Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = Antarctic benthos

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1810 KiB  
Article
Chemical Changes Under Heat Stress and Identification of Dendrillolactone, a New Diterpene Derivative with a Rare Rearranged Spongiane Skeleton from the Antarctic Marine Sponge Dendrilla antarctica
by Andrea Prófumo, Conxita Avila and Adele Cutignano
Mar. Drugs 2025, 23(1), 10; https://doi.org/10.3390/md23010010 - 28 Dec 2024
Viewed by 2022
Abstract
The waters around the western Antarctic Peninsula are experiencing fast warming due to global change, being among the most affected regions on the planet. This polar area is home to a large and rich community of benthic marine invertebrates, such as sponges, tunicates, [...] Read more.
The waters around the western Antarctic Peninsula are experiencing fast warming due to global change, being among the most affected regions on the planet. This polar area is home to a large and rich community of benthic marine invertebrates, such as sponges, tunicates, corals, and many other animals. Among the sponges, the bright yellow Dendrilla antarctica is commonly known for using secondary diterpenoids as a defensive mechanism against local potential predators. From the dichloromethane extract of sponge samples from Deception Island collected in January 2023, we isolated a novel derivative with an unusual β-lactone diterpene skeleton here named dendrillolactone (1), along with seven previously described diterpenes, including deceptionin (2), a gracilane norditerpene (3), cadlinolide C (4), a glaciolane norditerpene (5), membranolide (6), aplysulphurin (7), and tetrahydroaplysulphurine-1 (8). Here, we also report our studies on the changes in the chemical arsenal of this sponge by slow temperature increase in aquaria experiments. Despite being a species capable of inhabiting volcanically active areas, with frequent water temperature fluctuations due to the existing fumaroles, the results show that diterpenes such as deceptionin, cadlinolide C, membranolide, and tetrahydroaplysulphurin-1 seem to be susceptible to the temperature increase, resulting in a trend to higher concentrations. However, temperatures above 4 °C severely affected sponge metabolism, causing its death much earlier than expected. Further research on the roles of these natural products in D. antarctica and their relationship to the sponge’s resilience to environmental changes should help to better understand the defensive mechanisms of Antarctic marine benthos in the context of global change. Full article
(This article belongs to the Section Marine Chemoecology for Drug Discovery)
Show Figures

Graphical abstract

20 pages, 3636 KiB  
Article
A Chemo-Ecological Investigation of Dendrilla antarctica Topsent, 1905: Identification of Deceptionin and the Effects of Heat Stress and Predation Pressure on Its Terpene Profiles
by Paula De Castro-Fernández, Carlos Angulo-Preckler, Cristina García-Aljaro, Conxita Avila and Adele Cutignano
Mar. Drugs 2023, 21(9), 499; https://doi.org/10.3390/md21090499 - 19 Sep 2023
Cited by 3 | Viewed by 1930
Abstract
Marine sponges usually host a wide array of secondary metabolites that play crucial roles in their biological interactions. The factors that influence the intraspecific variability in the metabolic profile of organisms, their production or ecological function remain generally unknown. Understanding this may help [...] Read more.
Marine sponges usually host a wide array of secondary metabolites that play crucial roles in their biological interactions. The factors that influence the intraspecific variability in the metabolic profile of organisms, their production or ecological function remain generally unknown. Understanding this may help predict changes in biological relationships due to environmental variations as a consequence of climate change. The sponge Dendrilla antarctica is common in shallow rocky bottoms of the Antarctic Peninsula and is known to produce diterpenes that are supposed to have defensive roles. Here we used GC-MS to determine the major diterpenes in two populations of D. antarctica from two islands, Livingston and Deception Island (South Shetland Islands). To assess the potential effect of heat stress, we exposed the sponge in aquaria to a control temperature (similar to local), heat stress (five degrees higher) and extreme heat stress (ten degrees higher). To test for defence induction by predation pressure, we exposed the sponges to the sea star Odontaster validus and the amphipod Cheirimedon femoratus. Seven major diterpenes were isolated and identified from the samples. While six of them were already reported in the literature, we identified one new aplysulphurane derivative that was more abundant in the samples from Deception Island, so we named it deceptionin (7). The samples were separated in the PCA space according to the island of collection, with 9,11-dihydrogracilin A (1) being more abundant in the samples from Livingston, and deceptionin (7) in the samples from Deception. We found a slight effect of heat stress on the diterpene profiles of D. antarctica, with tetrahydroaplysulphurin-1 (6) and the gracilane norditerpene 2 being more abundant in the group exposed to heat stress. Predation pressure did not seem to influence the metabolite production. Further research on the bioactivity of D. antarctica secondary metabolites, and their responses to environmental changes will help better understand the functioning and fate of the Antarctic benthos. Full article
Show Figures

Figure 1

20 pages, 2594 KiB  
Article
Drift Algal Accumulation in Ice Scour Pits Provides an Underestimated Ecological Subsidy in a Novel Antarctic Soft-Sediment Habitat
by Ignacio Garrido, Heather L. Hawk, Paulina Bruning, Luis Miguel Pardo and Ladd E. Johnson
Biology 2023, 12(1), 128; https://doi.org/10.3390/biology12010128 - 13 Jan 2023
Cited by 1 | Viewed by 3354
Abstract
Ice scouring is one of the strongest agents of disturbance in nearshore environments at high latitudes. In depths, less than 20 m, grounding icebergs reshape the soft-sediment seabed by gouging furrows called ice pits. Large amounts of drift algae (up to 5.6 kg/m [...] Read more.
Ice scouring is one of the strongest agents of disturbance in nearshore environments at high latitudes. In depths, less than 20 m, grounding icebergs reshape the soft-sediment seabed by gouging furrows called ice pits. Large amounts of drift algae (up to 5.6 kg/m2) that would otherwise be transported to deeper water accumulate inside these features, representing an underestimated subsidy. Our work documents the distribution and dimensions of ice pits in Fildes Bay, Antarctica, and evaluates their relationship to the biomass and species composition of algae found within them. It also assesses the rates of deposition and advective loss of algae in the pits. The 17 ice pits found in the study area covered only 4.2% of the seabed but contained 98% of drift algal biomass, i.e., 60 times the density (kg/m2) of the surrounding seabed. Larger ice pits had larger and denser algal accumulations than small pits and had different species compositions. The accumulations were stable over time: experimentally cleared pits regained initial biomass levels after one year, and advective loss was less than 15% annually. Further research is needed to understand the impacts of ice scouring and subsequent algal retention on ecosystem functioning in this rapidly changing polar environment. Full article
(This article belongs to the Special Issue Polar Ecosystem: Response of Organisms to Changing Climate)
Show Figures

Figure 1

28 pages, 3343 KiB  
Article
Antarctic Seabed Assemblages in an Ice-Shelf-Adjacent Polynya, Western Weddell Sea
by Bétina A. V. Frinault, Frazer D. W. Christie, Sarah E. Fawcett, Raquel F. Flynn, Katherine A. Hutchinson, Chloë M. J. Montes Strevens, Michelle L. Taylor, Lucy C. Woodall and David K. A. Barnes
Biology 2022, 11(12), 1705; https://doi.org/10.3390/biology11121705 - 25 Nov 2022
Cited by 2 | Viewed by 3407
Abstract
Ice shelves cover ~1.6 million km2 of the Antarctic continental shelf and are sensitive indicators of climate change. With ice-shelf retreat, aphotic marine environments transform into new open-water spaces of photo-induced primary production and associated organic matter export to the benthos. Predicting [...] Read more.
Ice shelves cover ~1.6 million km2 of the Antarctic continental shelf and are sensitive indicators of climate change. With ice-shelf retreat, aphotic marine environments transform into new open-water spaces of photo-induced primary production and associated organic matter export to the benthos. Predicting how Antarctic seafloor assemblages may develop following ice-shelf loss requires knowledge of assemblages bordering the ice-shelf margins, which are relatively undocumented. This study investigated seafloor assemblages, by taxa and functional groups, in a coastal polynya adjacent to the Larsen C Ice Shelf front, western Weddell Sea. The study area is rarely accessed, at the frontline of climate change, and located within a CCAMLR-proposed international marine protected area. Four sites, ~1 to 16 km from the ice-shelf front, were explored for megabenthic assemblages, and potential environmental drivers of assemblage structures were assessed. Faunal density increased with distance from the ice shelf, with epifaunal deposit-feeders a surrogate for overall density trends. Faunal richness did not exhibit a significant pattern with distance from the ice shelf and was most variable at sites closest to the ice-shelf front. Faunal assemblages significantly differed in composition among sites, and those nearest to the ice shelf were the most dissimilar; however, ice-shelf proximity did not emerge as a significant driver of assemblage structure. Overall, the study found a biologically-diverse and complex seafloor environment close to an ice-shelf front and provides ecological baselines for monitoring benthic ecosystem responses to environmental change, supporting marine management. Full article
(This article belongs to the Special Issue Polar Ecosystem: Response of Organisms to Changing Climate)
Show Figures

Figure 1

11 pages, 1593 KiB  
Article
First Application of the AMBI Index to the Macrobenthic Soft-Bottom Community of Terra Nova Bay (Ross Sea, Southern Ocean)
by Cristina Munari, Angel Borja, Cinzia Corinaldesi, Eugenio Rastelli, Marco Lo Martire, Valentina Pitacco and Michele Mistri
Water 2022, 14(19), 2994; https://doi.org/10.3390/w14192994 - 23 Sep 2022
Cited by 7 | Viewed by 2685
Abstract
The assemblages of marine benthic organisms and sediment characteristics were investigated in the coastal area between the Mario Zucchelli Antarctic Research Station and Adelie Cove in Terra Nova Bay (Ross Sea, Southern Ocean) during the 2015 summer season. Sediment samples were taken from [...] Read more.
The assemblages of marine benthic organisms and sediment characteristics were investigated in the coastal area between the Mario Zucchelli Antarctic Research Station and Adelie Cove in Terra Nova Bay (Ross Sea, Southern Ocean) during the 2015 summer season. Sediment samples were taken from 11 stations at depths between 25 and 140 m. The dominance of sand characterised sites, and the biochemical composition of the sedimentary organic matter resulted in very variable between the different sites. A total of 142 taxa were identified, with Annelida (68 taxa) and Arthropoda (35 taxa) constituting the main macrobenthic groups. The benthic community at deeper stations showed higher species richness and lower dominance compared to the shallower stations. For the first time in Antarctica, we also investigated the response of the AZTI’s Marine Biotic Index (AMBI) to the organic gradient. Of the 142 taxa found, 97 were not listed in the AMBI library, and we were able to assign as many as 88 taxa to an ecological group. All of these new species were added to the new AMBI species list. AMBI showed a good response to the organic gradient. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

20 pages, 2246 KiB  
Article
Would Antarctic Marine Benthos Survive Alien Species Invasions? What Chemical Ecology May Tell Us
by Conxita Avila, Xavier Buñuel, Francesc Carmona, Albert Cotado, Oriol Sacristán-Soriano and Carlos Angulo-Preckler
Mar. Drugs 2022, 20(9), 543; https://doi.org/10.3390/md20090543 - 24 Aug 2022
Cited by 4 | Viewed by 4031
Abstract
Many Antarctic marine benthic macroinvertebrates are chemically protected against predation by marine natural products of different types. Antarctic potential predators mostly include sea stars (macropredators) and amphipod crustaceans (micropredators) living in the same areas (sympatric). Recently, alien species (allopatric) have been reported to [...] Read more.
Many Antarctic marine benthic macroinvertebrates are chemically protected against predation by marine natural products of different types. Antarctic potential predators mostly include sea stars (macropredators) and amphipod crustaceans (micropredators) living in the same areas (sympatric). Recently, alien species (allopatric) have been reported to reach the Antarctic coasts, while deep-water crabs are suggested to be more often present in shallower waters. We decided to investigate the effect of the chemical defenses of 29 representative Antarctic marine benthic macroinvertebrates from seven different phyla against predation by using non-native allopatric generalist predators as a proxy for potential alien species. The Antarctic species tested included 14 Porifera, two Cnidaria, two Annelida, one Nemertea, two Bryozooa, three Echinodermata, and five Chordata (Tunicata). Most of these Antarctic marine benthic macroinvertebrates were chemically protected against an allopatric generalist amphipod but not against an allopatric generalist crab from temperate waters. Therefore, both a possible recolonization of large crabs from deep waters or an invasion of non-native generalist crab species could potentially alter the fundamental nature of these communities forever since chemical defenses would not be effective against them. This, together with the increasing temperatures that elevate the probability of alien species surviving, is a huge threat to Antarctic marine benthos. Full article
Show Figures

Graphical abstract

17 pages, 3962 KiB  
Article
So Close Yet So Far: Age and Growth of Blue Antimora Antimora rostrata (Moridae, Gadiformes, Teleostei) off New Zealand and Macquarie Island (Southwestern Pacific Ocean)
by Nikolai B. Korostelev, Dirk C. Welsford, Vladimir V. Belyakov, Andrei G. Bush and Alexei M. Orlov
J. Mar. Sci. Eng. 2022, 10(7), 956; https://doi.org/10.3390/jmse10070956 - 12 Jul 2022
Cited by 3 | Viewed by 2263
Abstract
Age and growth of blue antimora Antimora rostrata were examined in the waters off New Zealand and Macquarie Island (southwestern Pacific). Samples off Macquarie Island were collected from bycatch in the Patagonian toothfish longline fishery. Individuals between 20 and 44 years in age [...] Read more.
Age and growth of blue antimora Antimora rostrata were examined in the waters off New Zealand and Macquarie Island (southwestern Pacific). Samples off Macquarie Island were collected from bycatch in the Patagonian toothfish longline fishery. Individuals between 20 and 44 years in age measured between 37.6–71.1 cm in total length. Bottom trawl catches from New Zealand waters consisted of smaller and younger fish (11 to 38 years), measuring 22.5–52.5 cm long. The age classes with the greatest numbers in the former area were represented by fish aged 33–34 years (25.7%). In the latter area, the most numerous age classes were 21–23 years (12.1%), 28–29 years (17.6%), and 32 years (6.6%). The blue antimora from off the Macquarie Island show similar growth rates to those of individual fish from the Ross, Lazarev and Weddell Seas, waters off the Kerguelen and Crozet Islands, and southeastern Greenland. Individuals from New Zealand waters demonstrate the slowest growth rates compared to other parts of the species’ range but are quite similar to individuals from the Flemish Cap area. Further research to identify the stock structure of this broadly distributed species is warranted to provide context to differences in growth rates observed between populations. Full article
(This article belongs to the Special Issue Deep-Sea Fish and Fisheries)
Show Figures

Figure 1

23 pages, 7840 KiB  
Article
Landscape Mapping, Ichnological and Benthic Foraminifera Trends in a Deep-Water Gateway, Discovery Gap, NE Atlantic
by Evgenia V. Dorokhova, Francisco J. Rodríguez-Tovar, Dmitry V. Dorokhov, Liubov A. Kuleshova, Anxo Mena, Tatiana Glazkova and Viktor A. Krechik
Geosciences 2021, 11(11), 474; https://doi.org/10.3390/geosciences11110474 - 19 Nov 2021
Cited by 3 | Viewed by 3000
Abstract
Multidisciplinary studies have allowed us to describe the abiotic landscapes and, thus, reveal the ichnological and benthic foraminifera trends in a deep-water gateway. Mesoscale landscape mapping is presented based on the bathymetric position index, substrate types and near-bottom water temperature. Four sediment cores, [...] Read more.
Multidisciplinary studies have allowed us to describe the abiotic landscapes and, thus, reveal the ichnological and benthic foraminifera trends in a deep-water gateway. Mesoscale landscape mapping is presented based on the bathymetric position index, substrate types and near-bottom water temperature. Four sediment cores, retrieved from the entrance, centre and exit of the gap, were subject to computed tomography, ichnological and benthic foraminifera studies. A high diversity of abiotic landscapes in the relatively small area of Discovery Gap is detected and its landscape is characterized by 23 landscape types. The most heterogeneous abiotic factor is a topography that is associated with sediment patchiness and substrate variability. The ichnological and tomographical studies of the sediment cores demonstrate lateral and temporal differences in the macrobenthic tracemaker behaviour. The ichnofossils assemblage of the sediment core can be assigned to the Zoophycos ichnofacies with a higher presence of Zoophycos in the entrance site of the gap and during glacial intervals. Higher benthic foraminifera diversity and species richness during the Holocene are also registered in the southern part of the gap compared to the northern part. The spatial and temporal differences in macro-benthos behavior and benthic foraminifera distribution in the deep-water gateway are proposed to relate to the topographical variations of the Antarctic Bottom Water and its influence on the hydrodynamic regime, nutrient transport, etc. Full article
(This article belongs to the Special Issue Marine Habitat Mapping: Selected Papers from "GeoHab 2021")
Show Figures

Figure 1

14 pages, 603 KiB  
Article
Site-Specific Variability in the Chemical Diversity of the Antarctic Red Alga Plocamium cartilagineum
by Ryan M. Young, Jacqueline L. Von Salm, Margaret O. Amsler, Juan Lopez-Bautista, Charles D. Amsler, James B. McClintock and Bill J. Baker
Mar. Drugs 2013, 11(6), 2126-2139; https://doi.org/10.3390/md11062126 - 14 Jun 2013
Cited by 27 | Viewed by 8344
Abstract
Plocamium cartilagineum is a common red alga on the benthos of Antarctica and can be a dominant understory species along the western Antarctic Peninsula. Algae from this region have been studied chemically, and like “P. cartilagineum” from other worldwide locations where [...] Read more.
Plocamium cartilagineum is a common red alga on the benthos of Antarctica and can be a dominant understory species along the western Antarctic Peninsula. Algae from this region have been studied chemically, and like “P. cartilagineum” from other worldwide locations where it is common, it is rich in halogenated monoterpenes, some of which have been implicated as feeding deterrents toward sympatric algal predators. Secondary metabolites are highly variable in this alga, both qualitatively and quantitatively, leading us to probe individual plants to track the possible link of variability to genetic or other factors. Using cox1 and rbcL gene sequencing, we find that the Antarctic alga divides into two closely related phylogroups, but not species, each of which is further divided into one of five chemogroups. The chemogroups themselves, defined on the basis of Bray-Curtis similarity profiling of GC/QqQ chromatographic analyses, are largely site specific within a 10 km2 area. Thus, on the limited geographical range of this analysis, P. cartilagineum displays only modest genetic radiation, but its secondary metabolome was found to have experienced more extensive radiation. Such metabogenomic divergence demonstrated on the larger geographical scale of the Antarctic Peninsula, or perhaps even continent-wide, may contribute to the discovery of cryptic speciation. Full article
Show Figures

Graphical abstract

Back to TopTop