic) acid and poloxamers, externally decorated with hyaluronic acid. The MPs are intended for intravitreal administration of bovine serum albumin. In detail, a systematic formulative study aiming to shed light on the complex relationship between protein release rate and MP degradation rate was carried out by means of calorimetric and gel permeation chromatography analyses. We found out that poloxamer addition caused a compact MP matrix, which led to a slight modification of the degradation kinetics and a reduction in the initial BSA initial release, which is of the utmost importance to ensure a relatively regular BSA release. It must also be underlined that for acid-labile molecules such as proteins, the poloxamer’s presence induced complex and hardly predictable effects on MP degradation/protein release, due to the dynamic balance between the time-evolving hydrophilicity of MPs and the influence of poloxamers themselves on the PLGA degradation rate. Full article
(This article belongs to the Special Issue Advances in Biodegradable Micro- and Nanoparticles)
Show Figures

Figure 1

13 pages, 2404 KiB  
Article
Selective Adsorption and Separation of Proteins by Ligand-Modified Nanofiber Fabric
by Song Liu and Yasuhito Mukai
Polymers 2021, 13(14), 2313; https://doi.org/10.3390/polym13142313 - 14 Jul 2021
Cited by 11 | Viewed by 2775
Abstract
Electrospun polyvinyl alcohol (PVA) nanofiber fabric was modified by Cibacron Blue F3GA (CB) to enhance the affinity of the fabric. Batch experiments were performed to study the nanofiber fabric’s bovine hemoglobin (BHb) adsorption capacity at different protein concentrations before and after modification. The [...] Read more.
Electrospun polyvinyl alcohol (PVA) nanofiber fabric was modified by Cibacron Blue F3GA (CB) to enhance the affinity of the fabric. Batch experiments were performed to study the nanofiber fabric’s bovine hemoglobin (BHb) adsorption capacity at different protein concentrations before and after modification. The maximum BHb adsorption capacity of the modified nanofiber fabric was 686 mg/g, which was much larger than the 58 mg/g of the original fabric. After that, the effect of feed concentration and permeation rate on the dynamic adsorption behaviors for BHb of the nanofiber fabric was investigated. The pH impact on BHb and bovine serum albumin (BSA) adsorption was examined by static adsorption experiments of single protein solutions. The selective separation experiments of the BHb–BSA binary solution were carried out at the optimal pH value, and a high selectivity factor of 5.45 for BHb was achieved. Finally, the reusability of the nanofiber fabric was examined using three adsorption–elution cycle tests. This research demonstrated the potential of the CB-modified PVA nanofiber fabric in protein adsorption and selective separation. Full article
(This article belongs to the Special Issue Electrospun Composite Nanofibers for Functional Applications)
Show Figures

Graphical abstract

Back to TopTop