Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (491)

Search Parameters:
Keywords = Apis mellifera honey

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1951 KiB  
Review
Antioxidant Capacity and Therapeutic Applications of Honey: Health Benefits, Antimicrobial Activity and Food Processing Roles
by Ivana Tlak Gajger, Showket Ahmad Dar, Mohamed Morsi M. Ahmed, Magda M. Aly and Josipa Vlainić
Antioxidants 2025, 14(8), 959; https://doi.org/10.3390/antiox14080959 (registering DOI) - 4 Aug 2025
Abstract
Honey is a natural product of honeybees that has been consumed for centuries due to its nutritional value and potential health benefits. Recent scientific research has focused on its antioxidant capacity, which is linked to a variety of bioactive compounds such as phenolic [...] Read more.
Honey is a natural product of honeybees that has been consumed for centuries due to its nutritional value and potential health benefits. Recent scientific research has focused on its antioxidant capacity, which is linked to a variety of bioactive compounds such as phenolic acids, enzymes (e.g., glucose oxidase, catalase), flavonoids, ascorbic acid, carotenoids, amino acids, and proteins. Together, these components work synergistically to neutralize free radicals, regulate antioxidant enzyme activity, and reduce oxidative stress. This review decisively outlines the antioxidant effects of honey and presents compelling clinical and experimental evidence supporting its critical role in preventing diseases associated with oxidative stress. Honey stands out for its extensive health benefits, which include robust protection against cardiovascular issues, notable anticancer and anti-inflammatory effects, enhanced glycemic control in diabetes, immune modulation, neuroprotection, and effective wound healing. As a recognized functional food and dietary supplement, honey is essential for the prevention and adjunct treatment of chronic diseases. However, it faces challenges due to variations in composition linked to climatic conditions, geographical and floral sources, as well as hive management practices. The limited number of large-scale clinical trials further underscores the need for more research. Future studies must focus on elucidating honey’s antioxidant mechanisms, standardizing its bioactive compounds, and examining its synergistic effects with other natural antioxidants to fully harness its potential. Full article
Show Figures

Figure 1

11 pages, 1077 KiB  
Article
Expression of 15-PGDH Regulates Body Weight and Body Size by Targeting JH in Honeybees (Apis mellifera)
by Xinying Qu, Xinru Zhang, Hanbing Lu, Lingjun Xin, Ran Liu and Xiao Chen
Life 2025, 15(8), 1230; https://doi.org/10.3390/life15081230 - 3 Aug 2025
Viewed by 106
Abstract
Honeybees (Apis mellifera) are pollinators for most crops in nature and a core species for the production of bee products. Body size and body weight are crucial breeding traits, as colonies possessing individuals with large body weight tend to be healthier [...] Read more.
Honeybees (Apis mellifera) are pollinators for most crops in nature and a core species for the production of bee products. Body size and body weight are crucial breeding traits, as colonies possessing individuals with large body weight tend to be healthier and exhibit high productivity. In this study, small interfering RNA (siRNA) targeting 15-Hydroxyprostaglandin dehydrogenase (15-PGDH) was incorporated into the feed for feeding worker bee larvae, thereby achieving the silencing of this gene’s expression. The research further analyzed the impact of the RNA expression level of the 15-PGDH gene on the juvenile hormone (JH) titer and its subsequent effects on the body weight and size of worker bees. The results show that inhibiting the expression of 15-PGDH in larvae could significantly increase JH titer, which in turn led to an increase in the body weight of worker bees (1.13-fold higher than that of the control group reared under normal conditions (CK group); p < 0.01; SE: 7.85) and a significant extension in femur (1.08-fold longer than that of the CK group; p < 0.01; SE: 0.18). This study confirms that 15-PGDH can serve as a molecular marker related to body weight and size in honey bees, providing an important basis for molecular marker-assisted selection in honey bee breeding. Full article
(This article belongs to the Section Animal Science)
Show Figures

Figure 1

11 pages, 1958 KiB  
Article
Morphological Diversity of Moroccan Honey Bees (Apis mellifera L. 1758): Insights from a Geometric Morphometric Study of Wing Venation in Honey Bees from Different Climatic Regions
by Salma Bakhchou, Abdessamad Aglagane, Adam Tofilski, Fouad Mokrini, Omar Er-Rguibi, El Hassan El Mouden, Julita Machlowska, Siham Fellahi and El Hassania Mohssine
Diversity 2025, 17(8), 527; https://doi.org/10.3390/d17080527 - 29 Jul 2025
Viewed by 222
Abstract
The morphological diversity of Moroccan honey bees (Apis mellifera) was investigated using geometric morphometrics to assess wing venation patterns among three populations representing three climatic zones: desert, semiarid, and Mediterranean. A total of 193 honey bee samples were analyzed and compared [...] Read more.
The morphological diversity of Moroccan honey bees (Apis mellifera) was investigated using geometric morphometrics to assess wing venation patterns among three populations representing three climatic zones: desert, semiarid, and Mediterranean. A total of 193 honey bee samples were analyzed and compared to historical reference samples from the Morphometric Bee Data Bank in Oberursel, representing the three subspecies: A. m. intermissa, A. m. sahariensis, and A. m. major. Principal component analysis and linear discriminant analysis revealed significant, yet overlapping morphological differences among the climatic groups. Spatial modeling showed a significant southwest–northeast clinal gradient in wing morphology. Almost all samples were assigned to the African evolutionary lineage, except one, suggesting a dominant African genetic background. Interestingly, all three populations showed greater morphological affinity to A. m. intermissa than to A. m. sahariensis, which could indicate introgression or limitations in the current reference dataset. These discrepancies highlight the necessity of revising subspecies boundaries using updated morphometric and genomic approaches. These findings improve our understanding of honey bee biodiversity in Morocco and provide valuable information for conservation and breeding programs. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

17 pages, 1728 KiB  
Article
The Impact of Colony Deployment Timing on Tetragonula carbonaria Crop Fidelity and Resource Use in Macadamia Orchards
by Claire E. Allison, James C. Makinson, Robert N. Spooner-Hart and James M. Cook
Plants 2025, 14(15), 2313; https://doi.org/10.3390/plants14152313 - 26 Jul 2025
Viewed by 285
Abstract
Crop fidelity is a desirable trait for managed pollinators and is influenced by factors like competing forage sources and colony knowledge of the surrounding environment. In European honey bees (Apis mellifera L.), colonies deployed when the crop is flowering display the highest [...] Read more.
Crop fidelity is a desirable trait for managed pollinators and is influenced by factors like competing forage sources and colony knowledge of the surrounding environment. In European honey bees (Apis mellifera L.), colonies deployed when the crop is flowering display the highest fidelity. We tested for a similar outcome using a stingless bee species that is being increasingly used as a managed pollinator in Australian macadamia orchards. We observed Tetragonula carbonaria (Smith) colonies deployed in macadamia orchards at three time points: (1) before crop flowering (“permanent”), (2) early flowering (“early”), and (3) later in the flowering period (“later”). We captured returning pollen foragers weekly and estimated crop fidelity from the proportion of macadamia pollen they collected, using light microscopy. Pollen foraging activity was also assessed via weekly hive entrance filming. The early and later introduced colonies initially exhibited high fidelity, collecting more macadamia pollen than the permanent colonies. In most cases, the permanent colonies were already collecting diverse pollen species from the local environment and took longer to shift over to macadamia. Pollen diversity increased over time in all colonies, which was associated with an increase in the proportion of pollen foragers. Our results indicate that stingless bees can initially prioritize a mass-flowering crop, even when flowering levels are low, but that they subsequently reduce fidelity over time. Our findings will inform pollinator management strategies to help growers maximize returns from pollinator-dependent crops like macadamia. Full article
Show Figures

Figure 1

21 pages, 1355 KiB  
Article
Nationwide Screening for Arthropod, Fungal, and Bacterial Pests and Pathogens of Honey Bees: Utilizing Environmental DNA from Honey Samples in Australia
by Gopika Bhasi, Gemma Zerna and Travis Beddoe
Insects 2025, 16(8), 764; https://doi.org/10.3390/insects16080764 - 25 Jul 2025
Viewed by 421
Abstract
The European honey bee (Apis mellifera) significantly contributes to Australian agriculture, especially in honey production and the pollination of key crops. However, managed bee populations are declining due to pathogens, agrochemicals, poor forage, climate change, and habitat loss. Major threats include [...] Read more.
The European honey bee (Apis mellifera) significantly contributes to Australian agriculture, especially in honey production and the pollination of key crops. However, managed bee populations are declining due to pathogens, agrochemicals, poor forage, climate change, and habitat loss. Major threats include bacteria, fungi, mites, and pests. With the increasing demand for pollination and the movement of bee colonies, monitoring these threats is essential. It has been demonstrated that honey constitutes an easily accessible source of environmental DNA. Environmental DNA in honey comes from all organisms that either directly or indirectly aid in its production and those within the hive environments. In this study, we extracted eDNA from 135 honey samples and tested for the presence of DNA for seven key honey bee pathogens and pests—Paenibacillus larvae, Melissococcus plutonius (bacterial pathogens), Nosema apis, Nosema ceranae (microsporidian fungi), Ascosphaera apis (fungal pathogen), Aethina tumida, and Galleria mellonella (arthropod pests) by using end-point singleplex and multiplex PCR assays. N. ceranae emerged as the most prevalent pathogen, present in 57% of the samples. This was followed by the pests A. tumida (40%) and G. mellonella (37%), and the pathogens P. larvae (21%), N. apis (19%), and M. plutonius (18%). A. apis was detected in a smaller proportion of the samples, with a prevalence of 5%. Additionally, 19% of the samples tested negative for all pathogens and pests analysed. The data outlines essential information about the prevalence of significant arthropod, fungal, and bacterial pathogens and pests affecting honey bees in Australia, which is crucial for protecting the nation’s beekeeping industry. Full article
(This article belongs to the Special Issue Recent Advances in Bee Parasite, Pathogen, and Predator Interactions)
Show Figures

Figure 1

15 pages, 838 KiB  
Article
Azoxystrobin and Picoxystrobin Lead to Decreased Fitness of Honey Bee Drones (Apis mellifera ligustica)
by Wenlong Tong, Lizhu Wang, Bingfang Tao, Huanjing Yao, Huiping Liu, Shaokang Huang, Jianghong Li, Xiaolan Xu and Xinle Duan
Agriculture 2025, 15(15), 1590; https://doi.org/10.3390/agriculture15151590 - 24 Jul 2025
Viewed by 297
Abstract
Honey bees (Apis mellifera ligustica) are essential pollinators in both ecosystems and agricultural production. However, their populations are declining due to various factors, including pesticide exposure. Despite their importance, the reproductive castes, particularly drones, remain understudied in terms of pesticide effects. [...] Read more.
Honey bees (Apis mellifera ligustica) are essential pollinators in both ecosystems and agricultural production. However, their populations are declining due to various factors, including pesticide exposure. Despite their importance, the reproductive castes, particularly drones, remain understudied in terms of pesticide effects. To investigate the effects of azoxystrobin and picoxystrobin on honey bee drones, the drones were exposed to different concentrations of azoxystrobin and picoxystrobin for 14 days; the drone survival, body weight, nutrient content, reproductive organs, and sperm concentration were assessed. Results showed that exposure to both fungicides caused a significant reduction in drone survival rates, with survival rates decreasing progressively as the duration of exposure increased. Compared to the control group, the body weights of drones in all treatment groups were significantly lower on days 7 and 14. Nutrient analysis revealed that low concentrations of azoxystrobin and picoxystrobin increased protein levels, while free fatty acid content decreased significantly in all treatment groups. No significant changes were observed in the total carbohydrate content. Morphological examination of reproductive organs showed that the lengths of the mucus glands and seminal vesicles in drones were significantly shorter in the treatment groups compared to the control group. Furthermore, exposure to azoxystrobin and picoxystrobin resulted in a significant decline in sperm concentration in the drones. These findings indicate that azoxystrobin and picoxystrobin have adverse effects on the health and reproductive capacity of honey bee drones. The present study highlights the need to reassess the risks posed by these fungicides to pollinators, particularly given the critical role of drones in maintaining the genetic diversity and resilience of honey bee colonies. Further research is warranted to elucidate the underlying mechanisms of these effects and explore potential mitigation strategies. Full article
(This article belongs to the Special Issue Honey Bees and Wild Pollinators in Agricultural Ecosystems)
Show Figures

Figure 1

13 pages, 901 KiB  
Article
Efficacy and Safety of an Oxalic Acid and Glycerin Formulation for Varroa destructor Control in Honey Bee Colonies During Summer in a Northern Climate
by Daniel Thurston, Les Eccles, Melanie Kempers, Daniel Borges, Kelsey Ducsharm, Lynae Ovinge, Dave Stotesbury, Rod Scarlett, Paul Kozak, Tatiana Petukhova, Ernesto Guzman-Novoa and Nuria Morfin
Pathogens 2025, 14(8), 724; https://doi.org/10.3390/pathogens14080724 - 22 Jul 2025
Viewed by 1354
Abstract
Effective control of the parasitic mite Varroa destructor in honey bee (Apis mellifera) colonies relies on integrated pest management (IPM) strategies to prevent mite populations from reaching economic injury levels. Formulations of oxalic acid combined with glycerin may provide a viable [...] Read more.
Effective control of the parasitic mite Varroa destructor in honey bee (Apis mellifera) colonies relies on integrated pest management (IPM) strategies to prevent mite populations from reaching economic injury levels. Formulations of oxalic acid combined with glycerin may provide a viable summer treatment option in continental Northern climates. This study evaluated the efficacy of oxalic acid and glycerin strips compared to oxalic acid dribble and 65% formic acid when applied in mid-August. Mite levels and colony health parameters were assessed, and honey samples from oxalic acid-treated colonies were analyzed for residue levels. Results showed that the oxalic acid and glycerin strips had a moderate acaricidal efficacy (55.8 ± 3.2%), which was significantly higher than those of 65% formic acid (42.6 ± 3.2%) and oxalic acid dribble (39.5 ± 4.3%), which did not differ between them, suggesting potential for summer mite control. No significant adverse effects on cluster size, worker mortality, queen status, or colony survival were observed. Oxalic acid and glycerin increased the proportion of spotty brood patterns at early timepoints after treatment, but recovery was noted after 45 days of starting the treatment. Similar effects on brood were observed with 65% formic acid 14 days after starting the treatment, with recovery by 28 and 45 days after starting the treatment. No significant differences in oxalic acid residues in honey from the control and treatment colonies were found. Oxalic acid and glycerin strips might help control varroa mite populations, delaying their exponential growth and helping reduce economic losses for beekeepers, but this treatment should be considered as part of an IPM strategy and not a stand-alone method for V. destructor control. Full article
(This article belongs to the Special Issue Surveillance, Detection and Control of Infectious Diseases of Bees)
Show Figures

Figure 1

16 pages, 1778 KiB  
Article
Synergistic Effects of Amitraz and Dinotefuran on Honey Bee Health: Impacts on Survival, Gene Expression, and Hypopharyngeal Gland Morphology
by Mojtaba Esmaeily, Tekalign Begna, Hyeonjeong Jang, Sunho Kwon and Chuleui Jung
Int. J. Mol. Sci. 2025, 26(14), 6850; https://doi.org/10.3390/ijms26146850 - 17 Jul 2025
Viewed by 268
Abstract
Honey bees (Apis mellifera) are major pollinators, playing a critical role in global food production, biodiversity, and ecosystem stability. However, their populations are increasingly threatened by multiple interacting stressors, including pesticide exposure. Among these, agricultural insecticides and anti-Varroa acaricides such [...] Read more.
Honey bees (Apis mellifera) are major pollinators, playing a critical role in global food production, biodiversity, and ecosystem stability. However, their populations are increasingly threatened by multiple interacting stressors, including pesticide exposure. Among these, agricultural insecticides and anti-Varroa acaricides such as dinotefuran and amitraz can persist in hive matrices, resulting in chronic and combined exposure. This study investigates the low lethal (LC10 and LC30) effects of these compounds, individually and in combination, on honey bee survival, immune function, oxidative stress responses, detoxification pathways, and hypopharyngeal gland morphology. Both pesticides negatively affected honey bee health at low lethal concentrations, with dinotefuran showing higher toxicity. Exposure led to the reduced survival, suppression of vitellogenin expression, and dysregulation of genes related to antioxidant defense, immunity, and detoxification. Additionally, high concentrations of dinotefuran and its combination with amitraz impaired hypopharyngeal gland morphology. Notably, co-exposure resulted in synergistic toxic effects, exacerbating physiological damage beyond individual treatments. These findings emphasize the potential risks of combined exposure to agricultural and beekeeping pesticides. A more comprehensive risk assessment and stricter regulations are urgently needed. Full article
Show Figures

Figure 1

21 pages, 1958 KiB  
Article
Potential Prebiotic Effect of Caatinga Bee Honeys from the Pajeú Hinterland (Pernambuco, Brazil) on Synbiotic Alcoholic Beverages Fermented by Saccharomyces boulardii CNCM I-745
by Walter de Paula Pinto-Neto, Luis Loureiro, Raquel F. S. Gonçalves, Márcia Cristina Teixeira Marques, Rui Miguel Martins Rodrigues, Luís Abrunhosa, Aline Magalhães de Barros, Neide Kazue Sakugawa Shinohara, Ana Cristina Pinheiro, Antonio Augusto Vicente, Rafael Barros de Souza and Marcos Antonio de Morais Junior
Fermentation 2025, 11(7), 405; https://doi.org/10.3390/fermentation11070405 - 15 Jul 2025
Viewed by 474
Abstract
The singular biodiversity of the Brazilian Caatinga inspires innovative solutions in food science. In this study, we evaluated the prebiotic potential of honeys produced by Apis mellifera in the Pajeú hinterland, Pernambuco, Brazil (Caatinga Biome), with different floral origins: Mastic (Aroeira), Mesquite (Algaroba), [...] Read more.
The singular biodiversity of the Brazilian Caatinga inspires innovative solutions in food science. In this study, we evaluated the prebiotic potential of honeys produced by Apis mellifera in the Pajeú hinterland, Pernambuco, Brazil (Caatinga Biome), with different floral origins: Mastic (Aroeira), Mesquite (Algaroba), and mixed flowers. These were used to formulate synbiotic and alcoholic beverages fermented by Saccharomyces boulardii CNCM I-745. Static and dynamic simulations of the human gastrointestinal tract (GIT) were used, as well as physicochemical, rheological, and microbiological analyses. The results revealed that honey positively influences the viability and resilience of probiotic yeast, especially honey with a predominance of Algaroba, which promoted the highest survival rate (>89%) even after 28 days of refrigeration and in dynamic in vitro simulation of the GIT (more realistic to human physio-anatomical conditions). The phenolic composition of the honeys showed a correlation with this tolerance. The use of complementary methodologies, such as flow cytometry, validated the findings and highlighted the functional value of these natural matrices, revealing an even greater longevity potential compared to conventional microbiological methodology. The data reinforces the potential of the Caatinga as a source of bioactive and sustainable compounds, proposing honey as a promising non-dairy synbiotic vehicle. This work contributes to the appreciation of the biome and the development of functional food products with a positive social, economic, and ecological impact. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
Show Figures

Figure 1

27 pages, 10832 KiB  
Article
Discrete Time Series Forecasting in Non-Invasive Monitoring of Managed Honey Bee Colonies: Part II: Are Hive Weight and In-Hive Temperature Seasonal and Colony-Specific?
by Vladimir A. Kulyukin, Aleksey V. Kulyukin and William G. Meikle
Sensors 2025, 25(14), 4319; https://doi.org/10.3390/s25144319 - 10 Jul 2025
Viewed by 259
Abstract
We explored the stationarity, trend, and seasonality of the hive weight and in-hive temperature of ten managed honey bee (Apis mellifera) colonies at a research apiary of the Carl Hayden Bee Research Center in Tucson, Arizona, USA. The hives were monitored [...] Read more.
We explored the stationarity, trend, and seasonality of the hive weight and in-hive temperature of ten managed honey bee (Apis mellifera) colonies at a research apiary of the Carl Hayden Bee Research Center in Tucson, Arizona, USA. The hives were monitored with electronic scales and in-hive temperature sensors from June to October 2022. The weight and temperature were recorded every five minutes around the clock. The collected data were curated into 2160 timestamped weight and 2160 timestamped temperature observations. We performed a systematic autoregressive integrated moving average (ARIMA) time series analysis to answer three fundamental questions: (a) Does seasonality matter in the ARIMA forecasting of hive weight and in-hive temperature? (b) To what extent do the best forecasters of one hive generalize to other hives? and (c) Which time series type (i.e., hive weight or in-hive temperature) is better predictable? Our principal findings were as follows: (1) The hive weight and in-hive temperature series were not white noise, were not normally distributed, and, for most hives, were not difference- or trend-stationary; (2) Seasonality matters, in that seasonal ARIMA (SARIMA) forecasters outperformed their ARIMA counterparts on the curated dataset; (3) The best hive weight and in-hive temperature forecasters of the ten monitored colonies appeared to be colony-specific; (4) The accuracy of the hive weight forecasts was consistently higher than that of the in-hive temperature forecasts; (5) The weight and temperature forecasts exhibited common qualitative patterns. Full article
(This article belongs to the Special Issue Smart Decision Systems for Digital Farming: 2nd Edition)
Show Figures

Figure 1

19 pages, 2055 KiB  
Article
Extract of Tangerine Peel as a Botanical Insecticide Candidate for Smallholder Potato Cultivation
by José-Manuel Pais-Chanfrau, Lisbeth J. Quiñonez-Montaño, Jimmy Núñez-Pérez, Julia K. Prado-Beltrán, Magali Cañarejo-Antamba, Jhomaira L. Burbano-García, Andrea J. Chiliquinga-Quispe and Hortensia M. Rodríguez Cabrera
Insects 2025, 16(7), 680; https://doi.org/10.3390/insects16070680 - 29 Jun 2025
Viewed by 842
Abstract
Background: Contemporary agriculture heavily relies on synthetic chemicals to ensure high yields and food security; however, their overuse has led to health issues and the development of pesticide resistance in pests. Researchers are now exploring natural, eco-friendly alternatives for pest control. Methods: This [...] Read more.
Background: Contemporary agriculture heavily relies on synthetic chemicals to ensure high yields and food security; however, their overuse has led to health issues and the development of pesticide resistance in pests. Researchers are now exploring natural, eco-friendly alternatives for pest control. Methods: This study evaluated two ethanol-based formulations (1.25% and 2.50%, v/v) derived from the tangerine peel (Citrus reticulata L. var. Clementina) against conventional chemical treatments and an untreated control group in the cultivation of potatoes (Solanum tuberosum L. var. Capiro). A randomised block design was used, with three blocks per treatment containing 45 plants. The experiment was conducted during the wet season (February–April 2023). Results: According to visual inspections and yellow traps, following weekly application from days 30 to 105 post-planting to monitor pest (e.g., Frankliniella occidentalis, Aphididae) and beneficial insect (e.g., Coccinellidae, Apis mellifera) populations, the 2.50% formulation performed similarly to chemical treatments against pests, whilst being harmless to beneficial insects. Post-harvest analysis showed that the formulations achieved 73% of conventional yields, with comparable tuber damage and levels of Premnotrypes vorax larvae. Conclusions: Toxicological tests confirmed the eco-friendliness of the formulations, making them suitable for small-scale Andean ‘chakras’ in organic farming and honey production, without the use of chemicals. Full article
Show Figures

Graphical abstract

15 pages, 605 KiB  
Article
Volatile Profile of 16 Unifloral Pollen Taxa Collected by Honey Bees (Apis mellifera L.)
by Vasilios Liolios, Chrysoula Tananaki, Dimitrios Kanelis, Maria Anna Rodopoulou and Fotini Papadopoulou
Insects 2025, 16(7), 668; https://doi.org/10.3390/insects16070668 - 26 Jun 2025
Viewed by 1256
Abstract
Bee pollen’s aroma combined with other floral components serve various purposes, including attracting pollinators and signaling the availability of food sources. The present study aimed to comparatively analyze the volatile profiles of unifloral pollen taxa. Bee pollen loads were collected using pollen traps [...] Read more.
Bee pollen’s aroma combined with other floral components serve various purposes, including attracting pollinators and signaling the availability of food sources. The present study aimed to comparatively analyze the volatile profiles of unifloral pollen taxa. Bee pollen loads were collected using pollen traps and sorted based on their botanical origin, determined by color and pollen grain morphology. The separated pollen samples were analyzed using a Purge & Trap/GC-MS system, identifying the volatile profiles of pollen from 16 plant species. The analysis revealed distinguished differences in the total volatile organic compounds (VOCs) among the various pollen species. Notably, the pollen from Erica manipuliflora, Papaver rhoeas, and Sisymbrium irio contained the highest number of VOCs, with 54, 51, and 42 substances detected, respectively. Certain volatile compounds appeared to correlate with increased bee visitation. For instance, 4-methyl-5-nonanone was uniquely found in E. manipuliflora pollen, while isothiocyanate compounds were exclusively present in species of the Brassicaceae family. Therefore, given the significant impact of VOCs on honey bees’ preferences, it is essential to consider not only the nutritional value of bee pollen when evaluating its beekeeping value, but also its aroma profile. Full article
(This article belongs to the Section Social Insects and Apiculture)
Show Figures

Figure 1

12 pages, 1922 KiB  
Article
Nosemosis in Russian Apis mellifera L. Populations: Distribution and Association with Hybridization
by Milyausha Kaskinova, Luisa Gaifullina, Gleb Zaitsev, Alexandr Davydychev and Elena Saltykova
Insects 2025, 16(6), 641; https://doi.org/10.3390/insects16060641 - 18 Jun 2025
Viewed by 715
Abstract
One of the common causes of mass death in bee colonies is the infectious disease nosemosis, which is caused by two types of microsporidia, Nosema apis and Nosema ceranae. Of the many factors contributing to the spread of nosemosis, in this paper [...] Read more.
One of the common causes of mass death in bee colonies is the infectious disease nosemosis, which is caused by two types of microsporidia, Nosema apis and Nosema ceranae. Of the many factors contributing to the spread of nosemosis, in this paper we consider the hybridization of subspecies of Apis mellifera L. In most of Russia, the native subspecies is the dark forest bee Apis mellifera mellifera, which is representative of the evolutionary lineage M. The export of bee packages and queens from the southern regions of Russia and other countries has led to the fragmentation of the range of these subspecies. First, we determined the maternal and paternal ancestry of 349 honey bee colonies across 12 beekeeping regions of Russia using the mitochondrial tRNAleu-COII locus and nine nuclear SSR markers (Ap243, 4a110, A024, A008, A43, A113, A088, Ap049, and A028). Among them, 140 colonies belonged to subspecies A. m. mellifera, 58 colonies were of hybrid origin, and 151 colonies belonged to evolutionary lineage C. Then, using microscopy and PCR analysis, we performed diagnostics of nosemosis in the studied colonies: N. apis was detected in 87 colonies, N. ceranae in 102 colonies, and coinfection was observed in 36 colonies. The results of our study indicate that the main reservoir of Nosema microsporidia was bees of evolutionary lineage C. Full article
(This article belongs to the Special Issue Recent Advances in Bee Parasite, Pathogen, and Predator Interactions)
Show Figures

Figure 1

16 pages, 2561 KiB  
Article
Microbial Contamination in Commercial Honey: Insights for Food Safety and Quality Control
by Felipe Bruxel, Ana Maria Geller, Andrei Giacchetto Felice, Jeferson Aloísio Ströher, Anderson Santos de Freitas, Angela Balen, Maria Beatriz Prior Pinto Oliveira and Wemerson de Castro Oliveira
Microbiol. Res. 2025, 16(6), 128; https://doi.org/10.3390/microbiolres16060128 - 13 Jun 2025
Viewed by 527
Abstract
Honey is a sugar-rich product produced by Apis mellifera bees, with significant variability in properties due to the influence of geographic and climatic conditions and the predominant flora in the production region. Economically, beekeeping is an activity that generates profit and fulfills environmental [...] Read more.
Honey is a sugar-rich product produced by Apis mellifera bees, with significant variability in properties due to the influence of geographic and climatic conditions and the predominant flora in the production region. Economically, beekeeping is an activity that generates profit and fulfills environmental and social functions, reinforcing the pillars of sustainability. This study aimed to characterize samples of honey sold in southern Brazil, including physicochemical analyses, the detection of microbiological contaminants with potential impact on human health, and the detailed identification of bacterial composition through the Next-Generation Sequencing (NGS). The present study was divided into five main stages: (1) sample collection; (2) sample fractionation; (3) physicochemical analysis; (4) microbiological analysis; (5) 16S metataxonomy analysis. The physicochemical analyses agreed with the regulated values, indicating the good quality of the honey and the absence of adulteration. The microbiological analyses indicated the absence of Salmonella spp., in addition to a low count of total coliforms. The limits for molds and yeasts were exceeded in three samples, indicating non-compliance with current MERCOSUR legislation. Metabarcoding analysis identified a total of 15,736 OTUs divided into three different genera: Bacillus (41.54%), Lysinnibacillus, and Rossellomorea, all belonging to the Bacillaceae family. Some pathogenic species were identified, namely the Bacillus cereus group and Bacillus pumilus. Our results point to an increased need for surveillance, as honey contamination can lead to public health problems, requiring improvements in legislation and control parameters. Full article
Show Figures

Figure 1

19 pages, 1181 KiB  
Article
Comparing Morphometric and Mitochondrial DNA Data from Honeybees and Honey Samples for Identifying Apis mellifera ligustica Subspecies at the Colony Level
by Valeria Taurisano, Anisa Ribani, Valerio Joe Utzeri, Dalal Sami, Kate Elise Nelson Johnson, Giovanni Formato, Marcella Milito, Giuseppina Schiavo, Samuele Bovo, Francesca Bertolini and Luca Fontanesi
Animals 2025, 15(12), 1743; https://doi.org/10.3390/ani15121743 - 12 Jun 2025
Viewed by 1033
Abstract
The ability to differentiate between different Apis mellifera subspecies can have significant implications for their conservation. In this study, we explored the possibility of obtaining multi-level information that could be useful in assigning a colony to the A. m. ligustica subspecies. This was [...] Read more.
The ability to differentiate between different Apis mellifera subspecies can have significant implications for their conservation. In this study, we explored the possibility of obtaining multi-level information that could be useful in assigning a colony to the A. m. ligustica subspecies. This was accomplished by combining (1) standard morphometric characteristics of the honeybees with mitochondrial DNA (mtDNA) sequence data obtained from both the (2) honeybees and (3) honey present in a honeycomb sampled from the same colony. Eighty colonies were sampled in the Emilia-Romagna region (Northern Italy). From these colonies, a total of 413 honeybees were analyzed to obtain sequence information of the tRNALeu-COII mtDNA region. When we combined the results obtained from all three methods, 63.75% of the colonies were found to be compatible with being assigned to A. m. ligustica. For 36.25% of the colonies, morphometric analysis indicated a hybrid origin and mtDNA from honeybees or honey samples indicated the presence of mtDNA haplotypes other than those characteristic for this subspecies. Cohen’s Kappa statistic indicated poor agreement in the classification of the colonies between morphometric analysis and the two DNA-based methods, which, in turn, were in substantial agreement with each other. Although not completely effective, mtDNA analysis of honey samples could serve as an initial and practical compromise to begin initiatives aimed at preserving the genetic integrity of A. m. ligustica in the Emilia-Romagna region, as well as in other regions where it is necessary to preserve the genetic integrity of autochthonous honeybee populations. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop