Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = BCRP inhibitor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 5545 KiB  
Article
Elacridar Inhibits BCRP Protein Activity in 2D and 3D Cell Culture Models of Ovarian Cancer and Re-Sensitizes Cells to Cytotoxic Drugs
by Piotr Stasiak, Justyna Sopel, Artur Płóciennik, Oliwia Musielak, Julia Maria Lipowicz, Agnieszka Anna Rawłuszko-Wieczorek, Karolina Sterzyńska, Jan Korbecki and Radosław Januchowski
Int. J. Mol. Sci. 2025, 26(12), 5800; https://doi.org/10.3390/ijms26125800 - 17 Jun 2025
Viewed by 2325
Abstract
Chemotherapy resistance is a major obstacle in the treatment of ovarian cancer, often resulting in disease recurrence and poor prognosis for patients. A key contributor to this resistance is the overexpression of ATP-binding cassette (ABC) transporters, including breast cancer resistance protein (BCRP/ABCG2), which [...] Read more.
Chemotherapy resistance is a major obstacle in the treatment of ovarian cancer, often resulting in disease recurrence and poor prognosis for patients. A key contributor to this resistance is the overexpression of ATP-binding cassette (ABC) transporters, including breast cancer resistance protein (BCRP/ABCG2), which actively effluxes chemotherapeutic agents such as topotecan (TOP) or mitoxantrone (MIT), limiting their intracellular accumulation and efficacy. This study investigated the potential of elacridar (GG918), a potent dual P-gp and BCRP inhibitor, to overcome drug resistance in ovarian cancer cell lines. Both TOP-sensitive and TOP-resistant ovarian cancer cells were grown in two-dimensional (2D) monolayers and three-dimensional (3D) spheroid models to better mimic the tumor microenvironment. The expression of the ABCG2 gene was quantified via qPCR and BCRP protein levels were assessed by western blotting and immunofluorescence. Drug response was evaluated using MTT viability assays, while BCRP transporter activity was examined using flow cytometry and microscopic assessment of the intracellular retention of BCRP fluorescent substrates (Hoechst 33342 and MIT). In both 2D and 3D cultures, elacridar effectively inhibited BCRP function and significantly enhanced sensitivity to TOP. These findings suggest that elacridar can inhibit BCRP-mediated drug resistance in ovarian cancer cell models. Full article
(This article belongs to the Special Issue New Insights into Chemotherapeutic Agents in Cancer Treatment)
Show Figures

Figure 1

13 pages, 2870 KiB  
Article
Modulation of the Main Resistance-Associated ABC Transporter’s Expression by Plant Flavonol Isorhamnetin
by Milena Milutinović, Filip Ristanović, Nikola Radenković, Danijela Cvetković, Sandra Radenković, Milan Stanković and Danijela Nikodijević
Pharmaceuticals 2025, 18(4), 494; https://doi.org/10.3390/ph18040494 - 28 Mar 2025
Cited by 1 | Viewed by 662
Abstract
Background/Objectives: Multidrug resistance is one the leading problems in cancer treatment, where the overexpression of P-gp and other drug efflux pumps is regarded as the primary cause. With the intention to develop transporter inhibitors, natural products such as phenolics have shown great [...] Read more.
Background/Objectives: Multidrug resistance is one the leading problems in cancer treatment, where the overexpression of P-gp and other drug efflux pumps is regarded as the primary cause. With the intention to develop transporter inhibitors, natural products such as phenolics have shown great potential and diverse attention recently. Among these, isorhamnetin (ISO), an O-methylated flavonol, is predominantly found in the fruits and leaves of various plants. Thus, this study aimed to investigate the effects of ISO on the mRNA expression of membrane transporters P-gp, BCRP, MRP 1, 2, and 5, the protein expression of P-gp, as well as the GSTP1 and GSH content in DLD1 and HCT-116 colon cancer cells. Methods: The cytotoxic effect of isorhamnetin is assessed using an MTT test, while qPCR and immunocytochemistry methods were used to determine gene and protein expression levels. The concentration of reduced glutathione was determined using the colorimetric method. Results: Based on the results, ISO can modulate the expression of transporters responsible for the resistance development (all transporters on the transcriptional level were downregulated in DLD1 cells, while only MRP1 on HCT-116 cells, and reduced P-gp protein expression on both investigated cell lines). Increased glutathione content in treated cells and GSTP1 expression suggest metabolizing the ISO and potential ejection with GSH-dependent pumps. Conclusions: Thus, in future experiments, ISO as a natural medicinal compound could be used as a chemosensitizer to prevent or overcome membrane transporter-mediated drug resistance. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

15 pages, 3920 KiB  
Article
Ferroptosis Inducers Erastin and RSL3 Enhance Adriamycin and Topotecan Sensitivity in ABCB1/ABCG2-Expressing Tumor Cells
by Lalith Perera, Shalyn M. Brown, Brian B. Silver, Erik J. Tokar and Birandra K. Sinha
Int. J. Mol. Sci. 2025, 26(2), 635; https://doi.org/10.3390/ijms26020635 - 14 Jan 2025
Cited by 1 | Viewed by 1898
Abstract
Acquired resistance to chemotherapeutic drugs is the primary cause of treatment failure in the clinic. While multiple factors contribute to this resistance, increased expression of ABC transporters—such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance proteins—play significant roles in the [...] Read more.
Acquired resistance to chemotherapeutic drugs is the primary cause of treatment failure in the clinic. While multiple factors contribute to this resistance, increased expression of ABC transporters—such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance proteins—play significant roles in the development of resistance to various chemotherapeutics. We found that Erastin, a ferroptosis inducer, was significantly cytotoxic to NCI/ADR-RES, a P-gp-expressing human ovarian cancer cell line. Here, we examined the effects of both Erastin and RSL3 (Ras-Selected Ligand 3) on reversing Adriamycin resistance in these cell lines. Our results show that Erastin significantly enhanced Adriamycin uptake in NCI/ADR-RES cells without affecting sensitive cells. Furthermore, we observed that Erastin enhanced Adriamycin cytotoxicity in a time-dependent manner. The selective iNOS inhibitor, 1400W, reduced both uptake and cytotoxicity of Adriamycin in P-gp-expressing NCI/ADR-RES cells only. These findings were also confirmed in a BCRP-expressing human breast cancer cell line (MCF-7/MXR), which was selected for resistance to Mitoxantrone. Both Erastin and RSL3 were found to be cytotoxic to MCF-7/MXR cells. Erastin significantly enhanced the uptake of Hoechst dye, a well-characterized BCRP substrate, sensitizing MCF-7/MXR cells to Topotecan. The effect of Erastin was inhibited by 1400W, indicating that iNOS is involved in Erastin-mediated enhancement of Topotecan cytotoxicity. RSL3 also significantly increased Topotecan cytotoxicity. Our findings—demonstrating increased cytotoxicity of Adriamycin and Topotecan in P-gp- and BCRP-expressing cells—suggest that ferroptosis inducers may be highly valuable in combination with other chemotherapeutics to manage patients’ cancer burden in the clinical setting. Full article
Show Figures

Figure 1

19 pages, 1992 KiB  
Article
Pharmacokinetic Interaction Between Olaparib and Regorafenib in an Animal Model
by Danuta Szkutnik-Fiedler, Agnieszka Karbownik, Filip Otto, Julia Maciejewska, Alicja Kuźnik, Tomasz Grabowski, Anna Wolc, Edmund Grześkowiak, Joanna Stanisławiak-Rudowicz and Edyta Szałek
Pharmaceutics 2024, 16(12), 1575; https://doi.org/10.3390/pharmaceutics16121575 - 9 Dec 2024
Viewed by 1401
Abstract
Background: Olaparib (OLA) and regorafenib (REG) are metabolized by the CYP3A4 isoenzyme of cytochrome P450. Both drugs are also substrates and inhibitors of the membrane transporters P-glycoprotein and BCRP. Therefore, the potential concomitant use of OLA and REG may result in clinically relevant [...] Read more.
Background: Olaparib (OLA) and regorafenib (REG) are metabolized by the CYP3A4 isoenzyme of cytochrome P450. Both drugs are also substrates and inhibitors of the membrane transporters P-glycoprotein and BCRP. Therefore, the potential concomitant use of OLA and REG may result in clinically relevant drug–drug interactions. Knowledge of the influence of membrane transporters and cytochrome P450 enzymes on the pharmacokinetics of drugs makes it possible to assess their impact on the efficacy and safety of therapy. Purpose: The study aimed to evaluate the bilateral pharmacokinetic interactions of OLA and REG and its active metabolites after a single administration in healthy rats. Methods: The study was performed in male Wistar rats (n = 24) randomly divided into three groups: one study group, IREG+OLA (n = 8), received REG with OLA, and two control groups, IIREG (n = 8) and IIIOLA (n = 8), received REG and OLA, respectively. The concentrations of OLA, REG, REG-N-oxide (M-2), and N-desmethyl-REG-N-oxide (M-5) were determined by ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS). The values of the pharmacokinetic parameters of OLA, REG, M-2, and M-5 were determined by non-compartmental analysis with linear interpolation. Results: After OLA administration, the pharmacokinetic parameters of REG (AUC0–∞, tmax, and t0.5) increased significantly by 3.38-, 2.66-, and 1.82-fold, respectively. On the other hand, REG elimination parameters, i.e., kel and Cl/F, were significantly reduced in the study group by 1.77- and 1.70-fold, respectively. In the study group, Cmax and AUC0–t values were also 7.22- and 8.86-fold higher for M-2 and 16.32- and 17.83-fold higher for M-5, respectively. The Metabolite M-2/Parent and Metabolite M-5/Parent ratios for Cmax and AUC0–t increased by 6.52-, 10.74-, 28-, and 13-fold, respectively. After administration of OLA with REG, the Cmax, AUC0–t, and AUC0–∞ of OLA increased by 2.0-, 3.4-, and 3.4-fold, respectively, compared to the control group. Meanwhile, Cl/F and Vd/F of OLA were significantly decreased in the presence of REG. Conclusions: OLA was shown to significantly affect the pharmacokinetics of REG and its active metabolites M-2 and M-5 in rats after co-administration of both drugs. There was also a significant effect of REG on the pharmacokinetics of OLA, which may have clinical relevance. The AUC ratios (study group/control group) were 3.41 and 3.39 for REG and OLA, respectively, indicating that REG and OLA were moderate inhibitors in this preclinical study. The results obtained need to be confirmed in clinical studies. This study may provide guidance on the safety of using both drugs in clinical practice. Full article
Show Figures

Figure 1

16 pages, 4980 KiB  
Communication
Short Communication: Novel Di- and Triselenoesters as Effective Therapeutic Agents Inhibiting Multidrug Resistance Proteins in Breast Cancer Cells
by Dominika Radomska, Robert Czarnomysy, Krzysztof Marciniec, Justyna Nowakowska, Enrique Domínguez-Álvarez and Krzysztof Bielawski
Int. J. Mol. Sci. 2024, 25(17), 9732; https://doi.org/10.3390/ijms25179732 - 8 Sep 2024
Cited by 3 | Viewed by 1985
Abstract
Breast cancer has the highest incidence rate among all malignancies worldwide. Its high mortality is mainly related to the occurrence of multidrug resistance, which significantly limits therapeutic options. In this regard, there is an urgent need to develop compounds that would overcome this [...] Read more.
Breast cancer has the highest incidence rate among all malignancies worldwide. Its high mortality is mainly related to the occurrence of multidrug resistance, which significantly limits therapeutic options. In this regard, there is an urgent need to develop compounds that would overcome this phenomenon. There are few reports in the literature that selenium compounds can modulate the activity of P-glycoprotein (MDR1). Therefore, we performed in silico studies and evaluated the effects of the novel selenoesters EDAG-1 and EDAG-8 on BCRP, MDR1, and MRP1 resistance proteins in MCF-7 and MDA-MB-231 breast cancer cells. The cytometric analysis showed that the tested compounds (especially EDAG-8) are inhibitors of BCRP, MDR1, and MRP1 efflux pumps (more potent than the reference compounds—novobiocin, verapamil, and MK-571). An in silico study correlates with these results, suggesting that the compound with the lowest binding energy to these transporters (EDAG-8) has a more favorable spatial structure affecting its anticancer activity, making it a promising candidate in the development of a novel anticancer agent for future breast cancer therapy. Full article
Show Figures

Graphical abstract

21 pages, 3283 KiB  
Article
Applicability of MDR1 Overexpressing Abcb1KO-MDCKII Cell Lines for Investigating In Vitro Species Differences and Brain Penetration Prediction
by Emőke Sóskuti, Nóra Szilvásy, Csilla Temesszentandrási-Ambrus, Zoltán Urbán, Olivér Csíkvári, Zoltán Szabó, Gábor Kecskeméti, Éva Pusztai and Zsuzsanna Gáborik
Pharmaceutics 2024, 16(6), 736; https://doi.org/10.3390/pharmaceutics16060736 - 29 May 2024
Cited by 2 | Viewed by 2000
Abstract
Implementing the 3R initiative to reduce animal experiments in brain penetration prediction for CNS-targeting drugs requires more predictive in vitro and in silico models. However, animal studies are still indispensable to obtaining brain concentration and determining the prediction performance of in vitro models. [...] Read more.
Implementing the 3R initiative to reduce animal experiments in brain penetration prediction for CNS-targeting drugs requires more predictive in vitro and in silico models. However, animal studies are still indispensable to obtaining brain concentration and determining the prediction performance of in vitro models. To reveal species differences and provide reliable data for IVIVE, in vitro models are required. Systems overexpressing MDR1 and BCRP are widely used to predict BBB penetration, highlighting the impact of the in vitro system on predictive performance. In this study, endogenous Abcb1 knock-out MDCKII cells overexpressing MDR1 of human, mouse, rat or cynomolgus monkey origin were used. Good correlations between ERs of 83 drugs determined in each cell line suggest limited species specificities. All cell lines differentiated CNS-penetrating compounds based on ERs with high efficiency and sensitivity. The correlation between in vivo and predicted Kp,uu,brain was the highest using total ER of human MDR1 and BCRP and optimized scaling factors. MDR1 interactors were tested on all MDR1 orthologs using digoxin and quinidine as substrates. We found several examples of inhibition dependent on either substrate or transporter abundance. In summary, this assay system has the potential for early-stage brain penetration screening. IC50 comparison between orthologs is complex; correlation with transporter abundance data is not necessarily proportional and requires the understanding of modes of transporter inhibition. Full article
Show Figures

Figure 1

21 pages, 5620 KiB  
Article
Study on the Effect of Pharmaceutical Excipient PEG400 on the Pharmacokinetics of Baicalin in Cells Based on MRP2, MRP3, and BCRP Efflux Transporters
by Dan Yang, Min Zhang, Mei Zhao, Chaoji Li, Leyuan Shang, Shuo Zhang, Pengjiao Wang and Xiuli Gao
Pharmaceutics 2024, 16(6), 731; https://doi.org/10.3390/pharmaceutics16060731 - 29 May 2024
Cited by 5 | Viewed by 1711
Abstract
Pharmaceutical excipient PEG400 is a common component of traditional Chinese medicine compound preparations. Studies have demonstrated that pharmaceutical excipients can directly or indirectly influence the disposition process of active drugs in vivo, thereby affecting the bioavailability of drugs. In order to reveal the [...] Read more.
Pharmaceutical excipient PEG400 is a common component of traditional Chinese medicine compound preparations. Studies have demonstrated that pharmaceutical excipients can directly or indirectly influence the disposition process of active drugs in vivo, thereby affecting the bioavailability of drugs. In order to reveal the pharmacokinetic effect of PEG400 on baicalin in hepatocytes and its mechanism, the present study first started with the effect of PEG400 on the metabolic disposition of baicalin at the hepatocyte level, and then the effect of PEG400 on the protein expression of baicalin-related transporters (BCRP, MRP2, and MRP3) was investigated by using western blot; the effect of MDCKII-BCRP, MDCKII-BCRP, MRP2, and MRP3 was investigated by using MDCKII-BCRP, MDCKII-MRP2, and MDCKII-MRP3 cell monolayer models, and membrane vesicles overexpressing specific transporter proteins (BCRP, MRP2, and MRP3), combined with the exocytosis of transporter-specific inhibitors, were used to study the effects of PEG400 on the transporters in order to explore the possible mechanisms of its action. The results demonstrated that PEG400 significantly influenced the concentration of baicalin in hepatocytes, and the AUC0–t of baicalin increased from 75.96 ± 2.57 μg·h/mL to 106.94 ± 2.22 μg·h/mL, 111.97 ± 3.98 μg·h/mL, and 130.42 ± 5.26 μg·h/mL (p ˂ 0.05). Furthermore, the efflux rate of baicalin was significantly reduced in the vesicular transport assay and the MDCKII cell model transport assay, which indicated that PEG400 had a significant inhibitory effect on the corresponding transporters. In conclusion, PEG400 can improve the bioavailability of baicalin to some extent by affecting the efflux transporters and thus the metabolic disposition of baicalin in the liver. Full article
(This article belongs to the Special Issue New Insights into Transporters in Drug Development)
Show Figures

Figure 1

14 pages, 4551 KiB  
Article
Human ABC and SLC Transporters: The Culprit Responsible for Unspecific PSMA-617 Uptake?
by Harun Taş, Gábor Bakos, Ulrike Bauder-Wüst, Martin Schäfer, Yvonne Remde, Mareike Roscher and Martina Benešová-Schäfer
Pharmaceuticals 2024, 17(4), 513; https://doi.org/10.3390/ph17040513 - 16 Apr 2024
Viewed by 2875
Abstract
[177Lu]Lu-PSMA-617 has recently been successfully approved by the FDA, the MHRA, Health Canada and the EMA as Pluvicto®. However, salivary gland (SG) and kidney toxicities account for its main dose-limiting side-effects, while its corresponding uptake and retention mechanisms still [...] Read more.
[177Lu]Lu-PSMA-617 has recently been successfully approved by the FDA, the MHRA, Health Canada and the EMA as Pluvicto®. However, salivary gland (SG) and kidney toxicities account for its main dose-limiting side-effects, while its corresponding uptake and retention mechanisms still remain elusive. Recently, the presence of different ATP-binding cassette (ABC) transporters, such as human breast cancer resistance proteins (BCRP), multidrug resistance proteins (MDR1), multidrug-resistance-related proteins (MRP1, MRP4) and solute cassette (SLC) transporters, such as multidrug and toxin extrusion proteins (MATE1, MATE2-K), organic anion transporters (OAT1, OAT2v1, OAT3, OAT4) and peptide transporters (PEPT2), has been verified at different abundances in human SGs and kidneys. Therefore, our aim was to assess whether [177Lu]Lu-PSMA-617 and [225Ac]Ac-PSMA-617 are substrates of these ABC and SLC transporters. For in vitro studies, the novel isotopologue ([α,β-3H]Nal)Lu-PSMA-617 was used in cell lines or vesicles expressing the aforementioned human ABC and SLC transporters for inhibition and uptake studies, respectively. The corresponding probe substrates and reference inhibitors were used as controls. Our results indicate that [177Lu]Lu-PSMA-617 and [225Ac]Ac-PSMA-617 are neither inhibitors nor substrates of the examined transporters. Therefore, our results show that human ABC and SLC transporters play no central role in the uptake and retention of [177Lu]Lu-PSMA-617 and [225Ac]Ac-PSMA-617 in the SGs and kidneys nor in the observed toxicities. Full article
Show Figures

Figure 1

12 pages, 1162 KiB  
Article
Carborane-Based ABCG2-Inhibitors Sensitize ABC-(Over)Expressing Cancer Cell Lines for Doxorubicin and Cisplatin
by Svetlana Paskas, Philipp Stockmann, Sanja Mijatović, Lydia Kuhnert, Walther Honscha, Evamarie Hey-Hawkins and Danijela Maksimović-Ivanić
Pharmaceuticals 2023, 16(11), 1582; https://doi.org/10.3390/ph16111582 - 9 Nov 2023
Viewed by 1953
Abstract
The ABCG2 transporter protein, as part of several known mechanisms involved in multidrug resistance, has the ability to transport a broad spectrum of substrates out of the cell and is, therefore, considered as a potential target to improve cancer therapies or as an [...] Read more.
The ABCG2 transporter protein, as part of several known mechanisms involved in multidrug resistance, has the ability to transport a broad spectrum of substrates out of the cell and is, therefore, considered as a potential target to improve cancer therapies or as an approach to combat drug resistance in cancer. We have previously reported carborane-functionalized quinazoline derivatives as potent inhibitors of human ABCG2 which effectively reversed breast cancer resistance protein (BCRP)-mediated mitoxantrone resistance. In this work, we present the evaluation of our most promising carboranyl BCRP inhibitors regarding their toxicity towards ABCG2-expressing cancer cell lines (MCF-7, doxorubicin-resistant MCF-7 or MCF-7 Doxo, HT29, and SW480) and, consequently, with the co-administration of an inhibitor and therapeutic agent, their ability to increase the efficacy of therapeutics with the successful inhibition of ABCG2. The results obtained revealed synergistic effects of several inhibitors in combination with doxorubicin or cisplatin. Compounds DMQCa, DMQCc, and DMQCd showed a decrease in IC50 value in ABCB1- and ABCG2-expressing SW480 cells, suggesting a possible targeting of both transporters. In an HT29 cell line, with the highest expression of ABCG2 among the tested cell lines, using co-treatment of doxorubicin and DMQCd, the effective inhibitory concentration of the antineoplastic agent could be reduced by half. Interestingly, co-treatment of compound QCe with cisplatin, which is not an ABCG2 substrate, showed synergistic effects in MCF-7 Doxo and HT29 cells (IC50 values halved or reduced by 20%, respectively). However, a literature-known upregulation of cisplatin-effluxing ABC transporters and their effective inhibition by the carborane derivatives emerges as a possible reason. Full article
Show Figures

Graphical abstract

18 pages, 6360 KiB  
Article
Furmonertinib, a Third-Generation EGFR Tyrosine Kinase Inhibitor, Overcomes Multidrug Resistance through Inhibiting ABCB1 and ABCG2 in Cancer Cells
by Chung-Pu Wu, Yen-Ching Li, Megumi Murakami, Sung-Han Hsiao, Yun-Chieh Lee, Yang-Hui Huang, Yu-Tzu Chang, Tai-Ho Hung, Yu-Shan Wu and Suresh V. Ambudkar
Int. J. Mol. Sci. 2023, 24(18), 13972; https://doi.org/10.3390/ijms241813972 - 12 Sep 2023
Cited by 11 | Viewed by 2767
Abstract
ATP-binding cassette transporters, including ABCB1 (P-glycoprotein) and ABCG2 (BCRP/MXR/ABCP), are pivotal in multidrug resistance (MDR) development in cancer patients undergoing conventional chemotherapy. The absence of approved therapeutic agents for multidrug-resistant cancers presents a significant challenge in effectively treating cancer. Researchers propose repurposing existing [...] Read more.
ATP-binding cassette transporters, including ABCB1 (P-glycoprotein) and ABCG2 (BCRP/MXR/ABCP), are pivotal in multidrug resistance (MDR) development in cancer patients undergoing conventional chemotherapy. The absence of approved therapeutic agents for multidrug-resistant cancers presents a significant challenge in effectively treating cancer. Researchers propose repurposing existing drugs to sensitize multidrug-resistant cancer cells, which overexpress ABCB1 or ABCG2, to conventional anticancer drugs. The goal of this study is to assess whether furmonertinib, a third-generation epidermal growth factor receptor tyrosine kinase inhibitor overcomes drug resistance mediated by ABCB1 and ABCG2 transporters. Furmonertinib stands out due to its ability to inhibit drug transport without affecting protein expression. The discovery of this characteristic was validated through ATPase assays, which revealed interactions between furmonertinib and ABCB1/ABCG2. Additionally, in silico docking of furmonertinib offered insights into potential interaction sites within the drug-binding pockets of ABCB1 and ABCG2, providing a better understanding of the underlying mechanisms responsible for the reversal of MDR by this repurposed drug. Given the encouraging results, we propose that furmonertinib should be explored as a potential candidate for combination therapy in patients with tumors that have high levels of ABCB1 and/or ABCG2. This combination therapy holds the potential to enhance the effectiveness of conventional anticancer drugs and presents a promising strategy for overcoming MDR in cancer treatment. Full article
Show Figures

Figure 1

14 pages, 617 KiB  
Review
Machine Learning Techniques Applied to the Study of Drug Transporters
by Xiaorui Kong, Kexin Lin, Gaolei Wu, Xufeng Tao, Xiaohan Zhai, Linlin Lv, Deshi Dong, Yanna Zhu and Shilei Yang
Molecules 2023, 28(16), 5936; https://doi.org/10.3390/molecules28165936 - 8 Aug 2023
Cited by 11 | Viewed by 2969
Abstract
With the advancement of computer technology, machine learning-based artificial intelligence technology has been increasingly integrated and applied in the fields of medicine, biology, and pharmacy, thereby facilitating their development. Transporters have important roles in influencing drug resistance, drug–drug interactions, and tissue-specific drug targeting. [...] Read more.
With the advancement of computer technology, machine learning-based artificial intelligence technology has been increasingly integrated and applied in the fields of medicine, biology, and pharmacy, thereby facilitating their development. Transporters have important roles in influencing drug resistance, drug–drug interactions, and tissue-specific drug targeting. The investigation of drug transporter substrates and inhibitors is a crucial aspect of pharmaceutical development. However, long duration and high expenses pose significant challenges in the investigation of drug transporters. In this review, we discuss the present situation and challenges encountered in applying machine learning techniques to investigate drug transporters. The transporters involved include ABC transporters (P-gp, BCRP, MRPs, and BSEP) and SLC transporters (OAT, OATP, OCT, MATE1,2-K, and NET). The aim is to offer a point of reference for and assistance with the progression of drug transporter research, as well as the advancement of more efficient computer technology. Machine learning methods are valuable and attractive for helping with the study of drug transporter substrates and inhibitors, but continuous efforts are still needed to develop more accurate and reliable predictive models and to apply them in the screening process of drug development to improve efficiency and success rates. Full article
(This article belongs to the Special Issue New Advances in Drug Metabolism and Pharmacokinetics)
Show Figures

Figure 1

28 pages, 8908 KiB  
Article
Modes of Action of a Novel c-MYC Inhibiting 1,2,4-Oxadiazole Derivative in Leukemia and Breast Cancer Cells
by Min Zhou, Joelle C. Boulos, Ejlal A. Omer, Sabine M. Klauck and Thomas Efferth
Molecules 2023, 28(15), 5658; https://doi.org/10.3390/molecules28155658 - 26 Jul 2023
Cited by 12 | Viewed by 3318
Abstract
The c-MYC oncogene regulates multiple cellular activities and is a potent driver of many highly aggressive human cancers, such as leukemia and triple-negative breast cancer. The oxadiazole class of compounds has gained increasing interest for its anticancer activities. The aim of this study [...] Read more.
The c-MYC oncogene regulates multiple cellular activities and is a potent driver of many highly aggressive human cancers, such as leukemia and triple-negative breast cancer. The oxadiazole class of compounds has gained increasing interest for its anticancer activities. The aim of this study was to investigate the molecular modes of action of a 1,2,4-oxadiazole derivative (ZINC15675948) as a c-MYC inhibitor. ZINC15675948 displayed profound cytotoxicity at the nanomolar range in CCRF-CEM leukemia and MDA-MB-231-pcDNA3 breast cancer cells. Multidrug-resistant sublines thereof (i.e., CEM/ADR5000 and MDA-MB-231-BCRP) were moderately cross-resistant to this compound (<10-fold). Molecular docking and microscale thermophoresis revealed a strong binding of ZINC15675948 to c-MYC by interacting close to the c-MYC/MAX interface. A c-MYC reporter assay demonstrated that ZINC15675948 inhibited c-MYC activity. Western blotting and qRT-PCR showed that c-MYC expression was downregulated by ZINC15675948. Applying microarray hybridization and signaling pathway analyses, ZINC15675948 affected signaling routes downstream of c-MYC in both leukemia and breast cancer cells as demonstrated by the induction of DNA damage using single cell gel electrophoresis (alkaline comet assay) and induction of apoptosis using flow cytometry. ZINC15675948 also caused G2/M phase and S phase arrest in CCRF-CEM cells and MDA-MB-231-pcDNA3 cells, respectively, accompanied by the downregulation of CDK1 and p-CDK2 expression using western blotting. Autophagy induction was observed in CCRF-CEM cells but not MDA-MB-231-pcDNA3 cells. Furthermore, microarray-based mRNA expression profiling indicated that ZINC15675948 may target c-MYC-regulated ubiquitination, since the novel ubiquitin ligase (ELL2) was upregulated in the absence of c-MYC expression. We propose that ZINC15675948 is a promising natural product-derived compound targeting c-MYC in c-MYC-driven cancers through DNA damage, cell cycle arrest, and apoptosis. Full article
(This article belongs to the Special Issue New Anticancer Agents Based on Natural Products)
Show Figures

Figure 1

14 pages, 1992 KiB  
Article
Identification of the Stapled α-Helical Peptide ATSP-7041 as a Substrate and Strong Inhibitor of OATP1B1 In Vitro
by Rika Ishikawa, Kosuke Saito, Takashi Misawa, Yosuke Demizu and Yoshiro Saito
Biomolecules 2023, 13(6), 1002; https://doi.org/10.3390/biom13061002 - 16 Jun 2023
Cited by 3 | Viewed by 2539
Abstract
ATSP-7041, a stapled α-helical peptide that inhibits murine double minute-2 (MDM2) and MDMX activities, is a promising modality targeting protein–protein interactions. As peptides of molecular weights over 1000 Da are not usually evaluated, data on the drug–drug interaction (DDI) potential of stapled α-helical [...] Read more.
ATSP-7041, a stapled α-helical peptide that inhibits murine double minute-2 (MDM2) and MDMX activities, is a promising modality targeting protein–protein interactions. As peptides of molecular weights over 1000 Da are not usually evaluated, data on the drug–drug interaction (DDI) potential of stapled α-helical peptides remain scarce. Here, we evaluate the interaction of ATSP-7041 with hepatic cytochrome P450s (CYPs; CYP1A2, CYP2C9, CYP2C19, CYP3A4, and CYP2D6) and transporters (organic anion transporting polypeptides (OATPs; OATP1B1 and OATP1B3), P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP)). ATSP-7041 demonstrated negligible metabolism in human liver S9 fraction and a limited inhibition of CYP activities in yeast microsomes or S9 fractions. On the contrary, a substantial uptake by OATPs in HEK 293 cells, a strong inhibition of OATP activities in the cells, and an inhibition of P-gp and BCRP activities in reversed membrane vesicles were observed for ATSP-7041. A recent report describes that ALRN-6924, an ATSP-7041 analog, inhibited OATP activities in vivo; therefore, we focused on the interaction between ATSP-7041 and OATP1B1 to demonstrate that ATSP-7041, as a higher molecular weight stapled peptide, is a substrate and strong inhibitor of OATP1B1 activity. Our findings demonstrated the possibility of transporter-mediated DDI potential by high molecular weight stapled peptides and the necessity of their evaluation for drug development. Full article
Show Figures

Figure 1

22 pages, 5786 KiB  
Article
Thiosemicarbazide Derivatives Targeting Human TopoIIα and IDO-1 as Small-Molecule Drug Candidates for Breast Cancer Treatment
by Barbara Kaproń, Robert Czarnomysy, Dominika Radomska, Krzysztof Bielawski and Tomasz Plech
Int. J. Mol. Sci. 2023, 24(6), 5812; https://doi.org/10.3390/ijms24065812 - 18 Mar 2023
Cited by 9 | Viewed by 2046
Abstract
In 2020, breast cancer became the most frequently diagnosed type of cancer, with nearly 2.3 million new cases diagnosed. However, with early diagnosis and proper treatment, breast cancer has a good prognosis. Here, we investigated the effect of thiosemicarbazide derivatives, previously identified as [...] Read more.
In 2020, breast cancer became the most frequently diagnosed type of cancer, with nearly 2.3 million new cases diagnosed. However, with early diagnosis and proper treatment, breast cancer has a good prognosis. Here, we investigated the effect of thiosemicarbazide derivatives, previously identified as dual inhibitors targeting topoisomerase IIα and indoleamine-2,3-dioxygenase 1 (IDO 1), on two distinct types of breast cancer cells (MCF-7 and MDA-MB-231). The investigated compounds (13) selectively suppressed the growth of breast cancer cells and promoted apoptosis via caspase-8- and caspase-9-related pathways. Moreover, these compounds caused S-phase cell cycle arrest and dose-dependently inhibited the activity of ATP-binding cassette transporters (MDR1, MRP1/2 and BCRP) in MCF-7 and MDA-MB-231 cells. Additionally, following incubation with compound 1, an increased number of autophagic cells within both types of the investigated breast cancer cells was observed. During preliminary testing of ADME-Tox properties, the possible hemolytic activities of compounds 13 and their effects on specific cytochrome P450 enzymes were evaluated. Full article
Show Figures

Figure 1

16 pages, 8786 KiB  
Article
Impact of Plastic-Related Compounds on P-Glycoprotein and Breast Cancer Resistance Protein In Vitro
by Matteo Rosellini, Petri Turunen and Thomas Efferth
Molecules 2023, 28(6), 2710; https://doi.org/10.3390/molecules28062710 - 17 Mar 2023
Cited by 7 | Viewed by 3591
Abstract
Plastic in oceans degrades to microplastics and nanoplastics, causing various problems for marine fauna and flora. Recently, microplastic has been detected in blood, breast milk and placenta, underlining their ability to enter the human body with still unknown effects. In addition, plastic contains [...] Read more.
Plastic in oceans degrades to microplastics and nanoplastics, causing various problems for marine fauna and flora. Recently, microplastic has been detected in blood, breast milk and placenta, underlining their ability to enter the human body with still unknown effects. In addition, plastic contains other compounds such as plasticizers, antioxidants or lubricants, whose impact on human health is also elusive. On the cellular level, two transporters involved in cell protection and detoxification of xenobiotic compounds are the ABC-transporters P-glycoprotein (P-gp, MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). Despite the great importance of these proteins to maintain the correct cellular balance, their interaction with plastic and related products is evasive. In this study, the possible interaction between different plastic-related compounds and these two transporters was investigated. Applying virtual compound screening and molecular docking of more than 1000 commercially available plastic compounds, we identified candidates most probably interacting with these two transporters. Cytotoxicity and uptake assays confirmed their toxic interaction on P-glycoprotein-overexpressing CEM/ADR5000 and BCRP-overexpressing MDA-MD-231-BCRP cell lines. To specifically visualize the results obtained on the P-glycoprotein inhibitor 2,2’-methylenebis(6-tert-butyl-4-methylphenol), we performed live cell time-lapse microscopy. Confocal fluorescence microscopy was used to understand the behavior of the molecule and the consequences that it has on the uptake of the well-known substrate doxorubicin and, in comparison, with the known inhibitor verapamil. Based on the results, we provide evidence that the compound in question is an inhibitor of the P-glycoprotein. Moreover, it is also possible that 2,2’-methylenebis(6-tert-butyl-4-methylphenol), together with three other compounds, may also inhibit the breast cancer resistance protein. This discovery implies that plastic-related compounds can not only harm the human body but can also inhibit detoxifying efflux pumps, which increases their toxic potential as these transporters lose their physiological functions. Full article
(This article belongs to the Special Issue In Silico Methods Applied in Drug and Pesticide Discovery)
Show Figures

Figure 1

Back to TopTop