Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = Alanyl-Glutamine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1634 KiB  
Article
Effects of Alanyl-Glutamine Dipeptide Supplementation on Growth Performance, Nutrient Digestibility, Digestive Enzyme Activity, Immunity, and Antioxidant Status in Growing Laying Hens
by Usman Nazir, Zhenming Fu, Xucheng Zheng, Muhammad Hammad Zafar, Yuanjing Chen, Zhi Yang, Zhiyue Wang and Haiming Yang
Animals 2024, 14(20), 2934; https://doi.org/10.3390/ani14202934 - 11 Oct 2024
Viewed by 1643
Abstract
Alanyl-glutamine (Aln-Gln), a highly soluble and stable Glutamine-dipeptide, is known to improve the performance of poultry birds. This study aimed to investigate the effect of Aln-Gln during the rearing period on growth performance, nutrient digestibility, digestive enzyme activity, immunity, antioxidant status [...] Read more.
Alanyl-glutamine (Aln-Gln), a highly soluble and stable Glutamine-dipeptide, is known to improve the performance of poultry birds. This study aimed to investigate the effect of Aln-Gln during the rearing period on growth performance, nutrient digestibility, digestive enzyme activity, immunity, antioxidant status and relative gene expression of Hy-Line brown hens. A total of 480 healthy day-old Hy-line brown chicks with similar body weights were randomly divided into four dietary groups (8 replicates/group and 15 birds/replicate). Groups A, B, C and D were fed diets containing 0%, 0.1%, 0.2% and 0.3% Aln-Gln, respectively, for 6 weeks. The body weight (BW) and average daily gain (ADG) were higher in hens fed test diets compared with the control (p < 0.05). The feed conversion ratio (FCR) was better in test groups as compared to the control group (p < 0.05). The ADFI showed no significant difference between the groups. Dietary treatments had no effect on dry matter (DM), organic matter (OM) and crude fiber (CF) digestibility. The Aln-Gln also improved gross energy (GE) and crude protein (CP) digestibility (p < 0.05). It has also increased IgG levels in groups C and D. IgM levels were similar to the control in B, C and D. The Aln-Gln increased IL-1 in B and C, IL-2 in C and D, and IL-6 in all test groups (p < 0.05). The supplementation of Aln-Gln had no effect on serum antioxidant indices like CAT, MDA, GSH-PX, GSH, and SOD in 42-day-old growing hens. Aln-Gln supplementation had no significant effect (p > 0.05) on the activity of amylase and lipase, however, a significant improvement (p < 0.05) in the activities of trypsin and chymotrypsin was observed in the test groups. Supplemented Aln-Gln levels in the birds’ diets led to an increase in the expression of genes related to growth factors (IGF-1, IGFBP-5), immune markers (IL-1, IL-2, IL-6) and antioxidant status (GSH-Px1), as compared to control group. Aln-Gln supplementation in Hy-Line brown hens during their growing period improved growth, nutrient digestibility, immunity and digestive enzymes activity. These findings suggest that Aln-Gln is a promising dietary additive for enhancing poultry performance. Full article
(This article belongs to the Special Issue Amino Acid Nutrition in Poultry)
Show Figures

Figure 1

13 pages, 7733 KiB  
Article
Alanyl-Glutamine Dipeptide Attenuates Non-Alcoholic Fatty Liver Disease Induced by a High-Fat Diet in Mice by Improving Gut Microbiota Dysbiosis
by Yigang Zheng, Hanglu Ying, Jiayi Shi, Long Li and Yufen Zhao
Nutrients 2023, 15(18), 3988; https://doi.org/10.3390/nu15183988 - 14 Sep 2023
Cited by 4 | Viewed by 3078
Abstract
Non-alcoholic fatty liver disease (NAFLD) manifests as a persistent liver ailment marked by the excessive buildup of lipids within the hepatic organ accompanied by inflammatory responses and oxidative stress. Alanyl-glutamine (AG), a dipeptide comprising alanine and glutamine, is commonly employed as a nutritional [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) manifests as a persistent liver ailment marked by the excessive buildup of lipids within the hepatic organ accompanied by inflammatory responses and oxidative stress. Alanyl-glutamine (AG), a dipeptide comprising alanine and glutamine, is commonly employed as a nutritional supplement in clinical settings. This research aims to evaluate the impact of AG on NAFLD triggered by a high-fat diet (HFD), while concurrently delving into the potential mechanisms underlying its effects. The results presented herein demonstrate a notable reduction in the elevated body weight, liver mass, and liver index induced by a HFD upon AG administration. These alterations coincide with the amelioration of liver injury and the attenuation of hepatic histological advancement. Furthermore, AG treatment manifests a discernible diminution in oil-red-O-stained regions and triglyceride (TG) levels within the liver. Noteworthy alterations encompass lowered plasma total cholesterol (TC) and low-density lipoprotein cholesterol (LDLC) concentrations, coupled with elevated high-density lipoprotein cholesterol (HDLC) concentrations. The mitigation of hepatic lipid accumulation resultant from AG administration is aligned with the downregulation of ACC1, SCD1, PPAR-γ, and CD36 expression, in conjunction with the upregulation of FXR and SHP expression. Concomitantly, AG administration leads to a reduction in the accumulation of F4/80-positive macrophages within the liver, likely attributable to the downregulated expression of MCP-1. Furthermore, AG treatment yields a decline in hepatic MDA levels and a concurrent increase in the activities of SOD and GPX. A pivotal observation underscores the effect of AG in rectifying the imbalance of gut microbiota in HFD-fed mice. Consequently, this study sheds light on the protective attributes of AG against HFD-induced NAFLD through the modulation of gut microbiota composition. Full article
Show Figures

Figure 1

20 pages, 3385 KiB  
Review
The Urgent Threat of Clostridioides difficile Infection: A Glimpse of the Drugs of the Future, with Related Patents and Prospects
by Ahmed S. Alshrari, Shuaibu Abdullahi Hudu, Fayig Elmigdadi and Mohd. Imran
Biomedicines 2023, 11(2), 426; https://doi.org/10.3390/biomedicines11020426 - 1 Feb 2023
Cited by 18 | Viewed by 3726
Abstract
Clostridioides difficile infection (CDI) is an urgent threat and unmet medical need. The current treatments for CDI are not enough to fight the burden of CDI and recurrent CDI (r-CDI). This review aims to highlight the future drugs for CDI and their related [...] Read more.
Clostridioides difficile infection (CDI) is an urgent threat and unmet medical need. The current treatments for CDI are not enough to fight the burden of CDI and recurrent CDI (r-CDI). This review aims to highlight the future drugs for CDI and their related patented applications. The non-patent literature was collected from PubMed and various authentic websites of pharmaceutical industries. The patent literature was collected from free patent databases. Many possible drugs of the future for CDI, with diverse mechanisms of action, are in development in the form of microbiota-modulating agents (e.g., ADS024, CP101, RBX2660, RBX7455, SYN-004, SER-109, VE303, DAV132, MET-2, and BB128), small molecules (e.g., ridinilazole, ibezapolstat, CRS3123, DNV3837, MGB-BP-3, alanyl-L-glutamine, and TNP-2198), antibodies (e.g., IM-01 and LMN-201), and non-toxic strains of CD (e.g., NTCD-M3). The development of some therapeutic agents (e.g., DS-2969b, OPS-2071, cadazolid, misoprostol, ramoplanin, KB109, LFF571, and Ramizol) stopped due to failed clinical trials or unknown reasons. The patent literature reveals some important inventions for the existing treatments of CDI and supports the possibility of developing more and better CDI-treatment-based inventions, including patient-compliant dosage forms, targeted drug delivery, drug combinations of anti-CDI drugs possessing diverse mechanisms of action, probiotic and enzymatic supplements, and vaccines. The current pipeline of anti-CDI medications appears promising. However, it will be fascinating to see how many of the cited are successful in gaining approval from drug regulators such as the US FDA and becoming medicines for CDI and r-CDI. Full article
(This article belongs to the Special Issue Microbial Ecology in Health and Disease 2.0)
Show Figures

Figure 1

13 pages, 43217 KiB  
Article
Alanyl-Glutamine Protects Mice against Methionine- and Choline-Deficient-Diet-Induced Steatohepatitis and Fibrosis by Modulating Oxidative Stress and Inflammation
by Jiaji Hu, Yigang Zheng, Hanglu Ying, Huabin Ma, Long Li and Yufen Zhao
Nutrients 2022, 14(18), 3796; https://doi.org/10.3390/nu14183796 - 15 Sep 2022
Cited by 12 | Viewed by 4224
Abstract
Nonalcoholic steatohepatitis (NASH) is a common chronic liver disease with increasing prevalence rates over years and is associated with hepatic lipid accumulation, liver injury, oxidative stress, hepatic inflammation, and liver fibrosis and lack of approved pharmacological therapy. Alanyl-glutamine (Ala-Gln) is a recognized gut-trophic [...] Read more.
Nonalcoholic steatohepatitis (NASH) is a common chronic liver disease with increasing prevalence rates over years and is associated with hepatic lipid accumulation, liver injury, oxidative stress, hepatic inflammation, and liver fibrosis and lack of approved pharmacological therapy. Alanyl-glutamine (Ala-Gln) is a recognized gut-trophic nutrient that has multiple pharmacological effects in the prevention of inflammation- and oxidative-stress-associated diseases. Nevertheless, whether Ala-Gln has a protective effect on NASH still lacks evidence. The aim of this study is to explore the influence of Ala-Gln on NASH and its underlying mechanisms. Here, C57BL/6 mice were fed a methionine- and choline-deficient (MCD) diet to establish the model of NASH, and Ala-Gln at doses of 500 and 1500 mg/kg were intraperitoneally administered to mice along with a MCD diet. The results showed that Ala-Gln treatment significantly attenuated MCD-induced hepatic pathological changes, lowered NAFLD activity score, and reduced plasma alanine transaminase (ALT), aspartate transaminase (AST) and lactate dehydrogenase (LDH) levels. Ala-Gln dramatically alleviated lipid accumulation in liver through modulating the expression levels of fatty acid translocase (FAT/CD36) and farnesoid X receptor (FXR). In addition, Ala-Gln exerted an anti-oxidant effect by elevating the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPX). Moreover, Ala-Gln exhibited an anti-inflammatory effect via decreasing the accumulation of activated macrophages and suppressing the production of proinflammatory mediators. Notably, Ala-Gln suppressed the development of liver fibrosis in MCD-diet-fed mice, which may be due to the inhibition of hepatic stellate cells activation. In conclusion, these findings revealed that Ala-Gln prevents the progression of NASH through the modulation of oxidative stress and inflammation and provided the proof that Ala-Gln might be an effective pharmacological agent to treat NASH. Full article
(This article belongs to the Collection Bioactive Peptides: Challenges and Opportunities)
Show Figures

Figure 1

19 pages, 4393 KiB  
Article
Proteome-Wide Differential Effects of Peritoneal Dialysis Fluid Properties in an In Vitro Human Endothelial Cell Model
by Juan Manuel Sacnun, Robin Hoogenboom, Fabian Eibensteiner, Isabel J. Sobieszek, Markus Unterwurzacher, Anja Wagner, Rebecca Herzog and Klaus Kratochwill
Int. J. Mol. Sci. 2022, 23(14), 8010; https://doi.org/10.3390/ijms23148010 - 20 Jul 2022
Cited by 7 | Viewed by 2983
Abstract
To replace kidney function, peritoneal dialysis (PD) utilizes hyperosmotic PD fluids with specific physico-chemical properties. Their composition induces progressive damage of the peritoneum, leading to vasculopathies, decline of membrane function, and PD technique failure. Clinically used PD fluids differ in their composition but [...] Read more.
To replace kidney function, peritoneal dialysis (PD) utilizes hyperosmotic PD fluids with specific physico-chemical properties. Their composition induces progressive damage of the peritoneum, leading to vasculopathies, decline of membrane function, and PD technique failure. Clinically used PD fluids differ in their composition but still remain bioincompatible. We mapped the molecular pathomechanisms in human endothelial cells induced by the different characteristics of widely used PD fluids by proteomics. Of 7894 identified proteins, 3871 were regulated at least by 1 and 49 by all tested PD fluids. The latter subset was enriched for cell junction-associated proteins. The different PD fluids individually perturbed proteins commonly related to cell stress, survival, and immune function pathways. Modeling two major bioincompatibility factors of PD fluids, acidosis, and glucose degradation products (GDPs) revealed distinct effects on endothelial cell function and regulation of cellular stress responses. Proteins and pathways most strongly affected were members of the oxidative stress response. Addition of the antioxidant and cytoprotective additive, alanyl-glutamine (AlaGln), to PD fluids led to upregulation of thioredoxin reductase-1, an antioxidant protein, potentially explaining the cytoprotective effect of AlaGln. In conclusion, we mapped out the molecular response of endothelial cells to PD fluids, and provided new evidence for their specific pathomechanisms, crucial for improvement of PD therapies. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Endothelial Dysfunction)
Show Figures

Figure 1

14 pages, 3291 KiB  
Article
Alanyl-Glutamine Protects against Lipopolysaccharide-Induced Liver Injury in Mice via Alleviating Oxidative Stress, Inhibiting Inflammation, and Regulating Autophagy
by Jiaji Hu, Hanglu Ying, Yigang Zheng, Huabin Ma, Long Li and Yufen Zhao
Antioxidants 2022, 11(6), 1070; https://doi.org/10.3390/antiox11061070 - 27 May 2022
Cited by 16 | Viewed by 4199
Abstract
Acute liver injury is a worldwide problem with a high rate of morbidity and mortality, and effective pharmacological therapies are still urgently needed. Alanyl-glutamine (Ala-Gln), a dipeptide formed from L-alanine and L-glutamine, is known as a protective compound that is involved in various [...] Read more.
Acute liver injury is a worldwide problem with a high rate of morbidity and mortality, and effective pharmacological therapies are still urgently needed. Alanyl-glutamine (Ala-Gln), a dipeptide formed from L-alanine and L-glutamine, is known as a protective compound that is involved in various tissue injuries, but there are limited reports regarding the effects of Ala-Gln in acute liver injury. This present study aimed to investigate the protective effects of Ala-Gln in lipopolysaccharide (LPS)-induced acute liver injury in mice, with a focus on inflammatory responses and oxidative stress. The acute liver injury induced using LPS (50 μg/kg) and D-galactosamine (D-Gal) (400 mg/kg) stimulation in mice was significantly attenuated after Ala-Gln treatment (500 and 1500 mg/kg), as evidenced by reduced plasma alanine transaminase (ALT) (p < 0.01, p < 0.001), aspartate transaminase (AST) (p < 0.05, p < 0.001), and lactate dehydrogenase (LDH) (p < 0.01, p < 0.001) levels, and accompanied by improved histopathological changes. In addition, LPS/D-Gal-induced hepatic apoptosis was also alleviated by Ala-Gln administration, as shown by a greatly decreased ratio of TUNEL-positive hepatocytes, from approximately 10% to 2%, and markedly reduced protein levels of cleaved caspase-3 (p < 0.05, p < 0.001) in liver. Moreover, we found that LPS/D-Gal-triggered oxidative stress was suppressed after Ala-Gln treatment, the effect of which might be dependent on the elevation of SOD and GPX activities, and on GSH levels in liver. Interestingly, we observed that Ala-Gln clearly inhibited LPS/D-Gal exposure-induced macrophage accumulation and the production of proinflammatory factors in the liver. Furthermore, Ala-Gln greatly regulated autophagy in the liver in LPS/D-Gal-treated mice. Using RAW264.7 cells, we confirmed the anti-inflammatory role of Ala-Gln-targeting macrophages. Full article
(This article belongs to the Special Issue Oxidative Stress in Hepatic Injury)
Show Figures

Figure 1

9 pages, 734 KiB  
Article
Ameliorative Potential of L-Alanyl L-Glutamine Dipeptide in Colon Cancer Patients Receiving Modified FOLFOX-6 Regarding the Incidence of Diarrhea, the Treatment Response, and Patients’ Survival: A Randomized Controlled Trial
by Nesreen M. Sabry, Tamer M. Naguib, Ahmed M. Kabel, El-Sayed Khafagy, Hany H. Arab and Walid A. Almorsy
Medicina 2022, 58(3), 394; https://doi.org/10.3390/medicina58030394 - 7 Mar 2022
Cited by 2 | Viewed by 3952
Abstract
Background and Objectives: Diarrhea induced by chemotherapy may represent a life-threatening adverse effect in cancer patients receiving chemotherapy. FOLFOX, an effective treatment for colon cancer, has been associated with diarrhea with high severity, particularly with higher doses. Management of diarrhea is crucial [...] Read more.
Background and Objectives: Diarrhea induced by chemotherapy may represent a life-threatening adverse effect in cancer patients receiving chemotherapy. FOLFOX, an effective treatment for colon cancer, has been associated with diarrhea with high severity, particularly with higher doses. Management of diarrhea is crucial to increase the survival of cancer patients and to improve the quality of life. Glutamine is an abundant protein peptide found in blood and has a crucial role in boosting immunity, increasing protein anabolism, and decreasing the inflammatory effects of chemotherapy on the mucosal membranes, including diarrhea. This study aimed to provide evidence that parenteral L-alanyl L-glutamine dipeptide may have a positive influence on the incidence of diarrhea, treatment response, and the overall survival in colon cancer patients treated with modified FOLFOX-6 (mFOLFOX-6). Materials and Methods: Forty-four stage II and III colon cancer patients were included in this study where they were treated with the standard colon cancer chemotherapy mFOLFOX-6 and were randomly allocated into glutamine group and placebo group, each of 22 patients. Results: L-alanyl L-glutamine dipeptide was found to be significantly effective in decreasing the frequency and severity of diarrhea when compared to the placebo group, particularly after four and six cycles of mFOLFOX-6. There was no significant difference between the studied groups regarding to the overall survival. Conclusion: L-alanyl L-glutamine dipeptide can be considered as an add-on with chemotherapy to improve the quality of life and the overall survival of colon cancer patients. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

21 pages, 2839 KiB  
Article
A Synbiotic Formulation Comprising Bacillus subtilis DSM 32315 and L-Alanyl-L-Glutamine Improves Intestinal Butyrate Levels and Lipid Metabolism in Healthy Humans
by Heike tom Dieck, Christiane Schön, Tanja Wagner, Helga Carola Pankoke, Monika Fluegel and Bodo Speckmann
Nutrients 2022, 14(1), 143; https://doi.org/10.3390/nu14010143 - 29 Dec 2021
Cited by 17 | Viewed by 5144
Abstract
The gut microbiota is a crucial modulator of health effects elicited by food components, with SCFA (short chain fatty acids), especially butyrate, acting as important mediators thereof. We therefore developed a nutritional synbiotic composition targeted at shifting microbiome composition and activity towards butyrate [...] Read more.
The gut microbiota is a crucial modulator of health effects elicited by food components, with SCFA (short chain fatty acids), especially butyrate, acting as important mediators thereof. We therefore developed a nutritional synbiotic composition targeted at shifting microbiome composition and activity towards butyrate production. An intestinal screening model was applied to identify probiotic Bacillus strains plus various amino acids and peptides with suitable effects on microbial butyrate producers and levels. A pilot study was performed to test if the synbiotic formulation could improve fecal butyrate levels in healthy humans. A combination of Bacillus subtilis DSM (Number of German Collection of Microorganisms and Cell Cultures) 32315 plus L-alanyl-L-glutamine resulted in distinctly increased levels of butyrate and butyrate-producing taxa (Clostridium group XIVa, e.g., Faecalibacterium prausnitzii), both in vitro and in humans. Moreover, circulating lipid parameters (LDL-, and total cholesterol and LDL/HDL cholesterol ratio) were significantly decreased and further metabolic effects such as glucose-modulation were observed. Fasting levels of PYY (Peptide YY) and GLP-1 (Glucagon-like Peptide 1) were significantly reduced. In conclusion, our study indicates that this synbiotic composition may provide an effective and safe tool for stimulation of intestinal butyrate production with effects on e.g., lipid and glucose homeostasis. Further investigations in larger cohorts are warranted to confirm and expand these findings. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

16 pages, 2604 KiB  
Article
The Beverage Hydration Index: Influence of Electrolytes, Carbohydrate and Protein
by Mindy Millard-Stafford, Teresa K. Snow, Michael L. Jones and HyunGyu Suh
Nutrients 2021, 13(9), 2933; https://doi.org/10.3390/nu13092933 - 25 Aug 2021
Cited by 24 | Viewed by 16578
Abstract
The beverage hydration index (BHI) facilitates a comparison of relative hydration properties of beverages using water as the standard. The additive effects of electrolytes, carbohydrate, and protein on rehydration were assessed using BHI. Nineteen healthy young adults completed four test sessions in randomized [...] Read more.
The beverage hydration index (BHI) facilitates a comparison of relative hydration properties of beverages using water as the standard. The additive effects of electrolytes, carbohydrate, and protein on rehydration were assessed using BHI. Nineteen healthy young adults completed four test sessions in randomized order: deionized water (W), electrolytes only (E), carbohydrate-electrolytes (C + E), and 2 g/L dipeptide (alanyl-glutamine)-electrolytes (AG + E). One liter of beverage was consumed, after which urine and body mass were obtained every 60 min through 240 min. Compared to W, BHI was higher (p = 0.007) for C + E (1.15 ± 0.17) after 120 min and for AG + E (p = 0.021) at 240 min (1.15 ± 0.20). BHI did not differ (p > 0.05) among E, C + E, or AG + E; however, E contributed the greatest absolute net effect (>12%) on BHI relative to W. Net fluid balance was lower for W (p = 0.048) compared to C + E and AG + E after 120 min. AG + E and E elicited higher (p < 0.001) overall urine osmolality vs. W. W also elicited greater reports of stomach bloating (p = 0.02) compared to AG + E and C + E. The addition of electrolytes alone (in the range of sports drinks) did not consistently improve BHI versus water; however, the combination with carbohydrate or dipeptides increased fluid retention, although this occurred earlier for the sports drink than the dipeptide beverage. Electrolyte content appears to make the largest contribution in hydration properties of beverages for young adults when consumed at rest. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

15 pages, 4927 KiB  
Article
An Experimental Workflow for Studying Barrier Integrity, Permeability, and Tight Junction Composition and Localization in a Single Endothelial Cell Monolayer: Proof of Concept
by Maria Bartosova, David Ridinger, Iva Marinovic, Jana Heigwer, Conghui Zhang, Eszter Levai, Jens H. Westhoff, Franz Schaefer, Stefan Terjung, Georg Hildenbrand, Damir Krunic, Felix Bestvater, Michael Hausmann, Claus Peter Schmitt and Sotirios G. Zarogiannis
Int. J. Mol. Sci. 2021, 22(15), 8178; https://doi.org/10.3390/ijms22158178 - 30 Jul 2021
Cited by 12 | Viewed by 4420
Abstract
Endothelial and epithelial barrier function is crucial for the maintenance of physiological processes. The barrier paracellular permeability depends on the composition and spatial distribution of the cell-to-cell tight junctions (TJ). Here, we provide an experimental workflow that yields several layers of physiological data [...] Read more.
Endothelial and epithelial barrier function is crucial for the maintenance of physiological processes. The barrier paracellular permeability depends on the composition and spatial distribution of the cell-to-cell tight junctions (TJ). Here, we provide an experimental workflow that yields several layers of physiological data in the setting of a single endothelial cell monolayer. Human umbilical vein endothelial cells were grown on Transwell filters. Transendothelial electrical resistance (TER) and 10 kDa FITC dextran flux were measured using Alanyl-Glutamine (AlaGln) as a paracellular barrier modulator. Single monolayers were immunolabelled for Zonula Occludens-1 (ZO-1) and Claudin-5 (CLDN5) and used for automated immunofluorescence imaging. Finally, the same monolayers were used for single molecule localization microscopy (SMLM) of ZO-1 and CLDN5 at the nanoscale for spatial clustering analysis. The TER increased and the paracellular dextran flux decreased after the application of AlaGln and these functional changes of the monolayer were mediated by an increase in the ZO-1 and CLDN5 abundance in the cell–cell interface. At the nanoscale level, the functional and protein abundance data were accompanied by non-random increased clustering of CLDN5. Our experimental workflow provides multiple data from a single monolayer and has wide applicability in the setting of paracellular studies in endothelia and epithelia. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

23 pages, 1173 KiB  
Review
How to Improve the Biocompatibility of Peritoneal Dialysis Solutions (without Jeopardizing the Patient’s Health)
by Mario Bonomini, Valentina Masola, Giuseppe Procino, Victor Zammit, José C. Divino-Filho, Arduino Arduini and Giovanni Gambaro
Int. J. Mol. Sci. 2021, 22(15), 7955; https://doi.org/10.3390/ijms22157955 - 26 Jul 2021
Cited by 22 | Viewed by 8257
Abstract
Peritoneal dialysis (PD) is an important, if underprescribed, modality for the treatment of patients with end-stage kidney disease. Among the barriers to its wider use are the deleterious effects of currently commercially available glucose-based PD solutions on the morphological integrity and function of [...] Read more.
Peritoneal dialysis (PD) is an important, if underprescribed, modality for the treatment of patients with end-stage kidney disease. Among the barriers to its wider use are the deleterious effects of currently commercially available glucose-based PD solutions on the morphological integrity and function of the peritoneal membrane due to fibrosis. This is primarily driven by hyperglycaemia due to its effects, through multiple cytokine and transcription factor signalling—and their metabolic sequelae—on the synthesis of collagen and other extracellular membrane components. In this review, we outline these interactions and explore how novel PD solution formulations are aimed at utilizing this knowledge to minimise the complications associated with fibrosis, while maintaining adequate rates of ultrafiltration across the peritoneal membrane and preservation of patient urinary volumes. We discuss the development of a new generation of reduced-glucose PD solutions that employ a variety of osmotically active constituents and highlight the biochemical rationale underlying optimization of oxidative metabolism within the peritoneal membrane. They are aimed at achieving optimal clinical outcomes and improving the whole-body metabolic profile of patients, particularly those who are glucose-intolerant, insulin-resistant, or diabetic, and for whom daily exposure to high doses of glucose is contraindicated. Full article
(This article belongs to the Collection Feature Papers in Molecular Toxicology)
Show Figures

Figure 1

13 pages, 2002 KiB  
Article
Non-Invasive Human Embryo Metabolic Assessment as a Developmental Criterion
by Marjan Motiei, Katerina Vaculikova, Andrea Cela, Katerina Tvrdonova, Reza Khalili, David Rumpik, Tatana Rumpikova, Zdenek Glatz and Tomas Saha
J. Clin. Med. 2020, 9(12), 4094; https://doi.org/10.3390/jcm9124094 - 18 Dec 2020
Cited by 10 | Viewed by 2888
Abstract
The selection of a highly-viable single embryo in assisted reproductive technology requires an acceptable predictive method in order to reduce the multiple pregnancy rate and increase the success rate. In this study, the metabolomic profiling of growing and impaired embryos was assessed on [...] Read more.
The selection of a highly-viable single embryo in assisted reproductive technology requires an acceptable predictive method in order to reduce the multiple pregnancy rate and increase the success rate. In this study, the metabolomic profiling of growing and impaired embryos was assessed on the fifth day of fertilization using capillary electrophoresis in order to find a relationship between the profiling and embryo development, and then to provide a mechanistic insight into the appearance/depletion of the metabolites. This unique qualitative technique exhibited the appearance of most non-essential amino acids and lactate, and depleting the serine, alanyl-glutamine and pyruvate in such a manner that the embryos impaired in their development secreted a considerably higher level of lactate and consumed a significantly higher amount of alanyl-glutamine. The different significant ratios of metabolomic depletion/appearance between the embryos confirm their potential for the improvement of the prospective selection of the developed single embryos, and also suggest the fact that pyruvate and alanyl-glutamine are the most critical ATP suppliers on the fifth day of blastocyst development. Full article
(This article belongs to the Section Obstetrics & Gynecology)
Show Figures

Figure 1

21 pages, 2405 KiB  
Article
Peritoneal Dialysis Fluid Supplementation with Alanyl-Glutamine Attenuates Conventional Dialysis Fluid-Mediated Endothelial Cell Injury by Restoring Perturbed Cytoprotective Responses
by Rebecca Herzog, Maria Bartosova, Silvia Tarantino, Anja Wagner, Markus Unterwurzacher, Juan Manuel Sacnun, Anton M. Lichtenauer, Lilian Kuster, Betti Schaefer, Seth L. Alper, Christoph Aufricht, Claus Peter Schmitt and Klaus Kratochwill
Biomolecules 2020, 10(12), 1678; https://doi.org/10.3390/biom10121678 - 15 Dec 2020
Cited by 23 | Viewed by 3830
Abstract
Long-term clinical outcome of peritoneal dialysis (PD) depends on adequate removal of small solutes and water. The peritoneal endothelium represents the key barrier and peritoneal transport dysfunction is associated with vascular changes. Alanyl-glutamine (AlaGln) has been shown to counteract PD-induced deteriorations but the [...] Read more.
Long-term clinical outcome of peritoneal dialysis (PD) depends on adequate removal of small solutes and water. The peritoneal endothelium represents the key barrier and peritoneal transport dysfunction is associated with vascular changes. Alanyl-glutamine (AlaGln) has been shown to counteract PD-induced deteriorations but the effect on vascular changes has not yet been elucidated. Using multiplexed proteomic and bioinformatic analyses we investigated the molecular mechanisms of vascular pathology in-vitro (primary human umbilical vein endothelial cells, HUVEC) and ex-vivo (arterioles of patients undergoing PD) following exposure to PD-fluid. An overlap of 1813 proteins (40%) of over 3100 proteins was identified in both sample types. PD-fluid treatment significantly altered 378 in endothelial cells and 192 in arterioles. The HUVEC proteome resembles the arteriolar proteome with expected sample specific differences of mainly immune system processes only present in arterioles and extracellular region proteins primarily found in HUVEC. AlaGln-addition to PD-fluid revealed 359 differentially abundant proteins and restored the molecular process landscape altered by PD fluid. This study provides evidence on validity and inherent limitations of studying endothelial pathomechanisms in-vitro compared to vascular ex-vivo findings. AlaGln could reduce PD-associated vasculopathy by reducing endothelial cellular damage, restoring perturbed abundances of pathologically important proteins and enriching protective processes. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Peritoneal Membrane Pathophysiology)
Show Figures

Figure 1

17 pages, 4895 KiB  
Article
Alanyl-Glutamine Restores Tight Junction Organization after Disruption by a Conventional Peritoneal Dialysis Fluid
by Maria Bartosova, Rebecca Herzog, David Ridinger, Eszter Levai, Hanna Jenei, Conghui Zhang, Guadalupe T. González Mateo, Iva Marinovic, Thilo Hackert, Felix Bestvater, Michael Hausmann, Manuel López Cabrera, Klaus Kratochwill, Sotirios G. Zarogiannis and Claus Peter Schmitt
Biomolecules 2020, 10(8), 1178; https://doi.org/10.3390/biom10081178 - 13 Aug 2020
Cited by 26 | Viewed by 4833
Abstract
Understanding and targeting the molecular basis of peritoneal solute and protein transport is essential to improve peritoneal dialysis (PD) efficacy and patient outcome. Supplementation of PD fluids (PDF) with alanyl-glutamine (AlaGln) increased small solute transport and reduced peritoneal protein loss in a recent [...] Read more.
Understanding and targeting the molecular basis of peritoneal solute and protein transport is essential to improve peritoneal dialysis (PD) efficacy and patient outcome. Supplementation of PD fluids (PDF) with alanyl-glutamine (AlaGln) increased small solute transport and reduced peritoneal protein loss in a recent clinical trial. Transepithelial resistance and 10 kDa and 70 kDa dextran transport were measured in primary human endothelial cells (HUVEC) exposed to conventional acidic, glucose degradation products (GDP) containing PDF (CPDF) and to low GDP containing PDF (LPDF) with and without AlaGln. Zonula occludens-1 (ZO-1) and claudin-5 were quantified by Western blot and immunofluorescence and in mice exposed to saline and CPDF for 7 weeks by digital imaging analyses. Spatial clustering of ZO-1 molecules was assessed by single molecule localization microscopy. AlaGln increased transepithelial resistance, and in CPDF exposed HUVEC decreased dextran transport rates and preserved claudin-5 and ZO-1 abundance. Endothelial clustering of membrane bound ZO-1 was higher in CPDF supplemented with AlaGln. In mice, arteriolar endothelial claudin-5 was reduced in CPDF, but restored with AlaGln, while mesothelial claudin-5 abundance was unchanged. AlaGln supplementation seals the peritoneal endothelial barrier, and when supplemented to conventional PD fluid increases claudin-5 and ZO-1 abundance and clustering of ZO-1 in the endothelial cell membrane. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Peritoneal Membrane Pathophysiology)
Show Figures

Figure 1

13 pages, 2338 KiB  
Article
Vibrational Spectroscopy of Peritoneal Dialysis Effluent for Rapid Assessment of Patient Characteristics
by Tom Grunert, Rebecca Herzog, Florian M. Wiesenhofer, Andreas Vychytil, Monika Ehling-Schulz and Klaus Kratochwill
Biomolecules 2020, 10(6), 965; https://doi.org/10.3390/biom10060965 - 26 Jun 2020
Cited by 9 | Viewed by 3867
Abstract
Peritoneal dialysis (PD) offers specific advantages over hemodialysis, enabling increased autonomy of patients with end-stage renal disease, but PD-related complications need to be detected in a timely manner. Fourier transform infrared (FTIR) spectroscopy could provide rapid and essential insights into the patients’ risk [...] Read more.
Peritoneal dialysis (PD) offers specific advantages over hemodialysis, enabling increased autonomy of patients with end-stage renal disease, but PD-related complications need to be detected in a timely manner. Fourier transform infrared (FTIR) spectroscopy could provide rapid and essential insights into the patients’ risk profiles via molecular fingerprinting of PD effluent, an abundant waste material that is rich in biological information. In this study, we measured FTIR spectroscopic profiles in PD effluent from patients taking part in a randomized controlled trial of alanyl-glutamine addition to the PD-fluid. Principal component analysis of FTIR spectra enabled us to differentiate between effluent samples from patients immediately after completion of instillation of the PD-fluid into the patients’ cavity and 4 h later as well as between patients receiving PD-fluid supplemented with 8 mM alanyl-glutamine compared with control. Moreover, feasibility of FTIR spectroscopy coupled to supervised classification algorithms to predict patient-, PD-, as well as immune-associated parameters were investigated. PD modality (manual continuous ambulatory PD (CAPD) vs. cycler-assisted automated PD (APD)), residual urine output, ultrafiltration, transport parameters, and cytokine concentrations showed high predictive potential. This study provides proof-of-principle that molecular signatures determined by FTIR spectroscopy of PD effluent, combined with machine learning, are suitable for cost-effective, high-throughput diagnostic purposes in PD. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Peritoneal Membrane Pathophysiology)
Show Figures

Figure 1

Back to TopTop