Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Arvicola scherman

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 10850 KiB  
Article
The Accessory Olfactory Bulb in Arvicola scherman: A Neuroanatomical Study in a Subterranean Mammal
by Sara Ruiz-Rubio, Irene Ortiz-Leal, Mateo V. Torres, Mostafa G. A. Elsayed, Aitor Somoano and Pablo Sanchez-Quinteiro
Animals 2024, 14(22), 3285; https://doi.org/10.3390/ani14223285 - 14 Nov 2024
Cited by 1 | Viewed by 1367
Abstract
The accessory olfactory bulb (AOB) processes chemical signals crucial for species-specific socio-sexual behaviors. There is limited information about the AOB of wild rodents, and this study aims to characterize the neurochemical organization of the AOB in the fossorial water vole (Arvicola scherman [...] Read more.
The accessory olfactory bulb (AOB) processes chemical signals crucial for species-specific socio-sexual behaviors. There is limited information about the AOB of wild rodents, and this study aims to characterize the neurochemical organization of the AOB in the fossorial water vole (Arvicola scherman), a subterranean Cricetidae rodent. We employed histological, immunohistochemical, and lectin-histochemical techniques. The AOB of these voles exhibits a distinct laminar organization, with prominent mitral cells and a dense population of periglomerular cells. Lectin histochemistry and G-protein immunohistochemistry confirmed the existence of an antero-posterior zonation. Immunohistochemical analysis demonstrated significant expression of PGP 9.5, suggesting its involvement in maintaining neuronal activity within the AOB. In contrast, the absence of SMI-32 labelling in the AOB, compared to its strong expression in the main olfactory bulb, highlights functional distinctions between these two olfactory subsystems. Calcium-binding proteins allowed the characterization of atypical sub-bulbar nuclei topographically related to the AOB. All these features suggest that the AOB of Arvicola scherman is adapted for enhanced processing of chemosensory signals, which may play a pivotal role in its subterranean lifestyle. Our results provide a foundation for future studies exploring the implications of these adaptations, including potential improvements in the management of these vole populations. Full article
Show Figures

Figure 1

16 pages, 2747 KiB  
Article
A Bocage Landscape Restricts the Gene Flow of Pest Vole Populations
by Aitor Somoano, Cristiane Bastos-Silveira, Jacint Ventura, Marcos Miñarro and Gerald Heckel
Life 2022, 12(6), 800; https://doi.org/10.3390/life12060800 - 27 May 2022
Cited by 4 | Viewed by 2656
Abstract
The population dynamics of most animal species inhabiting agro-ecosystems may be determined by landscape characteristics, with agricultural intensification and the reduction of natural habitats influencing dispersal and hence limiting gene flow. Increasing landscape complexity would thus benefit many endangered species by providing different [...] Read more.
The population dynamics of most animal species inhabiting agro-ecosystems may be determined by landscape characteristics, with agricultural intensification and the reduction of natural habitats influencing dispersal and hence limiting gene flow. Increasing landscape complexity would thus benefit many endangered species by providing different ecological niches, but it could also lead to undesired effects in species that can act as crop pests and disease reservoirs. We tested the hypothesis that a highly variegated landscape influences patterns of genetic structure in agricultural pest voles. Ten populations of fossorial water vole, Arvicola scherman, located in a bocage landscape in Atlantic NW Spain were studied using DNA microsatellite markers and a graph-based model. The results showed a strong isolation-by-distance pattern with a significant genetic correlation at smaller geographic scales, while genetic differentiation at larger geographic scales indicated a hierarchical pattern of up to eight genetic clusters. A metapopulation-type structure was observed, immersed in a landscape with a low proportion of suitable habitats. Matrix scale rather than matrix heterogeneity per se may have an important effect upon gene flow, acting as a demographic sink. The identification of sub-populations, considered to be independent management units, allows the establishment of feasible population control efforts in this area. These insights support the use of agro-ecological tools aimed at recreating enclosed field systems when planning integrated managements for controlling patch-dependent species such as grassland voles. Full article
(This article belongs to the Special Issue Population Genetics of Small Mammals)
Show Figures

Figure 1

9 pages, 6286 KiB  
Article
Biomolecular Investigation of Bartonella spp. in Wild Rodents of Two Swiss Regions
by Sara Divari, Marta Danelli, Paola Pregel, Giovanni Ghielmetti, Nicole Borel and Enrico Bollo
Pathogens 2021, 10(10), 1331; https://doi.org/10.3390/pathogens10101331 - 15 Oct 2021
Cited by 7 | Viewed by 2525
Abstract
Rodents represent a natural reservoir of several Bartonella species, including zoonotic ones. In this study, small wild rodents, collected from two sites in rural areas of Switzerland, were screened for Bartonella spp. using molecular detection methods. In brief, 346 rodents were trapped in [...] Read more.
Rodents represent a natural reservoir of several Bartonella species, including zoonotic ones. In this study, small wild rodents, collected from two sites in rural areas of Switzerland, were screened for Bartonella spp. using molecular detection methods. In brief, 346 rodents were trapped in two rural sites in the Gantrisch Nature Park of Switzerland (Plasselb, canton of Fribourg, and Riggisberg, canton of Bern). Pools of DNA originating from three animals were tested through a qPCR screening and an end-point PCR, amplifying the 16S-23S rRNA gene intergenic transcribed spacer region and citrate synthase (gltA) loci, respectively. Subsequently, DNA was extracted from spleen samples belonging to single animals of gltA positive pools, and gltA and RNA polymerase subunit beta (rpoB) were detected by end-point PCR. Based on PCR results and sequencing, the prevalence of infection with Bartonella spp. in captured rodents, was 21.10% (73/346): 31.78% in Apodemus sp. (41/129), 10.47% in Arvicola scherman (9/86), 17.05% in Myodes glareolus (22/129), and 50% in Microtus agrestis (1/2). A significant association was observed between Bartonella spp. infection and rodent species (p < 0.01) and between trapping regions and positivity to Bartonella spp. infection (p < 0.001). Similarly, prevalence of Bartonella DNA was higher (p < 0.001) in rodents trapped in woodland areas (66/257, 25.68%) compared to those captured in open fields (9/89, 10.11%). Sequencing and phylogenetic analysis demonstrated that the extracted Bartonella DNA belonged mainly to B. taylorii and also to Candidatus “Bartonella rudakovii”, B. grahamii, B. doshiae, and B. birtlesii. In conclusion, the present study could rise public health issues regarding Bartonella infection in rodents in Switzerland. Full article
(This article belongs to the Special Issue The Evolving Biomedical Importance of Bartonella Species Infections)
Show Figures

Figure 1

24 pages, 2447 KiB  
Article
Identification of Arvicola terrestris scherman Sperm Antigens for Immune Contraceptive Purposes
by Areski Chorfa, Chantal Goubely, Joelle Henry-Berger, Rachel Guiton, Joël R. Drevet and Fabrice Saez
Int. J. Mol. Sci. 2021, 22(18), 9965; https://doi.org/10.3390/ijms22189965 - 15 Sep 2021
Cited by 1 | Viewed by 2361
Abstract
The cyclical proliferation of the wild fossorial rodent Arvicola terrestris scherman (ATS) is critical in mid-mountain ecosystems of several European countries. Our goal is to develop an immunocontraceptive vaccine to control their fertility, as a sustainable alternative to chemical poisons currently [...] Read more.
The cyclical proliferation of the wild fossorial rodent Arvicola terrestris scherman (ATS) is critical in mid-mountain ecosystems of several European countries. Our goal is to develop an immunocontraceptive vaccine to control their fertility, as a sustainable alternative to chemical poisons currently used. Indeed, these chemicals cause the death of ATS predators and animals sharing their ecosystem, and current laws progressively limit their use, making the development of a targeted vaccination strategy an interesting and efficient alternative. In order to identify species-specific sperm antigens, male and female ATS received subcutaneous injections of whole ATS spermatozoa to elicit an immune response. The analysis of the immune sera led to the identification of 120 immunogenic proteins of sperm cells. Of these, 15 were strictly sperm-specific and located in different regions of the male gamete. Some of these antigens are proteins involved in molecular events essential to the reproductive process, such as sperm–egg interaction, acrosomal reaction, or sperm motility. This approach not only identified a panel of immunogenic proteins from ATS sperm cells, but also demonstrated that some of these proteins trigger an immune response in both male and female ATS. These spermatic antigens are good candidates for the development of a contraceptive vaccine. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

Back to TopTop